当前位置:文档之家› 大学物理下电学电荷和静电场课件

大学物理下电学电荷和静电场课件

大学物理下电学电荷和静电场课件

大学物理下电学电荷和静电场课件

大学物理题库电学习题

1.一个未带电的空腔导体球壳,内半径为R 。在腔内离球心的距离为d 处( d < R ),固定 一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去。选无穷远处为电势零点,则 球心O 处的电势为 (A) 0 (B) d q 04επ (C) R q 04επ- (D) )11(40R d q -πε ] 2.三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用 中间板上带电,设左右两面上电荷面密度分别为1和2,如图所示。则比值21/σσ为 (A) d 1 / d 2 (B) d 2 / d 1 (C) 1 (D) 2122/d d 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P (设无穷远处为电势零点)分别为: (A) E = 0,U > 0 (B) E = 0,U < 0 (C) E = 0,U = 0 (D) E > 0,U < 0 4.在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示。当电容 (A) E > E 0,两者方向相同 (B) E = E 0,两者方向相同 (C) E < E 0,两者方向相同 (D) E < E 0,两者方向相反. [ ] 5.设有一个带正电的导体球壳。当球壳内充满电介质、球壳外是真空时,球壳外一点 的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势 用E 2,U 2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为 (A) E 1 = E 2,U 1 = U 2 (B) E 1 = E 2,U 1 > U 2 (C) E 1 > E 2,U 1 > U 2 (D) E 1 < E 2,U 1 < U 2 [ ] 6.C 1和C 2两空气电容器串联起来接上电源充电。然后将电源断开,再把一电介质板插 入C 1中,如图所示。则 (A) C 1上电势差减小,C 2上电势差增大 (B) C 1上电势差减小,C 2上电势差不变 (C) C 1上电势差增大,C 2上电势差减小 (D) C 1上电势差增大,C 2上电势差不变 [ B ] 7 .如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则 由于金属板的插入及其相对极板所放位置的不同,对电容器电容的影响为: (A) 使电容减小,但与金属板相对极板的位置无关 (B) 使电容减小,且与金属板相对极板的位置有关 (C) 使电容增大,但与金属板相对极板的位置无关 (D) 使电容增大,且与金属板相对极板的位置有关 [ ] 8. 将一空气平行板电容器接到电源上充电到一定电压后,断开电源。再将一块与极板面积相同的金属板平行地插入两极板之间,如图所示, 同,对电容器储能的影响为: (A) 储能减少,但与金属板相对极板的位置无关 (B) 储能减少,且与金属板相对极板的位置有关 (C) 储能增加,但与金属板相对极板的位置无关 (D) 储能增加,且与金属板相对极板的位置有关 E

大学物理-电磁学部分-试卷及答案word版本

学习资料 大学物理试卷 (考试时间 120分钟 考试形式闭卷) 年级专业层次 姓名 学号 一.选择题:(共30分 每小题3分) 1.如图所示,两个“无限长”的共轴圆柱面,半径分别为R 1和R 2,其上均匀带电,沿轴线方向单位长度上的带电量分别为1λ和2λ,则在两圆柱面之间,距离轴线为r 的P 点处的场强大小E 为: (A )r 012πελ. (B )r 0212πελλ+. (C ))(2202r R -πελ. (D )) (2101R r -πελ. 2.如图所示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功 (A ) A < 0且为有限常量.(B ) A > 0且为有限常量. (C ) A =∞.(D ) A = 0. 3.一带电体可作为点电荷处理的条件是 (A )电荷必须呈球形分布. (B )带电体的线度很小. (C )带电体的线度与其它有关长度相比可忽略不计. (D )电量很小. 4.下列几个说法中哪一个是正确的? (A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向. (B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.

