当前位置:文档之家› 人教版高中数学必修五数列复习提纲及例题

人教版高中数学必修五数列复习提纲及例题

人教版高中数学必修五数列复习提纲及例题
人教版高中数学必修五数列复习提纲及例题

《数列》复习

1.数列的通项

求数列通项公式的常用方法:

(1)观察与归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变:分析符号、数字、字母与

项数n 在变化过程中的联系,初步归纳公式。 (2)公式法:等差数列与等比数列。 (3)利用n S 与n a 的关系求n a :11,(1)

,(2)

n n n S n a S S n -=?=?

-≥?

(4)构造新数列法;(5)逐项作差求和法;(6)逐项作商求积法

2.等差数列{}n a 中:

(1)等差数列公差的取值与等差数列的单调性; (2)1(1)n a a n d =+-()m a n m d =+-; (3){}n ka 也成等差数列;

(4)两等差数列对应项和(差)组成的新数列仍成等差数列. (5)1211221213,,m m m m m m m

a a a a a a a a a +++++++++++++仍成等差数列.

(6)1()2n n n a a S +=

,1(1)2n n n S na d -=+

,21()22n d d

S n a n =+-, 2121n n S a n -=

-,()(21)n n n

n A a

f n f n B b =?=-.

(7)若m n p q +=+,则m n p q a a a a +=+;若2p q

m +=

,则2

p q m a a a += ,()0p q p q a q a p p q a +==≠?=,

,()()p q p q S q S p p q S p q +==≠?=-+;m n m n S S S mnd +=++.

(8)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和; (9)等差中项:若,,a A b 成等差数列,则2

a b

A +=

叫做,a b 的等差中项。 (10)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法。

3.等比数列{}n a 中:

(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性。 (2)11n n a a q -=n m m a q -=;

(3){||}n a 、{}n ka 成等比数列;{}{}n n a b 、成等比数列{}n n a b ?成等比数列. (4)两等比数列对应项积(商)组成的新数列仍成等比数列. (5)1211,,

m k k k m a a a a a a ++-++

++++成等比数列.

(6)1111

11 (1) (1)

(1) (1) (1)1111n n n n na q na q S a a a a q a q q q q q q q q ==????

==--??-+≠=≠??----??

. (7)p q m n p q m n b b b b +=+??=?;22m p q m p q b b b =+?=?m n m n m n n m S S q S S q S +=+=+. (8)“首大于1”的正值递减等比数列中,前n 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前n 项积的最小值是所有小于或等于1的项的积;

(9)并非任何两数总有等比中项. 仅当实数,a b 同号时,实数,a b 存在等比中项.对同号两实数,a b 的等比中项不仅存在,而且有一对G ab =±.也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时)。

(10)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法

4.等差数列与等比数列的联系:各项都不为零的常数列既是等差数列又是等比数列

5.数列求和的常用方法:

(1)公式法:①等差数列求和公式;②等比数列求和公式

③1123(1)2n n n +++

+=+,22221123(1)(21)6

n n n n +++

+=++,

2135(21)n n +++

+-=,2135(21)(1)n n +++++=+.

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.

(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法). (4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前n 和公式的推导方法之一).

(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ①111(1)1n n n n =-++ ②

1111()()n n k k n n k

=-++, ③1111

[](1)(2)2(1)(1)(2)

n n n n n n n =--++++

【典型例题】

(一)研究等差等比数列的有关性质

1. 研究通项的性质

例题1. 已知数列}{n a 满足

1

111,3(2)n n n a a a n --==+≥. (1)求32,a a ;

(2)证明:

312n n a -=

. 解:(1)2

1231,314,3413a a a =∴=+==+=.

(2)证明:由已知1

13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---

1

2

131

3

3

312n n n a ---+=++

++=

, 所以证得

312n n a -=.

例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥

(Ⅰ)求

{}n a 的通项公式;

(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且3

15T =,又112233,,a b a b a b +++成等比数列,

n T .

解:(Ⅰ)由121n n a S +=+可得121(2)n

n a S n -=+≥,

两式相减得:112,3(2)n n n n n a a a a a n ++-==≥,

又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列

∴1

3

n n a -=

(Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b =

故可设135,5b d b d =-=+,又1231,3,9a a a ===,

由题意可得2

(51)(59)(53)d d -+++=+,解得122,10d d ==

∵等差数列{}n b 的各项为正,∴0d > ∴2d =

∴2(1)

3222n n n T n n n -=+

?=+

例题3. 已知数列

{}n a 的前三项与数列{}n b 的前三项对应相同,且21

2322...a

a a +++

128n n a n -+=对任意的*N n ∈都成立,数列{}

n n b b -+1是等差数列.

⑴求数列

{}n a 与{}n b 的通项公式;

⑵是否存在N k *

∈,使得(0,1)k k b a -∈,请说明理由.

点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已

知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

(2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况.

解:(1)已知2

12322a a a +++...12n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2)

128(1)n n a n --+=-(n ∈*N )②

①-②得,1

28n n a -=,求得42n n a -=,

在①中令1n =,可得得41

182

a -==,

所以42n

n a -=(n ∈N*).

由题意18b =,24b =,32b =,所以214b b -=-,322b b -=-, ∴数列}{1n n b b -+的公差为2)4(2=---, ∴1n n

b b +-=2)1(4?-+-n 26n =-,

121321()()()n n n b b b b b b b b -=+-+-+

+-

(4)(2)(28)n =-+-+

+-2714n n =-+(n ∈*N ).

(2)k k b a -=2714k k -+-42k

-,

当4k ≥时,

277

()()24f k k =-+-42k

-单调递增,且(4)1f =, 所以4k ≥时,2

()714f k k k =-+-42

1k

-≥,

又(1)(2)(3)0f f f ===,

所以,不存在k ∈*N ,使得(0,1)k k b a -∈.

例题4. 设各项均为正数的数列{a n }和{b n }满足:a n 、b n 、a n+1成等差数列,b n 、a n+1、b n+1成等比数列,且a 1 = 1, b 1 = 2 , a 2 = 3 ,求通项a n ,b n 解: 依题意得:

2b n+1 = a n+1 + a n+2 ① a 2n+1 = b n b n+1 ②

∵ a n 、b n 为正数, 由②得21211,+++++==n n n n n n b b a b b a , 代入①并同除以1+n b 得: 212+++=n n n b b b , ∴ }{n b 为等差数列

∵ b 1 = 2 , a 2 = 3 ,

29

,22122=

=b b b a 则 ,

2)1(),1(22)229)(1(22

+=

∴+=--+=n b n n b n n ,

∴当n ≥2时,2)1(1+=

=-n n b b a n n n , 又a 1 = 1,当n = 1时成立, ∴2)1(+=

n n a n

2. 研究前n 项和的性质

例题5. 已知等比数列}{n a 的前n 项和为

2n

n S a b =?+,且13a =. (1)求a 、b 的值及数列}{n a 的通项公式;

(2)设

n n n

b a =

,求数列}{n b 的前n 项和n T .

