当前位置:文档之家› 溶剂可溶物氟含量的测定方法

溶剂可溶物氟含量的测定方法

溶剂可溶物氟含量的测定方法
溶剂可溶物氟含量的测定方法

溶剂可溶物氟含量的测定方法

1.范围

本方法适用于交联型氟树脂涂料(对于双组分涂料只测漆给分)中溶剂可溶物氟含量的测定。

2.原理

试样经离心分离,取清液部分将溶剂挥发完全后,粉碎后粉末。称取一定量的粉末,在氧瓶中燃烧分解,分解物用NaOH溶液吸收。以氟离子选择电极为指示电极,饱和甘汞电极为参比电极,用标准加入法测定吸收液中氟离子的浓度,计算出样品的溶剂可溶物氟含量。

3.试剂和材料

所有试剂均为分析纯,所用水符合GB/T6682-1992中三级水的要求,所有含氟溶液应储存于聚乙烯塑料瓶中。

NaOH溶液:0.02mol/L、1mol/L。

HCI溶液:2mol/L。

HNO3溶液:1+5(V+V)。

将20mlHNO3加入100ml水中混匀。

苯酚红指示剂:0.4g/L。

将0.10g苯酚红指示剂溶于14.20ml0.02mol/LNaOH溶液(3.1)中用水稀释到250ml。

氟标准储备溶液:1000ug/ml。

称取预先在(105±2)℃干躁2h的NaF2.2101g于烧杯中,加水溶解,用水洗入1000ml容量瓶中稀释至刻度,摇匀。此溶液1ml含氟1000ug/ml,作为储备溶液。

3.6 氟标准工作溶液:用储备溶液分别配制1ml含氟100ug、250ug、500ug工作溶液。

3.7 总离子强度调节缓冲液:称取294g柠檬酸三钠(Na3C6H5O7 2H2O)和20g 硝酸钾溶于约800ml水中,用硝酸溶液(3.3)调节PH为6.0再用水稀释至1L。

3.8 氧气:纯度99%以上。

4.仪器设备

4.1离心机:转速5000rp m~15000rpm。

4.2分析天平:感量0.1mg。

4.3氧气燃烧瓶:500ml磨口硬质锥形瓶,瓶塞应为空心,底部熔封一根直径1mm 的铂丝,下端做成螺旋状或网状。

4.4 电磁搅拌器

4.5氟离子选择电极。

4.6饱和甘汞电极

4.7数字式离子计:精度0.1mV,也可用性能相同的毫伏计来代替。

5.操作步骤

5.1取约5g样品置于50ml离心管中(也可根据实际离心分离效果,自行确定称样量和离心管容量),加入二甲苯和丙酮(1:1)混和溶剂,混合均匀后,置于离心机中,离心30~40min,使颜填料沉降,将上层清液转移至蒸发皿中,在常温下将大部分溶剂挥发后,在(140±2)℃条件下烘烤使溶剂完全蒸发,然后将烘干样品粉碎。

5.2样品燃烧分解

准确称取10~15mg 粉末(m ),放在约0.1g 无灰滤纸上,包裹后,固定在铂丝下端的螺旋处或网内。燃烧瓶中准确移入50ml1mol/LNaOH 溶液,并将瓶口用水润湿。小心急速通入氧气约1min ,将瓶内空气排尽,立即用表面皿覆盖瓶口,移至通风橱内。点燃滤纸,迅速放入燃烧瓶中,按紧瓶塞,燃烧完毕后,瓶中应无黑色碎片。充分振荡,使生成的烟雾完全被吸收液吸收,然后放置15min ;同时作空白试验。

5.3氟含量测定

5.3.1按图连接好仪器装置,开动搅拌器,更换聚乙烯塑料烧杯中水数次,直至毫伏计显示电位达到氟电极的空白电位。

5.3.2氟电极实际斜率的测定:

由于氟电极实际斜率往往偏离理论值,因此应定期测试氟电极实际斜率。在五个100ml 容量瓶中,分别准确移入含氟为100ug/ml 氟标准工作溶液1ml 、3ml 、5ml 、10ml 、20ml 、,加入2滴苯酚红指示剂(3.4),10ml 总离子强度调节缓冲溶液(3.7),用水稀释到刻度,摇匀,将溶液倒入100ml 聚乙烯塑料烧杯中,测量每个标准溶液的电位,测量时电极插入深度、电极之间距离、搅拌速度、溶液温度等要求一致。以各种浓度溶液的响应电位(mV )为纵坐标,相应的浓度对数为横坐标,作标准曲线图,计算出电极的实际斜率K 。

注:如果氟电极一星期内连续使用,不必每天都测定,如超过一星期应重新测定电极的实际斜率。

5.3.3样品溶液电位测量:

在100ml 容量瓶中准确移入5ml 吸收液,加入2滴苯酚红指示剂(3.4),用2mol/LHCL 溶液(3.2)中和到指示剂变黄,加入10ml 总离子强度调节缓冲液(3.7),用水稀释至刻度,摇匀,将溶液倒入100ml 聚乙烯塑料烧杯中,放入搅拌子,插入氟离子选择电极和饱和甘汞电极,开动搅拌器,待电位稳定后记录下相应电位E1(mV ),立即准确移入1ml 氟标准工作溶液,待电位稳定后记录下响应电位E2(mV )。

注2:移入的氟标准工作溶液的氟含量应为样品溶液中氟含量1倍以上;空白试验溶液则移入100ug/ml 氟标准工作溶液1ml 。

5.4结果计算 F=1/)110(-?-?K E b m

c 式中:F —样品中溶剂可溶物氟的质量百分数;

M —样品粉末质量,单位为毫克(mg );

K —氟电极实际斜率;

△E —移入氟标准溶液前后的电位差(︱E1-E2︱),单位为毫伏(mV ); Cb —氟标准工作溶液浓度,单位为微克每毫升(ug/ml )。

结果取两次平行测定的算术平均值,平行测定的相对误差应不大于10%。

煤焦油水分、密度的测定方法

焦化油中水分的测定 一、原理 一定量的试样与无水溶剂混合,进行蒸馏测定其水分含量,并以质量分数表示。 二、试剂 1甲苯:无水; 2纯苯:无水; 三.仪器 1蒸馏瓶:硬质难熔玻璃制成,平底或圆底短颈,容积500ml,瓶颈具有24/29标准磨口。 2冷却管:内管长300㎜、外管长250㎜的直形冷却管,下端具有直径19/26标准磨口 3接受管:容积为2 ml,分刻度为 ml,最大误差为 ml,如图2所示:容积为10 ml,分刻度为,最大误差为 ml,如图3所示;容积为25ml,分刻度为,最大误差为 ml,如图4所示。每种接受管上端具有19/26标准磨口,与冷却管下端的标准磨口相配,接受支管下端具有直径24/29标准磨口,与蒸馏瓶的标准磨口相配。 4天平:感量0.2g 5量筒:容积50 ml 、100 ml 6煤气灯或带无级可调电炉 四、.试验步骤 1在室温下称取均匀试样100g(称准至0.2g)和量取甲苯50 ml,