学习资料 (C )场强方向可由q F E /ρρ=定出,其中q 为试探电荷的电量,q 可正、可负,F ρ 为试探 电荷所受的电场力. (D )以上说法都不正确. 5.在图(a )和(b )中各有一半径相同的圆形回路1L 、2L ,圆周内有电流1I 、2I ,其分布相同,且均在真空中,但在(b )图中2L 回路外有电流3I ,P 1、P 2为两圆形回路上的对应点,则: (A )212 1 ,d d P P L L B B l B l B =?=???ρρρρ (B )212 1 ,d d P P L L B B l B l B =?≠???ρ ρρρ (C )212 1 ,d d P P L L B B l B l B ≠?=???ρρρρ (D )212 1 ,d d P P L L B B l B l B ≠?≠???ρ ρρρ 6.电场强度为E ρ的均匀电场,E ρ 的方向与X 轴正向平行,如图所示.则通过图中一半径 为R 的半球面的电场强度通量为 (A )E R 2π.(B )E R 22 1 π. (C )E R 22π. (D )0 7.在静电场中,有关静电场的电场强度与电势之间的关系,下列说法中正确的是: (A )场强大的地方电势一定高. (B )场强相等的各点电势一定相等. (C )场强为零的点电势不一定为零. (D )场强为零的点电势必定是零. 8.正方形的两对角上,各置点电荷Q ,在其余两对角上各置电荷q ,若Q 所受合力为零,则Q 与q 的大小关系为 (A )q Q 22-=. (B )q Q 2-=. (C )q Q 4-=. (D )q Q 2-=. 9.在阴极射线管外,如图所示放置一个蹄形磁铁,则阴极射线将 (A )向下偏. (B )向上偏. (C )向纸外偏. (D )向纸内偏.

大学物理电磁学题库及答案

一、选择题:(每题3分) 1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2 r 2B . (B) r 2B . (C) 0. (D) 无法确定的量. [ B ] 2、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . (B) 2 r 2B . (C) - r 2B sin . (D) - r 2B cos . [ D ] 3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ C ] 4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 (A) 方向垂直环形分路所在平面且指向纸内. (B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a . (E) 为零. [ E ] 5、通有电流I 的无限长直导线有如图三种形状, 则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ D ] 6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方 形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01 B ,02 B . (B) 01 B ,l I B 0222 . (C) l I B 0122 ,02 B . a

大学物理电磁学知识点汇总

稳恒电流 1.电流形成的条件、电流定义、单位、电流密度矢量、电流场(注意我们 又涉及到了场的概念) 2.电流连续性方程(注意和电荷守恒联系起来)、电流稳恒条件。 3.欧姆定律的两种表述(积分型、微分型)、电导、电阻定律、电阻、电 导率、电阻率、电阻温度系数、理解超导现象 4.电阻的计算(这是重点)。 5.金属导电的经典微观解释(了解)。 6.焦耳定律两种形式(积分、微分)。(这里要明白一点:微分型方程是 精确的,是强解。而积分方程是近似的,是弱解。) 7.电动势、电源的作用、电源做功。、 8.含源电路欧姆定律。 9.基尔霍夫定律(节点电流定律、环路电压定律。明白两者的物理基础。)习题:13.19;13.20 真空中的稳恒磁场 电磁学里面极为重要的一章 1. 几个概念:磁性、磁极、磁单极子、磁力、分子电流 2. 磁感应强度(定义、大小、方向、单位)、洛仑磁力(磁场对电荷的作用) 3. 毕奥-萨伐尔定律(稳恒电流元的磁场分布——实验定律)、磁场叠加原理(这是磁场的两大基本定律——对比电场的两大基本定律) 4. 毕奥-萨伐尔定律的应用(重点)。 5. 磁矩、螺线管磁场、运动电荷的磁场(和毕奥-萨伐尔定律等价——更基本) 6. 稳恒磁场的基本定理(高斯定理、安培环路定理——与电场对比) 7. 安培环路定理的应用(重要——求磁场强度) 8. 磁场对电流的作用(安培力、安培定律积分、微分形式)