解:(1)2≥n 时,a S S a n n n n ?=-=--1

12.而}{n a 为等比数列,得a a a =?=-1112, 又31=a ,得3=a ,从而1

23-?=n n a .又123,3a a b b =+=∴=-.

(2)

1

32n n n n n b a -=

=?, 2

1123(1)

3222n n n

T -=++++

231111231(23222

22n n n n n T --=++++

+) ,得2

11111

1(1)232222n

n n n T -=++++

-,

1

1

1(1)2412[

](1)13232212n n n n n n n T +?-=-=---.

例题6. 数列{}n a 是首项为1000,公比为1

10的等比数列,数列{b }n 满足

121

(lg lg lg )k k b a a a k =+++ *

()N k ∈,

(1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '

. 解:(1)由题意:410n

n a -=,∴lg 4n a n =-,∴数列{lg }n a 是首项为3,公差为1-的等差数列,

12(1)lg lg lg 32k k k a a a k -+++=-

,∴1(1)7[3]22n n n n

b n n --=-=

由100n n b b +≥??≤?,得67n ≤≤,∴数列{b }n 的前n 项和的最大值为

67

212S S ==.

(2)由(1)当7n ≤时,0n b ≥,当7n >时,0n b <,

∴当7n ≤时,212731132(

)244n n n S b b b n n n -+

'=+++==-+

当7n >时,

12789n n S b b b b b b '=++

+---

-2712113

2()21

44n S b b b n n =-++

+=-+

∴22113

(7)4

411321(7)44n n n n S n n n ?-+≤??'=??-+>??.

例题7. 已知递增的等比数列{n a }满足23428a a a ++=,且32a +是2a ,4a 的等差中项. (1)求{n a }的通项公式n a ;(2)若

12

l og n n n b a a =,12

n n S b b b =++

+求使1230n n S n ++?>成立的n

的最小值.

解:(1)设等比数列的公比为q (q >1),由

a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2(a 1q 2+2),得:a 1=2,q =2或a 1=32,q =12

(舍)

∴a n =2·2

(n -1)

=2n

(2) ∵12log 2n

n n n b a a n ==-?,∴S n =-(1·2+2·22+3·23+…+n ·2n ) ∴2S n =-(1·22+2·23+…+n ·2n +1),∴S n =2+22+23+…+2n -n ·2n +1=-(n -1)·2n +1-2, 若S n +n ·2n +1>30成立,则2n +1>32,故n >4,∴n 的最小值为5.

例题8. 已知数列}{n a 的前n 项和为S n ,且11,,n n S a +-成等差数列,*

1,1N n a ∈=. 函数3()log f x x =.

(I )求数列}{n a 的通项公式; (II )设数列{}n b 满足

1

(3)[()2]n n b n f a =

++,记数列{}n b 的前n 项和为T n

,试比较

52512312n n T +-

与的大小.

解:(I )11,,n n S a +-成等差数列,121n n S a +∴=-① 当2n ≥时,121n n S a -=-②.

①-②得:112()n n n n S S a a -+-=-,13+=∴n n a a ,1 3.

n n a

a +∴= 当n =1时,由①得112221S a a ∴==-, 又11,

a =2

21

3,3,a a a ∴=∴

=

{}n a ∴是以1为首项3为公比的等比数列,13.n n a -∴=

(II )∵()x log x f 3=,1

33()log log 31n n n f a a n -∴===-,

11111

()

(3)[()2](1)(3)213n n b n f a n n n n ===-++++++,

1111111111111()

224354657213n T n n n n ∴=-+-+-+-++-+-+++

11111()22323n n =+--++525,122(2)(3)n n n +=-

++

比较

52512312n n T +-

与的大小,只需比较2(2)(3)n n ++与312 的大小即可. 222(2)(3)3122(56156)2(5150)n n n n n n ++-=++-=+-又2(15)(10)n n =+-

∵*,N n ∈∴当*

19N n n ≤≤∈且时,

525

2(2)(3)312,;12312n n n n T +++<<-即 当10n =时,

525

2(2)(3)312,;

12312n n n n T +++==-即

当*

10N n n >∈且时,5252(2)(3)312,12312n n n n T +++>>

-

即.

3. 研究生成数列的性质

例题9. (I ) 已知数列{}n c ,其中n

n n c 32+=,且数列{}n n pc c -+1为等比数列,求常数p ;

(II ) 设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是等比数列.

解:(Ⅰ)因为{c n +1-pc n }是等比数列,故有 (c n +1-pc n )2=( c n +2-pc n+1)(c n -pc n -1), 将c n =2n +3n 代入上式,得 [2n +1+3n +

1-p (2n +3n )]2

=[2n +2+3n +2-p (2n +1+3n +1)]·[2n +3n -p (2n -1+3n -

1)], 即[(2-p )2n +(3-p )3n ]2

=[(2-p )2n+1+(3-p )3n+1][ (2-p )2n -1+(3-p )3n -

1],

整理得61

(2-p )(3-p )·2n ·3n =0,

解得p =2或p =3. (Ⅱ)设{a n }、{b n }的公比分别为p 、q ,p ≠q ,c n =a n +b n .

为证{c n }不是等比数列只需证22c ≠c 1·c 3.

事实上,22c =(a 1p +b 1q )2=21a p 2+2

1b q 2+2a 1b 1pq ,

c 1·c 3=(a 1+b 1)(a 1 p 2+b 1q 2)= 2

1a p 2+2

1b q 2+a 1b 1(p 2+q 2).

由于p ≠q ,p 2+q 2>2pq ,又a 1、b 1不为零,

因此≠2

2c c 1·c 3,故{c n }不是等比数列.