置于洁净、干燥的蒸馏瓶中,细心摇匀。 2根据被测物质中预计的水分含量,选取适当的接收管,连接蒸馏瓶、接收管和冷却管(水分测定器如图5所示)。在冷却管上端用少许脱棉塞住,以防空气中水分在冷凝管内部凝结。 3加热煮沸,使冷凝液以每秒钟2滴~5滴的速度从冷却管末端滴下。当接收管中水分不再增加时,再加大火焰或增加电压,至少加热5min 后,停止蒸馏。 4带接受管里的液体温度降到室温时,读记水层体积。如接收管内液体混浊时,则将接收管放入温水中,使其澄清,然后冷却到室温读数。 五、结果计算 试样水分质量分数(X 1)%按式(1)计算: 1001?=m v X ……………………………………..(1) 式中: V ——接收管中水分的体积,单位为毫升(mL ) m ——试样质量,单位为克(g ) 注:假定接收管里水的密度在室温时为㎝3 六、结果报告 1 使用2mL 和10mL 接收管,报告水分含量,精确到%;使用25mL 接收管,报告水分含量,精确到%。 2 取两个水分测定结果算术平均值作为水分含量。

残留溶剂测定法

残留溶剂测定法

残留溶剂测定法 1 简述 药品中的残留溶剂系指在原料药或辅料的生产中,以及在制剂制备过程中使用过,但在工艺过程中未能完全去除的有机溶剂。药物中常见的残留溶剂及限度参照《中国药典》2015年版四部通则0861附表1的规定,除另有规定外,第一、第二、第三类溶剂的残留量应符合其规定;对其他溶剂,应根据生产工艺的特点,制订相应的限度,使其符合产品质量标准的要求。本法照气相色谱法(《中国药典》2015年版四部通则0521测定。 本测定方法适用于对各论项下未收载残留溶剂检测方法的品种中残留溶剂的检验,也可用于指导建立各论项下具体品种的残留溶剂检查方法。 2 仪器和用具 2.1 气相色谱仪,带FID检测器,顶空进样器。 2.2 计算机,安装工作站软件。 2.3 色谱柱 2.3.1 毛细管柱除另有规定外,极性相近的同类色谱柱之间可以互代使用。2.3.1.1 非极性色谱柱固定液为100%的二甲基聚硅氧烷的毛细管柱。 2.3.1.2 极性色谱柱固定液为聚乙二醇(PEG-20M)的毛细管柱。 2.3.1.3 中极性色谱柱固定液为(35%)二苯基-(65%)二甲基聚硅氧烷,(50%)二苯基-(50%)二甲基聚硅氧烷,(35%)二苯基-(65%)二甲基亚芳基聚硅氧烷,(14%)氰丙基苯基-(86%)二甲基聚硅氧烷,(6%)氰丙基苯基-(94%)二甲基聚硅氧烷的毛细管柱。 2.3.1.4 弱极性色谱柱固定液为(5%)苯基-(95%)甲基聚硅氧烷,(5%)二苯基-(95%)二甲基亚芳基硅氧烷共聚物的毛细管柱。 2.3.2 填充柱以直径为0.18~0.25mm的二乙烯苯-乙基乙烯苯型高分子多孔小球或其他适宜的填料作为固定相。 3 供试品溶液和对照品溶液的制备 3.1 供试品溶液的制备 3.1.1 顶空进样除另有规定外,精密称取供试品0.1~1g;通常以水为溶剂;对于非水溶性药物,可采用N,N-二甲基甲酰胺、二甲基亚砜或其他适宜溶剂;

全氟化合物零碎知识

1. 全氟有机化合物(PFCs)是一类主要由碳原子与氟原子组成的有机化合物。这类物质的化学性质极为稳定,能够经受高温加热、光照、化学作用、微生物作用和高等脊椎动物的代谢作用。全氟化合物(PFCs)的生产历史已经有50年,广泛应用于化工、纺织、涂料、皮革、合成洗涤剂、炊具制造(如不粘锅)、纸制食品包装材料等领域。 早在上世纪60年代就有关于人体血清中发现有机氟化物的报道。自那以后,环境和生物基质中PFCs的含量越来越受到学术界的关注。由于PFCs具有远距离传输能力,因此污染范围十分广泛。全世界范围内被调查的环境和生物样品中都存在典型PFCs——全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)的污染踪迹,甚至在人迹罕至的北极地区和我国青藏高原的野生动物体内,都发现了全氟有机化合物。 考虑到此类物质可能引发的生态环境问题和人体健康危害,在2009年5月召开的《关于持久性有机污染物的斯德哥尔摩公约》第四次缔约方大会上,将PFOS及其盐和全氟辛基磺酰氟列入《斯德哥尔摩公约》附录A或B。这意味着这些物质将在全球范围内被限制使用。而此前已经有部分国家和地区将一些全氟有机化合物列入禁止使用名单。经济合作与发展组织(OECD)及美国环保总署(EPA)也已将全氟化合物列为“可能使人致癌的物质”。 目前,关于PFOA和PFOS等全氟有机化合物的研究已逐渐成为国际上环境健康领域的研究热点。至今,人类对PFOS和PFOA等全氟有机化合物的环境污染途径、对生物多样性的危害、人体的暴露途径及人体健康损害的研究还处于初始阶段。 我国是全氟化有机化合物生产和使用的大国,我国人体PFOS污染水平较高,居世界前列。而中国PFOS的研究也刚刚起步,对其实施环境管理面临挑战。 2. 什么是Pops?Pops就是一个简称,它指的是持久性有机污染物。它是一类化学物质,这类化学物质可以在环境里长期的存留,可以在全球广泛的分布,它可以通过食物链蓄积,逐级的传递,进入到有机体的脂肪组织里聚积。最终会对生物体、人体产生不利的影响。 POPs的基本特性是:在环境中降解缓慢、滞留时间长,可在水体土壤和底泥等环境中存留数年时间。因其具有很强的亲脂憎水性,可以沿食物链逐级放大,导致低浓度存在于大气、水、土壤的POPs物质可通过食物链对处于最高营养级的人类健康造成严重损害。POPs物质因具有半挥发性,使得它们能够以蒸气形式存在或者吸附在大气颗粒物上,可在大气环境中作远距离迁移,导致全球范围的污染传播。POPs对人类健康和生态系统产生毒性影响,对肝、肾等脏器和神经系统、内分泌系统、生殖系统等有急性和慢性毒性,并具有致癌性、生殖毒性、神经毒性、内分泌干扰特性等 3. POPs"十二五"污染防治规划,构建我省POPs管理长效机制