9. 安培定律的应用(例14.2;平直导线相互作用、磁场对载流线圈的作用、磁力矩做功) 10. 电场对带电粒子的作用(电场力);磁场对带电粒子的作用(洛仑磁力);重力场对带电粒子的作用(引力)。 11. 三场作用叠加(霍尔效应、质谱仪、例14.4) 习题:14.20,14.22,14.27,14.32,14.46,14.47 磁介质(与电解质对比) 1.几个重要概念:磁化、附加磁场、相对磁导率、顺磁质、抗磁质、铁磁 质、弱磁质、强磁质。(请自己阅读并绘制磁场和电场相关概念和公式 的对照表) 2.磁性的起源(分子电流)、轨道磁矩、自旋磁矩、分子矩、顺磁质、抗 磁质的形成原理。 3.磁化强度、磁化电流、磁化面电流密度、束缚电流。 4.磁化强度和磁化电流的关系(微分关系、积分关系) 5.有磁介质存在时的磁场基本定理、磁场强度矢量H、有磁介质存在时的 安培环路定律(有电解质存在的安培环路定律)、磁化规律。 6.请比较B、H、M和E、D、P的关系。磁化率、相对磁导率、绝对磁导 率。 7.有磁介质存在的安培环路定理的应用(例15.1、例15.2)、有磁介质存 在的高斯定理。 8.铁磁质(起始磁化曲线、磁滞回线、饱和磁感应强度、起始磁导率、磁 滞效应、磁滞、剩磁、矫顽力、磁滞损耗、磁畴、居里点、软磁材料、 硬磁材料、矩磁材料)(了解) 习题: 15.11

精选-大学物理电磁学部分总结

电磁学部分总结 静电场部分 第一部分:静电场的基本性质和规律 电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。静电场的物质特性的外在表现是: (1)电场对位于其中的任何带电体都有电场力的作用 (2)带电体在电场中运动,电场力要作功——电场具有能量 1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。 电场强度 电势 2、反映静电场基本性质的两条定理是高斯定理和环路定理 要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。重点是高斯定理的理解和应用。 3、应用 (1)、电场强度的计算 a)、由点电荷场强公式 及场强叠加原理 计算场强 q F E a a a r d E q W U 0 i S e q S d E 0 1 r d E L 020 41r r q E i i E E

一、离散分布的点电荷系的场强 二、连续分布带电体的场强 其中,重点掌握电荷呈线分布的带电体问题 b)、由静电场中的高斯 定理计算场源分布具有高度对称性的带电体的场强分布 一般诸如球对称分布、轴对称分布和面对称分布,步骤及例 题详见课堂笔记。还有可能结合电势的计算一起进行。 c)、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算 或电势分布已知的情形),掌握作业及课堂练习的类型即可。 (2)、电通量的计算 2041i i i i i i r r q E E 0 204d r r q E d E U gradU E ) (k z U j y U i x U

a)、均匀电场中S 与电场强度方向垂直 b)、均匀电场,S 法线方向与电场强度方向成q 角 c)、由高斯定理求某些电通量 (3)、电势的计算 a)、场强积分法(定义法)——根据已知的场强分布,按定义 计算 b)、电势叠加法——已知电荷分布,由点电荷电势公式,利用 电势叠加原理计算 第二部分:静电场中的导体和电介质 一、导体的静电平衡状态和条件 导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状 态。 静电平衡下导体的特性: (1)整个导体是等势体,导体表面是个等势面; (2)导体内部场强处处为零,导体表面附近场强的大小与该 表面的电荷面密度成正比,方向与表面垂直; (3)导体内部没有净电荷,净电荷只分布在外表面。 P P r d E U r dq dU r q U U i i i 0044