例题10. n 2( n ≥4)个正数排成n 行n 列:其中每一行的数成等差数列,每一列的数成等比数列,并且

所有公比相等已知a 24=1,

163,814342=

=a a 求S=a 11 + a 22 + a 33 + … + a nn

解: 设数列{1k a }的公差为d , 数列{ik a }(i=1,2,3,…,n )的公比为q

则1k a = a 11 + (k -1)d , a kk = [a 11 + (k -1)d]q k -

1

依题意得:???

?

??

???

=+==+==+=163)2(81)(1)3(3

1143

3

11

421124q d a a q d a a q d a a ,解得:a 11 = d = q = ±21 又n 2个数都是正数,

∴a 11 = d = q = 21 , ∴a kk = k

k

2

n n S 212132122132?++?+?+=

, 1432212132122121+?++?+?+=n n S ,

两式相减得:n n n S 22121

-

-

=-

例题11. 已知函数3()log ()f x ax b =+的图象经过点)1,2(A 和)2,5(B ,记()*

3,.f n n a n N =∈

(1)求数列}{n a 的通项公式;

(2)设n n n n

n b b b T a b +++==

21,2,若)(Z m m T n ∈<,求m 的最小值;

(3)求使不等式1

2)1

1()11)(11(21+≥+++n p a a a n

对一切*N n ∈均成立的最大实数p .

解:(1)由题意得???=+=+2)5(log 1)2(log 33b a b a ,解得???-==12

b a ,

)12(log )(3-=∴x x f *)12(l o g ,1233N n n a n n ∈-==- (2)由(1)得n n n b 212-=,

n n n n n T 2122322523211

321-+-++++=∴- ① 1132212232252232121+--+-+-+++=n n n n n n n T ② ①-②得

)21212121(2121n 22222222221T 211n 2n 2111n n 1n 321n --+-+++++=--+++++= 1n 1n 1n 21n 2212321n 2+-+---=--.

n n 2n n 23n 2321n 2213T +-

=---=∴-, 设*,23

2)(N n n n f n ∈+=

,则由 1512132121)32(252232252)

()1(1<+≤++=++=++=++n n n n n n f n f n n 得*

,232)(N

n n n f n ∈+=随n 的增大而减小 +∞→∴n 当时,3→n T 又)(Z m m T n ∈<恒成立,3min =∴m

(3)由题意得*

21)11()11)(11(121N n a a a n p n ∈++++≤对 恒成立

)

1

1()11)(11(1

21)(21n a a a n n F ++++=

,则 ()()

11n 21n 2)

1n ()1n (4)1n (2)

3n 2)(1n 2(2n 2)

a 1

1()a 11)(a 11(1

n 21)a 11)(a 11()a 11)(a 11(3n 21

)n (F )

1n (F 2n 211

n n 21=++>

+-++=

+++=

+++++++++=++

)(),()1(,0)(n F n F n F n F 即>+∴> 是随n 的增大而增大

)(n F 的最小值为

332)1(=

F ,332≤∴p ,即332max =p .

(二)证明等差与等比数列

1. 转化为等差等比数列.

例题12. 数列{}n a 中,2,841==a a 且满足n n n a a a -=++122,*

N n ∈. ⑴求数列{}n a 的通项公式;

⑵设||||||21n n a a a S +++= ,求n S ;

⑶设n b =1

(12)n n a -**12(),()N N n n n T b b b n ∈=+++∈,是否存在最大的整数m ,使得对任意*

N n ∈,

均有>n T 32m

成立?若存在,求出m 的值;若不存在,请说明理由.

解:(1)由题意,n n n n a a a a -=-+++112,}{n a ∴为等差数列,设公差为d , 由题意得2832d d =+?=-,82(1)102n a n n ∴=--=-. (2)若50210≤≥-n n 则,||||||,521n n a a a S n +++=≤ 时

21281029,2n n

a a a n n n +-=+++=

?=-

6n ≥时,n n a a a a a a S ---+++= 76521

2555()2940n n S S S S S n n =--=-=-+

?????+--=40n 9n n n 9S 22

n 56n n ≤≥ (3)11111

()

(12)2(1)21n n b n a n n n n ===--++,

∴n T 1111111111[(1)()()()()]22233411n n n n =-+-+-++-+--+.2(1)n n =+ 若

32n m T >对任意*N n ∈成立,即116n m n >+对任意*

N n ∈成立, *()

1N n

n n ∈+的最小值是21,1,162m ∴

即存在最大整数,7=m 使对任意*

N n ∈,均有

.32n m

T >

例题13. 已知等比数列{}n b 与数列{}n a 满足3,n a

n b n =∈N *. (1)判断{}n a 是何种数列,并给出证明; (2)若8131220,a a m b b b +=求.

解:(1)设{}n b 的公比为q ,∵3n a

n b =,∴()q log 1n a a 3q 331n a 1n a n 1-+=?=?-。 所以{}n a 是以3log q 为公差的等差数列.

(2)∵813,a a m +=所以由等差数列性质可得120813,a a a a m +=+=

123a a a +++…

12020()20

102

a a a m +?+=

=?

1220()

10122033a a a m b b b ++

+==

2. 由简单递推关系证明等差等比数列

例题14. 已知数列{}

n

a和{}

n

b满足:

1

1

a=,

2

2

a=,0

n

a>,

1

n n n

b a a

+

=(*

n∈N),

且{}

n

b是以q为公比的等比数列.

(I)证明:

2

2

n n

a a q

+

=;

(II)若212

2

n n n

c a a

-

=+,证明:数列{}

n

c是等比数列;

(III)求和:1234212

111111

n n

a a a a a a

-

++++++

.

解法1:(I)证:由

1

n

n

b

q

b

+=

,有

122

1

n n n

n

n n

a a a

q

a

a a

+++

+

==

,∴

()*N

n

q

a

a2

n

2

n

=

+. (II)证:∵

2

2

n

n

q

a

a

-

=,

222

21231

n

n n

a a q a q-

--

∴===,2

n

2

2

2

2

n

2

n

2

q

a

...

q

a

a-

-

=

=

=,

22222222

2121212

22(2)5

n n n n

n n n

c a a a q a q a a q q

----

-

∴=+=+=+=.

{}

n

c

是首项为5,公比为

2

q的等比数列.

(III)解:由(II)得

22

211

11

n

n

q

a a

-

-

=

22

22

11

n

n

q

a a

-

=

,于是

1221321242

111111111

()()

n n n

a a a a a a a a a

-

+++=+++++++

24222422

12

11111111

(1)(1)

n n

a q q q a q q q

--

=+++++++++

2122

3111

(1)

2n

q q q-

=++++

.