气相色谱法测定药物中有机溶剂残留量

验证性实验 实验二十五 气相色谱法测定药物中有机溶剂残留量 一、目的要求 1.掌握内标法、外标法计算杂质含量。 2.熟悉气相色谱-氢火焰离子化检测器法(GC-FID )测定原料药中残留有机溶剂的方法。 3.熟悉气相色谱仪的工作原理和操作方法。 4.了解顶空气相色谱仪的作用原理。 二、仪器与试药 气相色谱仪(弱极性或中等极性气相色谱柱,1~5μL 微量注射器) 甲醇 乙腈 二 氯甲烷 三氯甲烷 丙酮 正丙醇 地塞米松磷酸钠原料药 三、实验方法 1.地塞米松磷酸钠(Dexamethasone Sodium Phosphate )中甲醇和丙酮的检查 (1)色谱条件 色谱柱:3% OV-17 玻璃柱,柱长 2m ,内径 3mm ;检测器:FID ;柱温:50℃;气化室温度:120℃;检测器温度:140 ℃;载气:N 2;流速:30mL/min ;空气:0.5 kg/cm ;灵敏度:102;进样量:2μL 。 (2)溶液制备与测定 精密量取甲醇 10μL (相当于 7.9mg )与丙酮 100μL (相当于 79mg ), 置 100mL 量瓶中,精密加 0.1%(mL/mL )正丙醇(内标物质)溶液 20mL ,加水稀释至 刻度,摇匀,作为对照溶液;另取本品约 0.16g ,精密称定,置10mL 量瓶中,精密加入上述内标溶液 2mL ,加水溶解并稀释至刻度,摇匀,作为供试品溶液。取上述溶液,照气相色谱法,按正丙醇计算的理论板数应大于700。含丙酮不得过 5.0%(g/g ), 并不得出现甲醇峰。 (3)计算 按下式计算定量校正因子(f )和检品中丙酮的含量(g/g ): A /A /C f C 正丙醇正丙醇甲醇甲醇 校正因子()= 2.顶空气相色谱法测定有机溶剂甲醇、乙腈、二氯甲烷、三氯甲烷 (1)色谱条件 色谱柱:HP-5 毛细管柱(5% phenyl methyl siloxane, 30m×0.25mm );柱温:45℃;气化室温度:180℃;检测室温度:200℃ (FID);氢气流速:40 mL·min -1;空气:450 mL· min -1,氮气:1mL·min -1;分流比:31?;样品液:90℃,加热10min ,(自动)顶空进样。 (2)溶液制备 (ⅰ)取甲醇100μL ,乙腈30μL ,二氯甲烷10μL ,三氯甲烷10μL ,分别加无有机物的水至 100mL ,作为定位溶液。 (ⅱ)另取上述同样量有机溶剂,混合,加无有机物的水至 100.0mL ,作为有机残留溶剂的限度试验对照溶液。取1mL 对照溶液,加水至 100.0 mL ,测定有机溶剂的检测限。 (ⅲ)取某药物约 0.3g ,精密称定,加 3.0mL 无有机物的水使溶解[如果样品在水中不溶,可用适当浓度的二甲基甲酰胺(DMF )水溶液溶解样品],作为供试品溶液。 (3)分离度与系统适用性试验 取定位溶液在上述色谱条件下测定,记录色谱图和保留时间。取对照溶液重复进样,计算各成分峰的分离度、柱效及色谱峰面积的相对标准差。另取对照溶液的稀释溶液进样,计算药物中各有机溶剂的检测限。参照下列表格式记录各色谱参数:

习题七+碳水化合物的测定教学内容

习题七、碳水化合物的测定 一、填空题 1.用直接滴定法测定食品还原糖含量时,所用的斐林标准溶液由两种溶液组成,分别是碱性酒石酸铜甲液,碱性酒石酸铜乙液,应单独贮存,用时才混合; 2.测定还原糖含量时,对提取液中含有的色素、蛋白质、可溶性果胶、淀粉、单宁等影响测定的杂质必须除去。常用的方法是使用澄清剂,常用澄清剂有三种:醋酸锌及亚铁氰化钾,碱性硫酸铜,中性醋酸铅。弱在直接滴定法测定食品还原糖含量时,影响测定结果的主要操作因素有碱性酒石酸铜甲液乙液应该分开存放,铜盐不能作为澄清剂,滴定时在沸腾下进行,次甲基蓝这种弱氧化剂作为指示剂,预滴定与正式滴定家册标准一致。 二、选择题 1.( 1 )测定时糖类定量的基础。 (1)还原糖(2)非还原糖(3)葡萄糖(4)淀粉2.直接滴定法测定还原糖含量时,在滴定过程中(3 )(1)边加热边振摇(2)加热沸腾后取下滴定

(3)加热保持沸腾,无需振摇(4)无需加热沸腾即可滴定 3.直接滴定法在测定还原糖含量时用( 4)作指示剂。(1)亚铁氰化钾(2)Cu2+的颜色(3)硼酸(4)次甲基蓝 4.为消除反应产生的红色Cu2O沉淀对滴定的干扰,加入的试剂是( 2) (1)铁氰化钾(2)亚铁氰化钾(3)醋酸铅(4)NaOH 5.用水提取水果中的糖分时,应调节样液至(2 ) (1)酸性(2)中性(3)碱性 6.直接滴定法测定牛乳的糖分,可选用( 2)作澄清剂。(1)中性醋酸铅(2)乙酸锌和亚铁氰化钾(3)硫酸铜和氢氧化钠 7.费林氏A液、B液(1 )。 (1)分别贮存,临用时混合(2)可混合贮存,临用时稀释(3)分别贮存,临用时稀释并混合使用。 8.在标定费林试液和测定样品还原糖浓度时,都应进行预备滴定,其目的是(1 ) (1)为了提高正式滴定的准确度(2)是正式滴定的平行实验,滴定结果可用于平均值的计算(3)为了方便终点的观察 三、论述题

溶剂水分含量的测定

溶剂水分含量的测定 水分的危害 在塑料软包装的复合和印刷中,需要用到很多溶剂,它们本身的质量对产品有很大影响,其中水分含量是关系产品质量的重要因素之一。以乙酸乙酯溶剂为例,因为每摩尔的水分会消耗同样摩尔的固化剂。换言之,在复合生产中,1份水分会消耗18份的固化剂,所以微量的水分存在会造成很大破坏。据相关资料记载,乙酸乙酯水分含量的过大可以对复合质量造成以下影响: (1)水分消耗固化剂,使主剂、固化剂配比不准确,影响产品固化,会出现发粘现象。 (2)由于水分与固化剂的反应,快速生成二氧化碳,限制粘合剂的浸润,也容易使产品出现气泡。 (3)水分夺取固化剂,能导致粘合剂生成内聚强度比较高的聚氨酯脲(R-NHCOHN-R),导致产品易出现晶点和变硬现象。 (4)水分溶入溶剂,使乙酯挥发速度减慢,使粘合剂的铺展速率,和硬化速率受到影响,也容易导致溶剂残留。 乙酯中的水分来源主要有两个渠道,其一是产品本身自带,如我国《GB3728-91工业乙酸乙酯》中规定,优等品水分含量小于1000ppm,一等品水分含量小于2000ppm,合格品水分含量小于4000ppm,在市售乙酯中,这些水分都是不可避免的。据笔者经验,购买时最好选择优等品的乙酯,考虑到存放因素,在复合前应使水分含量不大于2000ppm,这样才能保证复合质量。其二,乙酯在存放过程中吸收的水分,因为乙酯属于易挥发液体,在挥发过程中需要吸收热量,表层乙酯的急速挥发主要热量来源就是空气中水蒸气的凝结放热,而凝结的水分则很快溶入乙酯中,进一步增加了其水分含量,这在夏季空气相对湿度大于80%时尤为突出。鉴于这种情况,在复合前事先测定乙酯中的水分含量就显得非常重要了。 各种水分测定仪的比较 市售的水分测定仪有很多,按测试方法分有以下几种: 红外法类仪器,体积小,测定范围比较宽,精确度差,适合水分含量5%-90%的木材、纸张等材料的测定,结构简单,价格低廉。 卡尔费休库仑法类仪器,主要原理:利用化学反应后电导率变化计算,结构复杂,体积较大,测定精确度最高,适合水分含量在100PPm以下的测定。它一般用于阴离子聚合等对水分有非常严格要求的化工、医药等行业产品测定,或用于多频次的大型彩印厂使用,价格较贵。 卡尔费休容量法,结构比较简单,体积和精确度适中,适合水分含量10PPm-10%的测定,一般用于对水分有严格要求的化工、医药和包装等行业产品测定,价格从数千元到数万元不等。 可以看出,对于一般软包装行业,在测定乙酸乙酯等溶剂的水分含量时,使用卡尔费休容量法水分测

土壤含水量测量方法

土壤含水量测量方法 ( 1 )称重法(Gravimetric) 也称烘干法,这是唯一可以直接测量土壤水分方法,也是目前国际上的标准方法。用土钻采取土样,用0.1g 精度的天平称取土样的重量,记作土样的湿重 M,在 105℃的烘箱内将土样烘 6~8 小时至恒重,然后测定烘干土样,记作土样的干重 Ms 土壤含水量=(烘干前铝盒及土样质量-烘干后铝盒及土样质 量)/(烘干后铝盒及土样质量-烘干空铝盒质量)*100% ( 2 )张力计法(Tensiometer) 也称负压计法,它测量的是土壤水吸力测量原理如下:当陶土头插入被测土壤后,管内自由水通过多孔陶土壁与土壤水接触,经过交换后达到水势平衡,此时,从张力计读到的数值就是土壤水(陶土头处)的吸力值,也即为忽略重力势后的基质势的值,然后根据土壤含水率与基质势之间的关系(土壤水特征曲线)就可以确定出土壤的含水率 ( 3 ) 电阻法(Electricalresistance) 多孔介质的导电能力是同它的含水量以及介电常数有关的,如果忽略含盐的影响,水分含量和其电阻间是有确定关系的电阻法是将两个电极埋入土壤中,然后测出两个电极之间的电阻。但是在这种情况下,电极与土壤的接触电阻有可能比土壤的电阻大得多。因此采用将电极嵌入多孔渗水介质(石膏、尼龙、玻璃纤维等)中形成电阻块以解决这个问题 ( 4 ) 中子法(Neutronscattering) 中子法就是用中子仪测定土壤含水率中子仪的组成主要包括:一个快中子源,一个慢中子检测器,监测土壤散射的慢中子通量的计数器及屏蔽匣,测试用硬管等。快中子源在土壤中不断地放射出穿透力很强的快中子,当它和氢原子核碰撞时,损失能量最大,转化为慢中子(热中子),热中子在介质中扩散的同时被介质吸收,所以在探头周围,很快的形成了持常密度的慢中子云

最新碳水化合物教案

教案 第二章,第四节人体对碳水化合物的需要 教学目标: 1、通过本节教学,使学生了解碳水化合物的主要生理功能;常见活性多糖的生理功能;血糖指数( GI )的升高对糖类食物选择的重要作用。 2、通过学习掌握碳水化合物、膳食纤维概念、分类和食物来源; 3、理解糖类(碳水化合物节约蛋白质作用、碳水化合物的抗生酮作用)、膳食纤维主要生理功能;了解常见活性多糖的生理功能;血糖指数( GI )的对糖类食物选择的重要作用。 4、通过对本节内容的学习,运用所学知识指导人们合理选取糖类,保障健康。 教学重点:碳水化合物、膳食纤维概念、营养分类和食物来源; 教学难点:碳水化合物节约蛋白质作用、碳水化合物的抗生酮作用、膳食纤维主要生理功能 新课导入:开运动会的时候,班里的班委会给运动员买点葡萄糖口服液来服用,还有前两年流行的PTT饮料,同学们想一下,这些现象说明了什么问题呢?由此引入要讲的内容。 教学内容:

一、碳水化合物的功能 1 、供能与的节约蛋白质作用 当摄入足够的碳水化合物时,可以防止体内和膳食中的蛋白质转变为葡萄糖,这是所谓的节约蛋白质作用。 2 、构成机体细胞的成分 碳水化合物是构成机体的重要物质,并参与细胞的许多生命活动。 3 、维持神经系统的功能 尽管大多数体细胞可由脂肪和蛋白质代替糖作为能源,但是脑、神经和肺组织却需要葡萄糖作为能源物质,若血中葡萄糖水平下降,脑缺乏葡萄糖可产生不良反应。 4、抗生酮作用 碳水化合物摄取不足,脂肪代谢产生脂肪酸,氧化增多,会产生较多的酮体,高过肾的回收能力时,会影响人的健康,即所谓的酸中毒。 5、提供膳食纤维,活性多糖果,有益肠道功能 如乳糖可促进肠中有益菌的生长,也可加强钙的吸收。低聚糖:有利于肠道菌群平衡。 6 、食品加工能够中的重要原、辐材料(对食品) 很多工业食品都含有糖,并且对食品的感官性状有重要作用。 二、碳水化合物 (carbohydrate) 的分类: 按其化学组成、生理作用和健康意义可分为: 1 、糖:包括单糖 (monosaccharide 、双糖 (disaccharide) 和糖醇。