当1

q=时,2422

122

1113111

(1)

2n

n

a a a q q q-

+++=++++3

2

n

=

.

当1

q≠时,2422

122

1113111

(1)

2n

n

a a a q q q-

+++=++++

2

2

31

()

21

n

q

q

-

-

-

=

-

2

222

31

[]

2(1)

n

n

q

q q

-

-

=

-.

2

122

222

3

1

2

111

1

[ 1.

(1)

n

n

n

n q

q

a a a

q

q q

-

?

=

??

+++=?

3-

?≠

?2-

?

,,

],

解法2:(I)同解法1(I).

(II )证: 222*1212221221221222()22N n n n n n

n n n n n

c a a q a q a q n c a a a a +++---++===∈++,又11225c a a =+=,

{}n c ∴是首项为5,公比为2q 的等比数列.

(III )由解法1中(II )的类似方法得22

2221212()3n n n n a a a a q

q ---+=+=,

34212121221234212111

n n n n n a a a a a a a a a a a a a a a --++++++=+++,

2222

212442123322k k k k k k k a a q q

a a q --+---+==,12k n =,

,,. ∴()

2

n 22n 221q ...q 123a 1...a 1a 1+--+++=+++.

例题15. 设数列0,1,)1(,}{-≠-+=λλλ其中且项和为的前n n n n a S S n a (1)证明:数列}{n a 是等比数列;

(2)设数列}{n a 的公比()q f λ=,数列{}n b 满足1b =,b n

=f (b

n -1)

(n ∈N *,n ≥2),求数列}{n b 的

通项公式;

(3)设1λ=,1

(1)n n n

C a b =-,求数列{}n C 的前n 项和Tn . (1)证明:由11(1)(1)(2)n n n n S a S a n λλλλ--=+-?=+-≥

相减得:11,(2),1n n n n n a a a a n a λλλλ

--=-+∴

=≥+∴数列{}n a 是等比数列 (2)解:

1{}n b ∴是首项为112b =,公差为1的等差数列,∴1

2(1)1n n n b =+-=+. 11

n b n ∴=+.

(3)解:1λ=时11

111,(),(1)()22

n n n n n n a C a n b --=∴=-=

2111

1

12()3()()222

n n T n -∴=+++

+ ①

①-②得:

∴n

n n 21n 2112T 21??? ??-??????????? ??-=

所以:1

14(1())2()22

n n n T n =--.

高中数学必修五测试题

必修五综合测试题 一.选择题 1.已知数列{a n }中,21=a ,*11 ()2 n n a a n N +=+ ∈,则101a 的值为 ( ) A .49 B .50 C .51 D .52 2.2 1与21,两数的等比中项是( ) A .1 B .1 C . 1 D . 12 3.在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于( ) A .0 30 B .0 60 C .0120 D .0 150 4.在⊿ABC 中, B C b c cos cos =,则此三角形为 ( ) A .直角三角形 B. 等腰直角三角形 C. 等腰三角形 D.等腰或直角三角形 5.已知n a 是等差数列,且a 2+ a 3+ a 10+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20 D .24 6.在各项均为正数的等比数列{}n b 中, 若783b b ?=, 则3132log log b b ++…… 314 log b +等于( ) (A) 5 (B) 6 (C) 7 (D)8 7.已知数列 是等差数列,若,且它的前n 项和有最大值,则使得 的n 的最大值为 A. 11 B. 12 C. 21 D. 22 8.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A 、63 B 、108 C 、75 D 、83 9.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 10.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ). A .有一种情形 B .有两种情形 C .不可求出 D .有三种以上情形 11.已知关于x 的不等式的解集为,则 的最大值是

【有关高中数学教学的】高中数学经典大题150道

【有关高中数学教学的】高中数学经典大题150道 学习活动对学生来说本身就具有重要的意义,但是由于个体间的差异和教学时间紧迫等客观因素决定了在数学课堂上教师不可能兼顾到每一个学生的实际情况. 第一篇:民族地区的高中数学教学 1. 当前高中数学教学的问题和分析 ①不注重知识的循序渐进:从初中到高中的知识跨越是一个循序渐进的过程,一定要做到让学生吸收。 而现在的教师为了让学生掌握的更多,没节制的拓宽知识面,不断地补充一些公式或者特殊的解题方法,这些在高中生的高三复习阶段屡见不鲜,导致学生的负担过重不能更好的发挥。 ②因材施教没有落到实处:一些高中教师教学过程中分层教学把握不到位,教法单一。 只讲”范式”,不讲”变式”,只要求记结论、套题型,多数学生浅尝辄止,不求甚解。 学生学习毫无兴致,导致两级分化严重。 2. 教学新思路探索 2.1注重生源状况研究,实施因材施教依据少数民族地区生源质量较差的实际情况,

教师需要对其因材施教。 结合班级里学生能力参差不齐的实际,传统的一些僵化教法根本无法适应当前新课程改革的要求,无法推进后进生的转化。 教师需要根据生源状况,将其分为差、中、好三个档次,对后进生在知识方面进行详细的了解,设计问题的过程中可以梯度小一点,采取”小步子、慢速度”的原则。 2.2掌握新课改新课程的基本理念在新课改下,高中数学旨在构建学生发展和学习的良好基础,激励学生学习的积极主动性;促进学生的全面发展,注重学生数学思维的形成,把信息技术和课程化作一体,建立适应学生个性发展的学习体系。 这一切都要求教师提高自身的综合素质,在教学中探索更好的教学方法,实现从知识的传授到学生能力的培养的跨越。 2.3注重知识传授的循序渐进以及改进方法新课改高中数学教学的关键就是循序渐进,只有完成这个环节,才能顺利的开展教学。 有的老师眼中只有成绩,一味赶进度,形成”填鸭式”的教学模式。 但事实上这样会适得其反,数学学科肩负着学生运算能力、逻辑思维能力和空间想象能力的培养。 它的特点就是很抽象,对能力的要求很高。 所以如果不遵从循序渐进的原则,那么必然会形成很多学生的掉队,不仅会影响学生的兴趣,更重要的是还会影响其成绩。 所以高中数学教学方法一定要活,因材施教,要具有针对性。 教师要真正成为学生的引导和合作者。 考虑学生的自身状况以及学习需要,辅以多媒体教学,培养学生的积极性和兴趣,做到学生不仅能够掌握现有概念和技能,还能独立思考学习,要充分鼓励学生自主探索。

高一数学必修1知识点总结

高中高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2} 4、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集