全氟化合物测定

半自动固相萃取—衍生—气相色谱串联质谱法测定水中全氟化合物摘要:本文介绍一种测定水中6种全氟烷基羧酸以及全氟烷基磺酸的灵敏有效的方法。样品用自动固相萃取进行浓缩后,经气相色谱衍生测定。用氯甲酸异丁酯和异丁醇混合物对样品进行衍生,以含3%的N,N-二环己基碳二亚胺的吡啶作为催化剂。对几种反相和阳离子交换吸附剂对全氟化合物的截留效果进行比较,具有最高截留效果的是LiChrolut EN和 Discovery DSC-SAX色谱柱,对全氟化合物的吸附截留选择以下两种作为吸附剂,即LiChrolut EN(样品pH为1,流速5.5mL/min,穿透体积300mL),Discovery DSC-SAX(样品pH为6,流速3.0mL/min,穿透体积45mL)。检出限分别为0.1–0.5 ng/L到0.4–1.7 ng/L,对250mL的样品吸附容量是70mg,比相关的检测标准还要高7%。这种方法被应用到饮用水处理厂的进水和出水的水质分析以及其他各类水的处理中。很少有水样存在各种全氟化合物,但每个处理厂都会有其中一种,全氟庚酸或全氟辛酸。在污水中检测到了高浓度的全服化合物(全氟庚酸,全氟辛酸和全氟癸酸)。 引言 全氟化合物是人为活动产生的化学物质,广泛应用于大量的工业和国内生产。其中研究最多的是全氟烷基羧酸以及全氟烷基磺酸。这些广泛存在的持久的环境污染物的来源主要是污水处理厂,城市水体,工业排放,燃煤和垃圾填埋。由于碳和氟的结合,全氟化合物更加稳定并且难以代谢和降解。一些报告阐明了这些化合物的联合作用对哺乳类动物的健康会产生不利影响。因此,对全氟化合物的生产和使用的限制已经受到全球的关注。欧洲委员会提出的环境质量标准中限制内陆地表水中全氟烷基磺酸及其衍生物的浓度最高为0.65 ng/L,并且,美国环境保护局确定的临时健康评估报告中规定饮用水中全氟辛烷磺酸( per fluorooctane sulfonate, PFOS)全氟辛酸 ( per fluorooctanoate, PFOA)的浓度分别是200ng/L、400 ng/L。欧洲食品安全局规定全氟辛烷磺酸和全氟辛酸的允许摄入量分别是150 和500 ng/Kg/bw/day。 许多研究已经表明以上所述污染物很难通过污水处理去除,因此估计通过饮用水进入人体内的全氟化合物的含量在1.5%到55%范围内。这主要是因为它们在饮用水中的浓度的变化大。例如,欧洲不同国家的污水中全氟化合物和全氟辛烷磺酸的浓度变化范围分别是0.2到9ng/L和0.4 到6 ng/L 。在中国、欧洲、日

水分测定方法总结

水分测定方法有许多种,我们在选择时要根据食品的性质来选择。常采用的水份测定方法如下: 1、热干燥法:①常压干燥法(此法用的广泛); ②真空干燥法(有的样品加热分解时用); ③红外线干燥法; ④真空器干燥法(干燥剂法); 2、蒸馏法 3、卡尔费休法 4、水分活度AW的测定 下面我们分别讲述测定水分的方法。 一、常压干燥法 1、特点与原理 ⑴特点:此法应用最广泛,操作以及设备都简单,而且有相当高的精确度。 ⑵原理:食品中水分一般指在大气压下,100℃左右加热所失去的物质。但实际上在此温度下所失去的是挥发性物质的总量,而不完全是水。 2、干燥法必须符合下列条件(对食品而言): ⑴水分是唯一挥发成分 这就是说在加热时只有水分挥发。例如,样品中含酒精、香精油、芳香脂都不能用干燥法,这些都有挥发成分。 ⑵水分挥发要完全 对于一些糖和果胶、明胶所形成冻胶中的结合水。它们结合的很牢固,不宜排除,有时样品被烘焦以后,样品中结合水都不能除掉。因此,采用常压干燥的水分,并不是食品中总的水分含量。 ⑶食品中其它成分由于受热而引起的化学变化可以忽略不计。 例:还原糖+氨基化合物△→ 变色(美拉德反应)+H2O↑ 还有 H2C4H4O6(酒石酸)+ 2NaHCO3 → NaC4H4O6(酒石酸钠)+2H2O+2CO2

发酵糖(NaHCO3+KHC4H4O6)△→H2O+CO2+ NaKC4H4O6 高糖高脂肪食品不适应 只看符合上面三点就可采用烘箱干燥法。烘箱干燥法一般是在100~105℃下进行干燥。 我们讲的上面三点,应该是具体的具体分析,对于一个分析工作人员,或者是一个技术员,虽然干燥法必须符合三点要求,那么我们在只有烘箱的情况下,而且蓑红样品不见得符合以上讲的三点,难道就不测水分吗? 例如,啤酒厂要经常测啤酒花的水分,啤酒花中含有一部分易挥发的芳香油。这一点不符合我们的第一点要求,如果用烘箱法烘,挥发物与水分同时失去,造成分析误差。此外,啤酒花中的α—酸在烘干过程中,部分发生氧化等化学反应,这又造成分析上的误差,但是一般工厂还是用烘干法测定,他们一般采取低温长时间(80~85℃烘4小时),或者高温短时(105℃烘1小时) 所以应根据我们所在的环境和条件选择合适的操作条件,当然我们应该首先明白有没有挥发物和化学反应等所造成的误差。 3、烘箱干燥法的测定要点 ⑴取样(称样) 在采样时要特别注意防止水分的变化,对有些食品例如奶粉、咖啡等很容易吸水,在称量时要迅速,否则越称越重。 ⑵干燥条件的选择 三个因素:①温度;②压力(常压、真空)干燥;③时间。 一般是温度对热不稳定的食品可采用70~105℃;温度对热稳定的食品采用120~135℃。 4、操作方法 清洗称量皿→烘至恒重→称取样品→放入调好温度的烘箱(100~105℃)→烘1.5小时→于干燥器冷却→称重→ 再烘0.5小时→称至恒重(两次重量差不超过0.002g即为恒重) *油脂或高脂肪样品,由于脂肪氧化,而后面一次重量反而增加,应以前一次重量计算。 *对于易焦化和容易分解的食品,可以选用比较低的温度或缩短干燥时间。