【必考题】高中必修一数学上期末试卷附答案(1)

【必考题】高中必修一数学上期末试卷附答案(1) 一、选择题 1.已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 A .-2 B .2 C .-98 D .98 2.设a b c ,,均为正数,且122log a a =,12 1log 2b b ??= ???,21log 2c c ??= ???.则( ) A .a b c << B .c b a << C .c a b << D .b a c << 3.定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有 2121 ()() 0f x f x x x -<-,则( ). A .(3)(2)(1)f f f <-< B .(1)(2)(3)f f f <-< C .(2)(1)(3)f f f -<< D .(3)(1)(2)f f f <<- 4.已知函数ln ()x f x x =,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a << B .b a c << C .a c b << D .c a b << 5.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的 “上界值”,则函数33 ()33 x x f x -=+的“上界值”为( ) A .2 B .-2 C .1 D .-1 6.函数 ()()2 12 log 2f x x x =-的单调递增区间为( ) A .(),1-∞ B .()2,+∞ C .(),0-∞ D .()1,+∞ 7.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时, ()()1h x g x =-;若函数()()y k f x h x =?-有五个零点,则正数k 的取值范围是 ( ) A .()3log 2,1 B .[ )3log 2,1 C .61log 2, 2? ? ??? D .61log 2,2 ?? ?? ? 8.已知函数()2log 14x f x x ?+=?+? 0x x >≤,则()()3y f f x =-的零点个数为( ) A .3 B .4 C .5 D .6 9.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数 6()(1)cos 43g x x f x =-+?-有且只有唯一的零点,则(2019)f =( ) A .1 B .-1 C .-3 D .3

高中数学必修五测试题含答案

高一数学月考试题 一.选择题(本大题共12小题,每小题5分,共60分) 1.已知数列{a n }中,21=a ,*11()2 n n a a n N +=+∈,则101a 的值为 ( ) A .49 B .50 C .51 D .52 211,两数的等比中项是( ) A .1 B .1- C .1± D .12 3.在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于( ) A .030 B .060 C .0120 D .0150 4.在⊿ABC 中,B C b c cos cos =,则此三角形为 ( ) A . 直角三角形; B. 等腰直角三角形 C. 等腰三角形 D. 等腰或直角三角形 5.已知{}n a 是等差数列,且a 2+ a 3+ a 10+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20 D .24 6.在各项均为正数的等比数列 {}n b 中,若783b b ?=, 则31 32log log b b ++……314log b +等于( ) (A) 5 (B) 6 (C) 7 (D)8 7.已知b a ρρ,满足:a ρ=3,b ρ=2,b a ρρ+=4,则b a ρρ-=( ) A B C .3 D 10 8.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A 、63 B 、108 C 、75 D 、83 9.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 10.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ). A .有一种情形 B .有两种情形

高中数学椭圆超经典知识点+典型例题讲解

学生姓名性别男年级高二学科数学 授课教师 上课时 间2014年12月13 日 第()次课 共()次课 课时:课时 教学课题椭圆 教学目标 教学重点 与难点 选修2-1椭圆 知识点一:椭圆的定义 平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若,则动点的轨迹为线段; 若,则动点的轨迹无图形.

讲练结合一.椭圆的定义 1.方程()()10222222=++++-y x y x 化简的结果是 2.若ABC ?的两个顶点()()4,0,4,0A B -,ABC ?的周长为18,则顶点C 的轨迹方程是 3.已知椭圆22 169 x y +=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 知识点二:椭圆的标准方程 1.当焦点在轴上时,椭圆的标准方程:,其中; 2.当焦点在轴上时,椭圆的标准方程:,其中; 注意: 1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有 和 ; 3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为, ; 当焦点在轴上时,椭圆的焦点坐标为 ,。

圆的标准方程; 知识点三:椭圆的简单几何性质 椭圆的的简单几何性质 (1)对称性 对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换 成―x、―y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围 椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b。

高一数学必修一期末试卷及答案 (1)

一、选择题。(共10小题,每题4分) 1、设集合A={x ∈Q|x>-1},则( ) A 、A ?? B 、2A ? C 、 2A ∈ D 、 {}2 ?A 2、设A={a ,b},集合B={a+1,5},若A∩B={2},则A∪B=( ) A 、{1,2} B 、{1,5} C 、{2,5} D 、{1,2,5} 3、函数2 1 )(--= x x x f 的定义域为( ) A 、[1,2)∪(2,+∞) B 、(1,+∞) C 、[1,2) D 、[1,+∞) 4、设集合M={x|-2≤x ≤2},N={y|0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( ) 5、三个数70。 3,0。37, ,㏑,的大小顺序是( ) A 、 70。 3,, ,㏑, B 、70。 3,,㏑, C 、 , , 70。 3,,㏑, D 、㏑, 70。 3, , 6、若函数f(x)=x 3 +x 2 -2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表: f(1)=-2 f= f= f= f= f= 那么方程x 3 +x 2 -2x-2=0的一个近似根(精确到)为( ) A 、 B 、 C 、 D 、 7、函数2,0 2,0 x x x y x -?????≥=< 的图像为( ) 8、设 ()log a f x x =(a>0,a ≠1),对于任意的正实数x ,y ,都有( ) A 、f(xy)=f(x)f(y) B 、f(xy)=f(x)+f(y) C 、f(x+y)=f(x)f(y) D 、f(x+y)=f(x)+f(y) 9、函数y=ax 2 +bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( ) A 、b>0且a<0 B 、b=2a<0 C 、b=2a>0 D 、a ,b 的符号不定 10、某企业近几年的年产值如图,则年增长率最高的是 ( )(年增长率=年增长值/年产值) A 、97年 B 、98年 C 、99年 D 、00年 二、填空题(共4题,每题4分) 11、f(x)的图像如下图,则f(x)的值域为 ; 0099 98 97 96 (年) 2004006008001000(万元)

高中数学必修5试卷(含答案)

数学必修5试题 (满分:150分 时间:120分钟) 一、选择题:(本大题共10小题,每小题5分,共50分) 1、数列1,-3,5,-7,9,…的一个通项公式为 ( ) A .12-=n a n B.)21()1(n a n n --= C .)12()1(--=n a n n D.)12()1(+-=n a n n 2.已知{}n a 是等比数列,4 1 252==a a ,,则公比q =( ) A .2 1- B .2- C .2 D .2 1 3.已知ABC ?中,?=∠==60,3,4BAC AC AB ,则=BC ( ) A. 13 B. 13 C.5 D.10 4.在△ABC 中,若 2sin b B a =,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0015030或 5. 在ABC ?中,若cos cos a B b A =,则ABC ?的形状一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 6.若?ABC 中,sin A :sin B :sin C =2:3:4,那么cos C =( ) A. 14 - B. 14 C. 23 - D. 23 7.设数}{n a 是单调递增的等差数列,前三项的和为12,前三项的积为 48,则它的首项是( ) A .1 B .2 C .2± D .4 8.等差数列}{n a 和{}n b 的前n 项和分别为S n 和T n ,且 1 32+= n n T S n n , 则 5 5 b a =( ) A 32 B 149 C 3120 D 9 7 9.已知{}n a 为公比q >1的等比数列,若20052006a a 和是方程24830x x -+=的两根,

高中数学必修1各章节测试题全套含答案

(数学1必修)第一章(上) 集合 [基础训练A 组] 一、选择题 1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( ) A .}33|{=+x x B .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D . },01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( ) A .()()A C B C B .()()A B A C C .()()A B B C D .()A B C 4.下面有四个命题: (1)集合N 中最小的数是1; (2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{ }1,1; 其中正确命题的个数为( )A .0个 B .1个 C .2个 D .3个 5.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个 二、填空题 1.用符号“∈”或“?”填空 (1)0______N , 5______N , 16______N (2)1 ______,_______,______2 R Q Q e C Q π- (e 是个无理数) (3{} |,,x x a a Q b Q =∈∈ 2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C A B =,则 C 的 非空子集的个数为 。 3.若集合{}|37A x x =≤<,{}|210B x x =<<,则A B =_____________. A B C

高中数学集合典型例题教学文案

高中数学集合典型例 题

精品文档 收集于网络,如有侵权请联系管理员删除 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且I 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??=Y I 注:数形结合---文氏图(即韦恩图、Venn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A I 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P I 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A I ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M I 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围.

高中数学必修一知识点总结完整版

高中数学必修 1 知识点总结 集合 (1)元素与集合的关系:属于( )和不属于( ) (2)集合中元素的特性:确定性、互异性、无序性 集合与元素 (3)集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集 (4)集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法 子集:若 x A x ,则 A ,即 是 的子集。 B B A B 、若集合 中有 个元素,则集合 的子集有 2 n 个,真子集有 (2 n -1) 个。 1 A n A 、任何一个集合是它本身的子集,即 A A 注 2 关系 、对于集合 A,B,C, 如果 A ,且 B C, 那么 A C. 3 B 、空集是任何集合的(真)子集。 4 真子集:若 且 (即至少存在 x 0 但 ),则 是 的真子集。 集合 ABAB B x 0 A A B 集合相等: A 且 A B A B B 集合与集合 定义: A B x / x 且 x B 交集 A 性质: , , , , AAAA ABBAABA,ABBAB A 定义: A B x / x 或 x B 并集 A 性质: , , , , , 运算 AAAA AABBAABAABBAB A Card( A B) Card( A) Card( B) - Card( A B) 定义: C U A x/ x U 且x A A 补集 性质: A) A , A U , C U (C U A) , , (C U (C U A) A C U (A B) (C U A) (C U B) C U (A B) (C U A) (C U B) 函数

(完整)高中数学必修一期末试卷和答案

人教版高中数学必修一测试题二 一、选择题:本大题10小题,每小题5分,满分50分。 1、已知全集I ={0,1,2,3,4},集合{1,2,3}M =,{0,3,4}N =,则()I M N I e等于 ( ) A.{0,4} B.{3,4} C.{1,2} D. ? 2、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N U 等于 ( ) A.{0} B.{0,5} C.{0,1,5} D.{0,-1,-5} 3、计算:9823log log ?= ( ) A 12 B 10 C 8 D 6 4、函数2(01)x y a a a =+>≠且图象一定过点 ( ) A (0,1) B (0,3) C (1,0) D (3,0) 5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( ) 6、函数12 log y x =的定义域是( ) A {x |x >0} B {x |x ≥1} C {x |x ≤1} D {x |0<x ≤1} 7、把函数x 1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式 应为 ( ) A 1x 3x 2y --= B 1x 1x 2y ---= C 1x 1x 2y ++= D 1 x 3x 2y ++-=

8、设x x e 1e )x (g 1x 1x lg )x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数 C f(x)与g(x)都是偶函数 D f(x)是偶函数,g(x)是奇函数 9、使得函数2x 2 1x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4) 10、若0.52a =,πlog 3b =,2log 0.5c =,则( ) A a b c >> B b a c >> C c a b >> D b c a >> 二、填空题:本大题共4小题,每小题5分,满分20分 11、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______ 12、计算:2391- ??? ??+3 2 64=______ 13、函数212 log (45)y x x =--的递减区间为______ 14、函数1 22x )x (f x -+=的定义域是______ 三、解答题 :本大题共5小题,满分80分。解答须写出文字说明、证明过程或演算步骤。 15. (15分) 计算 5log 333 3322log 2log log 859 -+-

高中数学必修5试题及详细答案

期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题:本大题共14小题,每小题4分,共56分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.在等差数列3,7,11,…中,第5项为( ). A .15 B .18 C .19 D .23 2.数列{a n }中,如果n a =3n (n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列 D .首项为1的等比数列 3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ). A .4 B .5 C .6 D .7 4.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°,则c 的值等于( ). A .5 B .13 C .13 D .37 5.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 6.△ABC 中,如果A a tan =B b tan =C c tan ,那么△ABC 是( ). A .直角三角形 B .等边三角形 C .等腰直角三角形 D .钝角三角形 7.如果a >b >0,t >0,设M =b a ,N =t b t a ++,那么( ). A .M >N B .M <N C .M =N D .M 与N 的大小关系随t 的变化而变化 8.如果{a n }为递增数列,则{a n }的通项公式可以为( ). A .a n =-2n +3 B .a n =-n 2-3n +1 C .a n = n 21 D .a n =1+log 2 n 9.如果a <b <0,那么( ).