食品中水分含量测定

食品中水分含量的测定 一、实验原理 水分的测定方法包括加热干燥法、蒸馏法、卡尔费休法、电测法、近红外分光光度法、气相色谱法、核磁共振法、干燥剂法等,其中加热干燥法是使用最普遍的方法。加热干燥法是适合大多数食品测定的常用方法。按加热方式和设备的不同,可分为常压加热干燥法、减压加热干燥法、微波加热干燥法等。常压加热干燥法根据操作温度的不同,又可分为105℃烘箱法和130℃烘箱法。 食品中的水分一般是指在100℃左右直接干燥的情况下,所失去的物质的总量。105℃烘箱法适用于测定在95-105℃下,不含或含其他挥发性物质甚微的食品,如谷物及其制品、淀粉及其制品、调味品、水产品、都制品、乳制品、肉制品;130℃烘箱法适用于谷类作物种子水分的测定。 二、试剂与器材海砂。 恒温干燥箱,电子天平。三、实验步骤 1、干燥条件 温度:100-135℃,多用100℃±5℃。 时间:以干燥至恒重为准。105℃烘箱法,一般干燥时间为4-5h;130℃烘箱法,干燥时间为1h。 样品质量:样品干燥后的残留物一般控制在2-4g。 称样大致范围:固体、半固体样品,2-10g;液体样品,10-20。 2、样品制备 固体样品先磨碎、过筛。谷类样品过18目筛,其他食品过30-40目筛。 糖浆等浓稠样品为防止物理栅的发生,一般要加水稀释,或加入干燥助剂(如石英砂、海砂等)。糖浆稀释液的固形物质量分数应控制在20-30%,海砂量为样品质量的1-2倍。液态样品先在水浴上浓缩,然后用烘箱干燥。 面包等水分含量大于16%的谷类食品一般采用两步干燥法,即样品称量后,切成2-3mm薄片,风干15-20h后再次称重,然后磨碎、过筛,再用烘箱干燥至恒重。果蔬类样品可切成薄片或长条,按上述方法进行两步干燥,或先用50-60℃低温烘3-4h,再升温至95-105℃,继续干燥至恒重。 3、样品测定 (1)105℃烘箱法

饮用水中全氟化合物_PFCs_的控制研究进展

饮用水中全氟化合物(PFCs)的控制研究进展 田富箱, 徐 斌, 夏圣骥, 高乃云, 李大鹏, 梁 闯 (同济大学污染控制与资源化研究国家重点实验室,上海200092) 摘 要: 全氟化合物(perfluoroche m ica ls ,PFCs)是目前饮用水领域关注的一类新的有机污染物,鉴于其具有极为特殊的持久稳定性、生物累积性和毒性,目前已成为研究的热点。对PFCs 的种类和理化性质、在地表水和自来水中的分布及控制技术等进行了介绍,调查结果表明,PFCs 广泛存在于水环境中,地表水和自来水中PFCs 含量一般在几个到几十个ng/L 的范围内,且传统的常规处理工艺难于有效去除PFCs ,而某些高级氧化技术(如亚临界水氧化)、膜过滤及活性炭和离子交换树脂吸附对其控制具有一定效果。 关键词: 全氟化合物; 饮用水处理; 持久性有机污染物 中图分类号:T U 991 文献标识码:B 文章编号:1000-4602(2010)12-0028-05 R esea rch P rogress i n C on trol of P erfluoroche m ica ls i n D r i nk i ngW a ter TIAN F u 2x ian g , XU B in, X IA Sh en g 2ji , GAO N a i 2yu n , LI Da 2p en g , L IANG Ch u ang (Sta te Ke y La bora tor y of P ollution Control a nd Res ourcesRe use ,Tongji University ,Shangha i 200092,China ) Abstr act : Perfl u oroche m icals (PFCs)are a class of e m ergi n g and persistent or gan ic poll u tants i n drink i n g water fie l d .Due to very specia l persistent stab ility ,strong b ioaccu mu lati o n and high toxicity ,PFCs are rece i v i n g more and more attenti o n and considerab le i n terest has been f o cused on these poll u 2tants .The c lassification,physica l and che m ica l pr operties of PFCs as well as the d istri b uti o n and control technol o gi e s of PFCs i n surface water and dri n ki n g water are presented .The i n vesti g ations resu lts sho w PFCs are w i d ely d istributed i n aqua tic envir onment and the concentrations of PFCs i n surf ace water and drink i n g water are i n the range of severa l to several tens ng /L .The conven ti o na l treat m ent pr ocesses are i n eff ective to re move PFCs i n deed .So me advanced oxi d ation technologies such as sub 2critica lwater oxi 2dation ,me mbrane separation ,acti v ated car bon adsorption ,ion 2exchange resi n adsorption can be e m 2p loyed to re move PFCs . K ey w ords : perfl u or oche m ica ls ; dri n king water treat m en;t persistent or gan ic poll u tant 基金项目:国家高技术研究发展计划(863)项目(2008AA06Z302); 国家自然科学基金资助项目(50708066); 国家水 体污染控制与治理科技重大专项(2008Z X07421-002) 随着国内外水质科学与痕量分析技术领域的不断突破,饮用水中微(痕)量有毒有害物质不断被检出,这些物质虽然浓度很低,但对人体健康危害巨大,由此产生的一系列污染和健康问题给现有的饮 用水处理研究和技术发展提出了严峻挑战。全氟化合物(perfluoroche m icals ,PFCs)是碳氢化合物(及其衍生物)中的氢原子全部被氟原子取代后所形成的一类化合物,具有持久稳定性、生物累积性等特点。 第26卷 第12期2010年6月 中国给水排水C H INA WATER &WAS TE WATER Vo.l 26No .12 Jun .2010

15版药典水分测定法

0832
水分测定法1
第一法(费休氏法) A.容量滴定法 本法是根据碘和二氧化硫在吡啶和甲醇溶液中与水定量反应的原理来测定水分。 所用仪 器应干燥,并能避免空气中水分的侵入;测定应在干燥处进行。 费休氏试液的制备与标定 (1)制备 称取碘(置硫酸干燥器内 48 小时以上)110g,置干燥的具塞锥形瓶(或烧瓶) 中,加无水吡啶 l60ml,注意冷却,振摇至碘全部溶解,加无水甲醇 300ml,称定重量,将 锥形瓶(或烧瓶)置冰浴中冷却,在避免空气中水分侵入的条件下,通入干燥的二氧化硫至 重量增加 72g,再加无水甲醇使成 1000ml,密塞,摇匀,在暗处放置 24 小时。 也可以使用市售费休氏试液。市售的费休氏试液可以是无吡啶试剂,或无甲醇试剂;也 可以是由两种溶液临用前混合而成的费休氏试液。 本试液应遮光,密封,阴凉干燥处保存。临用前应标定滴定度。 (2)标定 精密称取纯化水 10~30mg,用水分测定仪直接标定;或精密称取纯化水 l0~ 30mg,置干燥的具塞锥形瓶中,除另有规定外,加无水甲醇 2~5 ml,在避免空气中水分侵 入的条件下,用费休氏试液滴定至溶液由浅黄色变为红棕色,或用电化学方法[如永停滴定 法(通则 0701)等]指示终点;另做空白试验,按下式计算:
F=
式中
W A? B
F 为每 lml 费休氏试液相当于水的重量,mg; w 为称取纯化水的重量,mg; A 为滴定所消耗费休氏试液的容积,ml; B 为空白所消耗费休氏试液的容积,ml。 测定法 精密称取供试品适量(约消耗费休氏试液 1~5 ml) ,除另有规定外,溶剂为 无水甲醇,用水分测定仪直接测定。或精密称取供试品适量,置干燥的具塞锥形瓶中,加溶 剂 2~5 ml,在不断振摇(或搅拌)下用费休氏试液滴定至溶液由浅黄色变为红棕色,或用 永停滴定法(通则 0701)指示终点;另做空白试验,按下式计算: 供试品中水分含量(%)= 式中
( A ? B) F × 100% W
A 为供试品所消耗费休氏试液的容积,ml; B 为空白所消耗费休氏试液的容积,ml; F 为每 lml 费休氏试液相当于水的重量,mg; W 为供试品的重量,mg。 如供试品吸湿性较强,可称取供试品适量置干燥的容器中,密封(可在干燥的隔离箱中 操作) ,精密称定,用干燥的注射器注入适量无水甲醇或其他适宜溶剂,精密称定总重量, 振摇使供试品溶解,测定水分。洗净并烘干容器,精密称定其重量。同时测定溶剂的水分。 按下式计算: 供试品中水分含量(%)= 式中 W1 W2 W3
(W1 ? W3 )C1 ? (W1 ? W2 )C 2 × 100% W2 ? W3
为供试品、溶剂和容器的重量,g; 为供试品、容器的重量,g; 为容器的重量,g;
1

溶剂残留量检测方法

溶剂残留量检测方法 气相色谱仪检测器(氢火焰离子检测器) 色谱柱:25%PEG-1500,301有机担体,柱长2m,内径2mm(也可以采用专业的毛细管柱) 条件:柱室温度90℃检测器温度:150℃气化室温度:150℃ 1.包装材料溶剂残留量的检测 采用气相色谱仪或等同原理的仪器,按生产实际使用溶剂的种类配制标准溶剂样品,用微升注射器取0.5μl、1μl、2μl、 3μl和4μl样品,换算成质量。将样品分别注入用硅橡胶密封好的清洁干燥的500ml三角瓶中,送入80±2℃恒温烘箱中放置30 分钟后,用5ml注射器从瓶中取1ml气体,迅速注入色谱仪中测定。以其出峰总面积值分别与对应的样品质量做出标准曲线。 裁取0.2m2样品,将样品迅速裁成10mm×30mm碎片,放入清洁的、在80℃条件下预热的500ml 三角瓶中,用硅胶塞密封,送入80±2℃恒温烘箱中加热30分钟后,用5ml注射器取1ml瓶中气体注入色谱仪中测定。以出峰总面积值在标准曲线上查出对应的溶剂残留量,试验结果以mg/m2表示。 2.油墨溶剂残留量的检测 采用气相色谱仪或等同原理的仪器,按产品标准要求的溶剂种类配制标准溶剂,将每种溶剂用10μl进样器通过密封胶塞向300ml输液瓶中注入1μl标准溶剂,放入80±1℃恒温烘箱中20分钟后取出,隔日再放入50±1℃恒温烘箱中20小时以上,取出后用1ml注射器分别从瓶中抽取0.2、0.6、0.8、1.0ml的气体进行测试,做出标准曲线。 将油墨在双向拉伸聚丙烯薄膜上制成印样,悬空放置2小时,将试样裁切成4条,规格为5cm ×10cm,总面积为200cm2,立即置于300ml输液瓶中塞紧瓶口,置于80±1℃恒温烘箱中30分钟,取出后用1ml注射器抽取气体,注入色谱仪测定,以出峰总面积值在标准曲线上查出对应的溶剂残留量,试验结果以mg/m2表示。 中心以化工行业技术需求和科技进步为导向,以资源整合、技术共享为基础,分析测试、技术咨询为载体,致力于搭建产研结合的桥梁。以“专心、专业、专注“为宗旨,致力于实现研究和应用的对接,从而推动化工行业的发展。 科标化工分析检测中心致力于推动化工产业发展,欢迎各行同仁前来洽谈、合作。

(完整版)土壤含水量的测定(烘干法)

土壤含水量的测定(烘干法) 进行土壤水分含量的测定有两个目的:一是为了解田间土壤的实际含水状况,以便及时进行灌溉、保墒或排水,以保证作物的正常生长;或联系作物长相、长势及耕栽培措施,总结丰产的水肥条件;或联系苗情症状,为诊断提供依据。二是风干土样水分的测定,为各项分析结果计算的基础。前一种田间土壤的实际含水量测定,目前测定的方法很多,所用仪器也不同,在土壤物理分析中有详细介绍,这里指的是风干土样水分的测定。 风干土中水分含量受大气中相对湿度的影响。它不是土壤的一种固定成分,在计算土壤各种成分时不包括水分。因此,一般不用风干土作为计算的基础,而用烘干土作为计算的基础。分析时一般都用风干土,计算时就必须根据水分含量换算成烘干土。 测定时把土样放在105~110℃的烘箱中烘至恒重,则失去的质量为水分质量,即可计算土壤水分百分数。在此温度下土壤吸着水被蒸发,而结构水不致破坏,土壤有机质也不致分解。下面引用国家标准《土壤水分测定法》。 2.3.1适用范围 本标准用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。 2.3.2方法原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 2.3.3仪器设备 ①土钻;②土壤筛:孔径1mm;③铝盒:小型直径约40mm,高约20mm;大型直径约55mm,高约28mm;④分析天平:感量为0.001g和0.01g;⑤小型电热恒温烘箱;⑥干燥器:内盛变色硅胶或无水氯化钙。 2.3.4试样的选取和制备 2.3.4.1风干土样选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 2.3.4.2新鲜土样在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g,捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。 2.3.5测定步骤 2.3.5.1风干土样水分的测定将铝盒在105℃恒温箱中烘烤约2h,移入干燥器内冷却至室温,称重,准确到至0.001g。用角勺将风干土样拌匀,舀取约5g,