论高中数学习题课教学

论高中数学习题课教学 发表时间:2014-04-14T11:10:10.810Z 来源:《教育与管理》2014年1月供稿作者:贾丽霞 [导读] 在初中数学教学中,习题课的基本目的是通过解题的形式来形成学生的数学技能,并通过解题教学进一步培养学生数学的应用意识和能力。 笙河北省沙河市第一中学/贾丽霞 【摘要】上好习题课课堂教学模式可以是“目标教学法”、“范例式教学法”、先学后教的“学案导学式教学法”、“探究式教学法”等,但无论采用什么教学模式,都离不开教学内容的合理安排。在科学合理地安排好教学内容的同时,再选择适当的教学方式,则能达到事半功倍之效。 【关键词】高中数学习题课模式在新课程改革过程中,专家、教师们对于如何上好一节新授课讨论的很多,而对于如何上好一节习题课讨论的相对较少。然而,习题课在数学课教学中起着非常重要的作用,它是数学教学中的重要课型。 在初中数学教学中,习题课的基本目的是通过解题的形式来形成学生的数学技能,并通过解题教学进一步培养学生数学的应用意识和能力。习题课之所以重要,是因为习题课能使学生加深对基本概念的理解,使理论完整化、具体化。习题课教学还可以增强学生的理性认识,提高学生的辨别能力。另外,通过问题创设了一种适合学生思维的情境,可以多方面、多角度地培养学生的观察、归纳、类比等技能和能力。从此也可看出学生的解题过程是一种独立的创造活动过程,有利于学生思维能力的发展。对于教师来说,还可以检查学生对所学知识的理解和掌握程度,以便适时调整教学方法和策略,实现数学教学的基本目标。结合自己的教学体会,我认为应做好以下几个方面工作: 1 科学安排教学内容1.1 例题和习题的安排要有明确的学习目标。目标主要有两个方面,一是知识目标,二是技能目标,要通过本节学习,巩固哪些知识,扩展哪些知识,掌握哪些解题方法,理解和体验哪些思想方法,形成什么技能,这些都要有明确的目标。如何没有明确的目标,将成为简单的例题讲解和习题训练,使学习内容缺少完整的知识体系,知识之间难以很好地沟通和联系。例题的安排难以达到示范性,习题的安排也缺少典型性,揭示习题的规律性也有困难。所以缺少目标的习题课有盲目性,会降低教学效率,因此要有明确的教学目标。 1.2 例题的安排要有非常强的示范性。首先要让某些例题体现主要知识点的运用,体现通法通解,以起到加强双基的示范性,再通过适当的变式引申、变式训练,以达到夯实双基、举一反三之效。例题的安排要体现教学解题方法的训练和解题技能的培养,要揭示例题的解题规律和体现例题的思想方法,这样才能体现例题的典型性。分析例题前可适当回顾知识要点及解题的基本方法,以便例题的学习更自然、更轻松。 2 精心选题 2.1 选题要有针对性,针对教学目标,针对知识点,针对学生的现状。教师在编选题前,对近一段的教学情况做些回顾和小结,很有必要,做到对教学情况心中有数,不能凭感觉和“经验”随意挑选几个题目,这就很难收到好的效果。小结要从教与学两个方面入手。对于教而言,要冷静,客观的分析前面所学知识到位了没有,教学情况如何,教学方法是否暴露了知识的形成过程。对学而言,要了解学生对重点内容了解到什么层次,难点消化到什么程度,思维训练的效果如何,针对这些来编选题。 2.2 选题要有可行性。选题要把握好度,作为平时的习题课,题目的综合性不要过强,这是因为学生对新概念,新知识接触的时间不长,有的学生尚未完全理解和掌握。如果题目背景较深,信息量较大,涉及到的新知识较多,学生的思维可能跟不上,这会影响学生思维的积极性,甚至使学生丧失信心,若要选综合性较强的题目,一般采取分步设问的方式给出,这样做学生易成功,有利于激发学生的思维兴趣,有助于学生把问题搞懂。 2.3 例题选择要有研究性。选题要精,要有典型性。通过对问题分析,启发学生从不同的角度观察、联想、探索解决问题的途径,使学生参与到研究问题中,成为问题的探索者。 3 重视问题分析第一,树立正确的解题观:弄清问题,拟定计划,实现计划,回顾总结。第二,发挥学生主体作用,让学生自己分解目标,进行知识点定位,寻找问题突破点,选择解题方法。第三,引导学生多角度思考问题,强化等价转化与化归思想,一题多解,培养学生的发散性思维。第四,注重思维方法和品质的培养,如逆向思维,正难则反,类比思想等,要求思维严谨,逻辑严密,切忌会而不对,对而不全。 4 例题的处理要得当对例题的学习要注意师生互动。教师重要的是及时地点拨,学生重要的是始终积极地进行思维活动,这样才能真正体现教师为主导、学生为主体的新的学习方式。教师要精讲,但对学习易犯的错误要及时纠正,对学生困难的解题思路要及时点拨,对方法技巧要引导学生总结。先学后教的“学案导学”教学方式是一种很好的教学模式。按照这种方式提前把学案发到学生手里,让学生予习,教师在上课前利用班空时间要及时了解学生学习的重点、难点及其他内容,并发现问题,这样才能在上课时有的放矢地学习,讲解更能击中要害,学生能会的就不要讲,学生能代老师讲的尽量让学生讲,尽量多给学生点空间和时间,以培养学生自主学习的能力。

高一数学必修1知识网络

高一数学必修1知识网络 123412n x A x B A B A B A n A ∈??? ????? ∈?∈?()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ??????????? ???????????≠∈?????=???=∈∈?=??=??=???真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。 真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ????????=????=∈∈???=??=?=????????=???=+?=∈?=?=??==?=?,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ????? ?? ?? ???? ?????????? ???????? ?????????????????????? ??????????????????????=???????