卡尔费休氏水分测定法

1.前言 卡尔·费休水分测定法是以甲醇为介质以卡氏液为滴定液进行样品水分测量的一种方法。此方法操作简单,准确度高,广泛应用于医药、石油、化工、农药、染料、粮食等领域。尤其适用于遇热易被破坏的样品。 一般情况下,产品中水分的含量异常会严重地影响产品的质量和使用效果。例如:药品、日用品、食品中所含水分过高会影响其稳定性、理化性状、及使用效果和保质期,化学试剂中所含水分过多会影响其化学特性等。因此,对产品中的水分进行检查并控制其限度非常重要。以前,人们普遍应用加热干燥法,此种方法不但繁琐、费时,而且系统误差较大不能满足现代化生产中对产品检验的需要。 1935年,Karl Fischer发现了一种用滴定法测定含水量从1ppm到100%的样品的方法。该方法测定水分含量的用途广泛、结果准确可靠、重复性好,能够最大限度的保证分析结果的准确性。而且该方法滴定时间短,一般情况下测定一个样品仅需2到5分钟,适应现代化生产中快速检测的要求。因而卡尔·费休氏水分测定法得到了各界的一致认可,现在已成为国际上通用的经典水分测定法。 2.基本原理 卡尔·费休水分测定法是一种非水溶液中的氧化还原滴定法,其滴定的基本原理是碘氧化二氧化硫时需要一定量的

水参与反应,化学反应方程式如下: I2+SO2+2H2O → 2HI+H2SO4 (2-1) I2+SO2+H2O+3RN+R1OH → 2RNHI+RNSO4R1 (2-2) 卡氏试剂中含有分子碘而呈深褐色,当含有水的试剂或样品加入后,由于化学反应,生成甲基硫酸化合物(RNSO4R1)而使溶液变成黄色,由此可用目测法判断终点,即由浅黄色变成橙色.但是目测法误差教大而且在测定有颜色的物质时会遇到麻烦。国家标准大都规定用“永停法”来判定卡氏反应的终点,其原理为:在反应溶液中插入双铂电极,在两电极之间加上一固定的电压,若溶剂中有水存在时,则溶液中不会有电对存在,溶液不导电,当反应到达终点时,溶液中存在I2和I-电对,即: 2I-= I2+2e (2-3) 因此,溶液的导电性会突然增大,在设有外加电压的双铂电极之间的电流值突然增大,并且稳定在我们事先设定一个阈值上面,即可判断到了滴定终点,机器便会自动停止滴定,从而通过消耗KF试剂的体积计算出样品的含水量。 3.溶剂的选择 3.1常用溶剂 由于此法是测量样品中水分含量,因此需要使用一种非水物质作为溶剂,使样品溶解。通常情况下,甲醇是比较理想的溶剂。此反应是可逆反应,为了使反应向右进行,反应

(完整版)食品中水分含量的测定

实验1 食品中水分含量的测定 一、实验原理 水分的测定方法包括加热干燥法、蒸馏法、卡尔费休法、电测法、近红外分光光度法、气相色谱法、核磁共振法、干燥剂法等,其中加热干燥法是使用最普遍的方法。加热干燥法是适合大多数食品测定的常用方法。按加热方式和设备的不同,可分为常压加热干燥法、减压加热干燥法、微波加热干燥法等。常压加热干燥法根据操作温度的不同,又可分为105℃烘箱法和130℃烘箱法。 食品中的水分一般是指在100℃左右直接干燥的情况下,所失去的物质的总量。105℃烘箱法适用于测定在95-105℃下,不含或含其他挥发性物质甚微的食品,如谷物及其制品、淀粉及其制品、调味品、水产品、都制品、乳制品、肉制品;130℃烘箱法适用于谷类作物种子水分的测定。 二、试剂与器材 海砂。 恒温干燥箱,电子天平。 三、实验步骤 1、干燥条件 温度:100-135℃,多用100℃±5℃。 时间:以干燥至恒重为准。105℃烘箱法,一般干燥时间为4-5h;130℃烘箱法,干燥时间为1h。 样品质量:样品干燥后的残留物一般控制在2-4g。 称样大致范围:固体、半固体样品,2-10g;液体样品,10-20。 2、样品制备 固体样品先磨碎、过筛。谷类样品过18目筛,其他食品过30-40目筛。 糖浆等浓稠样品为防止物理栅的发生,一般要加水稀释,或加入干燥助剂(如石英砂、海砂等)。糖浆稀释液的固形物质量分数应控制在20-30%,海砂量为样品质量的1-2倍。液态样品先在水浴上浓缩,然后用烘箱干燥。 面包等水分含量大于16%的谷类食品一般采用两步干燥法,即样品称量后,切成2-3mm薄片,风干15-20h后再次称重,然后磨碎、过筛,再用烘箱干燥至恒重。 果蔬类样品可切成薄片或长条,按上述方法进行两步干燥,或先用50-60℃低温烘3-4h,再升温至95-105℃,继续干燥至恒重。 3、样品测定 (1)105℃烘箱法 1)固体样品将处理好的样品放入预先干燥至恒重的玻璃称量皿中,置于95-105℃干燥箱中,盖斜支于瓶边,干燥2-4h后,盖好取出,置于干燥器中冷却0.5h后称重,再放入同温度的烘箱再干燥1h左右,然后冷却、称量,并重复干燥至恒重。 2)半固体或液体样品将10g洁净干燥的海砂及一根小玻璃棒放入蒸发皿中,在95-105℃下干燥至恒重。然后准确称取适量样品,置于蒸发皿中,用小玻璃棒搅匀后放在沸水浴中蒸干(注意中间要不时搅拌),擦干皿底后置于95-105℃干燥箱中干燥4h,按上述操作反复干燥至恒重。 (2)130℃烘箱法将烘箱预热至130℃,将试样放入烘箱内,关好箱门,使温度在10min 内升至130℃,在(130±2)℃下干燥1h。 4、结果计算 X=100*(m1-m2)/(m1-m0)

相关主题
文本预览
相关文档 最新文档