最新高中数学必修一期末试卷及答案

高中数学必修一期末试卷 姓名: 班别: 座位号: 注意事项: ⒈本试卷分为选择题、填空题和简答题三部分,共计150分,时间90分钟。 ⒉答题时,请将答案填在答题卡中。 一、选择题:本大题10小题,每小题5分,满分50分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、已知全集I ={0,1,2,3,4},集合{1,2,3}M =,{0,3,4}N =,则() I M N 等于 ( ) A.{0,4} B.{3,4} C.{1,2} D. ? 2、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N 等于 ( ) A.{0} B.{0,5} C.{0,1,5} D.{0,-1,-5} 3、计算:9823log log ?= ( ) A 12 B 10 C 8 D 6 4、函数2(01)x y a a a =+>≠且图象一定过点 ( ) A (0,1) B (0,3) C (1,0) D (3,0) 5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( ) 6、函数12 log y x =的定义域是( )

A {x |x >0} B {x |x ≥1} C {x |x ≤1} D {x |0<x ≤1} 7、把函数x 1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( ) A 1x 3x 2y --= B 1x 1x 2y ---= C 1x 1x 2y ++= D 1 x 3x 2y ++-= 8、设x x e 1e )x (g 1x 1x lg )x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数 C f(x)与g(x)都是偶函数 D f(x)是偶函数,g(x)是奇函数 9、使得函数2x 2 1x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4) 10、若0.52a =,πlog 3b =,2log 0.5c =,则( ) A a b c >> B b a c >> C c a b >> D b c a >> 二、填空题:本大题共4小题,每小题5分,满分20分 11、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______ 12、计算:2391- ??? ??+3 2 64=______ 13、函数212 log (45)y x x =--的递减区间为______ 14、函数1 22x )x (f x -+=的定义域是______ 三、解答题 :本大题共5小题,满分80分。解答须写出文字说明、证明过程或演算步骤。 15. (15分) 计算 5log 333 3322log 2log log 859 -+-

高中数学必修5试题及详细答案

期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题:本大题共 14小题,每小题4分,共56分.在每小题的4个选项中,只 有一项是符合题目要求的? 1 ?在等差数列3, 7, 11,…中,第5项为()? A. 15 B . 18 C. 19 D. 23 2?数列{a n }中,如果a n = 3n (n = 1, 2, 3,…),那么这个数列是(). A.公差为2的等差数列 C.首项为3的等比数列 B. 公差为3的等差数列 D.首项为1的等比数列 3.等差数列{ sh }中,a 2 + a 6= 8, a 3 + a 4= 3,那么它的公差是() 则c 的值等于() A. 5 B . 13 C. ,13 D. . 37 5. 数列{a n }满足 a 1= 1, a n +1 = 2a n +1( n € N+),那么 a 4的值为() A. 4 B . 8 C. 15 D. 31 6. A ABC 中,如果— = —^ = —,那么△ ABC 是 () . tan A tanB tanC A.直角三角形 B.等边三角形 C. 等腰直角三角形 D.钝角三角形 7. 如果 a > b >0, t > 0,设 M= - , N= 口,那么() . b b t A. M >N B . M k N C. M = N D. M 与N 的大小关系随t 的变化而变化 &如果{a n }为递增数列,则{a n }的通项公式可以为(). 2 A. a n = — 2n + 3 B. a n = — n — 3n +1 1 C. a n = 一 D. a n = 1 + log 2 n 2n A. 4 B . 5 C. 6 D. 7 4.A ABC 中,/ A Z B,Z C 所对的边分别为 a , b, c .若 a = 3, b = 4,Z C = 60° ,

新人教A版高中数学必修1全套教案

课题:§集合 教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。 课型:新授课 教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 教学重点:集合的基本概念与表示方法; 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 教学过程: 一、引入课题 军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。 阅读课本P2-P3内容 二、新课教学 (一)集合的有关概念 1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一 个给定的东西是否属于这个总体。 2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。 3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评, 进而讲解下面的问题。 4.关于集合的元素的特征 (1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。 (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。 (3)集合相等:构成两个集合的元素完全一样 5.元素与集合的关系; (1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a?A(或a A)(举例) 6.常用数集及其记法 ∈ 非负整数集(或自然数集),记作N 正整数集,记作N*或N+; 整数集,记作Z 有理数集,记作Q 实数集,记作R (二)集合的表示方法 我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表 示集合。 (1)列举法:把集合中的元素一一列举出来,写在大括号内。 如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…; 例1.(课本例1)

高中数学习题课教学反思

高中数学习题课教学反思 进贤一中叶志勇 波利亚强调指出:“中学数学教学首要的任务就是加强解题训练。” “掌握数学就是意味着善于解题。” 习题课是数学教学活动的一个极为重要的形式.目前我国中学数学教学中,习题课教学占有较大的比例.在习题课教学中,师生通过对一些典型例题的分析讨论,使学生对所学过的基本概念、公式、定理及其运用有进一步的理解,以达到夯实基础的目的.在对例题解题策略的思考和解题方法的探求中,要启迪学生的思维,培养学生的品质,提高学生的能力.对于数学习题课的教学,我认为应该做好以下几方面的工作: 一、精心挑选例题: 1.例题选择要有针对性,即要针对教学目标、针对知识点、针对学生的学习现状。目标主要有两个方面,一是知识目标,二是技能目标,要通过本节学习,巩固哪些知识,扩展哪些知识,掌握哪些解题方法,理解和体验哪些思想方法,形成什么技能,这些都要有明确的目标。如果没有明确的目标,将成为简单的例题讲解和习题训练,使学习内容缺少完整的知识体系,知识之间难以很好地沟通和联系.例题的安排难以达到示范性,习题的安排也缺少典型性,揭示习题的规律性也有困难.所以缺少目标的习题课不仅有盲目性,还会降低教学效率,因此要有明确的教学目

标. 2.例题选择要注意可行性,即应在学生“最近发展区”内进行选择,不宜过易也不宜过难,要把握好“度”。要注意题型的划分,习题类型一般有基础知识型、基本方法型、综合提高型、创新应用型等,在难度上要有低、中、高三级题型,这三级之间还应插入级与级之间的“缓冲”习题,形成“小坡度、密台阶”习题,这样安排有利于学生在“发现区”内解题,利于学生“步步登高”,利于学生树立解题的必胜信心.我们坚决反对把难题放在前面,坚决反对把整套习题安排得太难,要避免打击学生做题的积极性。适当安排综合提高型和创新应用型习题,有利于程度较好的学生的学习和提高.习题的安排,既要体现知识与方法,也要体现能力培养与积极性调动. 3.例题选择要有研究性,典型性,要克服贪多、贪全,既要注意到对知识点的覆盖面,又要能通过训练让学生掌握规律,达到“以一当十”的目的。选择例题要精,要有丰富内涵,既要注重结果,更要注重质量,以期“一题多解,达到熟悉;多解归一,挖掘共性;多题归一,归纳规律” 。首先要让某些例题体现主要知识点的运用,体现通法通解,以起到加强双基的示范性,再通过适当的变式引申、变式训练,以达到夯实双基、举一反三之效.例题的安排要体现教学解题方法的训练和解题技能的培养,要揭示例题的解题规律和体现例题的思想方法,这样才能体现例题的典型性,分析例题前可适当回顾知识要点及解题的基本方

相关主题
文本预览
相关文档 最新文档