大学物理 电学练习题1

电学练习题 一、选择题 1、关于高斯定理的理解有下面几种说法,其中正确的是: (A)如果高斯面上E 处处为零,则该面内必无电荷。 (B)如果高斯面内无电荷,则高斯面上E 处处为零。 (C)如果高斯面上E 处处不为零,则高斯面内必有电荷。 (D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零。 (E)高斯定理仅适用于具有高度对称性的电场。[ ] 2、在点电荷q的电场中,选取以q为中心、R为半径的球面上一点P处作电势零点,则 与点电荷q距离为r的P’点的电势为[ ] ) 1 1 ( 4 ) ( ) ( 4 ) ( ) 1 1 ( 4 ) ( ; 4 ) ( r R q D R r q C R r q B r q A- - - πε πε πε πε 3、真空中有一电量为Q的点电荷,在与它相距为r的a点处有一试验电荷q,现使试验 电荷q从a点沿半圆弧轨道运动到b点,如图所示。则电场力做功为[ ] ) ( 4 ) ( 2 4 ) ( 2 4 ) ( 2 2 2 2 D r r Qq C r r Qq B r r Qq Aπ πε πε π πε 4、一空气平行板电容器,充电后把电源断开,这时电容器中储存的能量为 W。然后在 两极板之间充满相对电容率为 r ε的各向同性均匀电介质,则该电容器中储存的能量为: ) ( ) 1( ) ( ) ( ) (W W D W W C W W B W W A r r r = - = = =ε ε ε[ ] 5、有四个等量点电荷在OXY平面上的四种不同组态,所有点电荷均与原点等距。设无 限远处电势为零,则原点O处电场强度和电势均为零的组态是[ ]

大学物理下课件Review

Review 1. What have we studied? 1.1. Electrics, Magnetics and Electromagnetism 1. 2. Optics 2. Important knowledge 2.1. Electromagnetism 2.1.1. Fields 2.1.1.1. Electric field: 0 q F E = 2.1.1.2. Magnetic field: B → 2.1.2. Forces 2.1.2.1. Electrostatic force: r r q q F E ?412 210 πε=, Permittivity constant: 2 12120m N C 1085.8---???=ε 2.1.2.2. Magnetic force: B v q F B ?= Permeability constant: m/A T 10 26.1m/A T 104 670??≈??=--πμ 2.1. 3. Potential energy: app i f W W U U U =-=-=?

2.1. 3.1. C q U E 22 = :time any at capacitor the of field electric the in stored energy The 2.1. 3.2. 2 2 Li U B =:time any at ind uctor the of field magnetic the in stored energy The 2.1.4. Electric potential: q U V = 2.1.5. ??-=-=-=?f i i f s d E q W V V V 0 :difference potential E lectric 2.1.6. Laws 2.1.6.1. Coulomb’s Law: r r q q F E ?412 210 πε= 2.1.6.2. flux electric the creates :y electricit for law Gauss ,0 enc enc q q A d E →= ??ε 2.1.6. 3. 0 =??A d B :magnetism for law Gauss know) we as far (as exist not do monopoles Magnetic → 2.1.6.4. dt d s d E B Φ-=?? : law s Faraday'field electric induced create will flux magnetic Changing → 2.1.6.5. enc E i dt d s d B 00 0 μεμ+Φ=?? :induction of law s Maxwell'- Ampere field magnetic induced create will current enclosed and flux electric Changing → 2.1.7. Concepts in electric circuits 2.1.7.1. Current: dt dq i = 2.1.7.2. dA di J = :density Current

大学物理电学部分

随意编辑 静 电 学 基本内容 一、电场强度E 1. 定义:0/q F E . 要测定电场中一点的场强,必须采用试验电荷, 在该点测定试验电荷受力并 按上式求得场强。试验电荷是带电量足够小体积也是足够小的点电荷。 2. 场强的叠加原理 带电体系在一点产生的场强E 是各个电荷(或电荷元)在该点产生的场强 i E (或元场强d E )的矢量和(或积分)。 i i E E 或E d E q 只有当各i E (或E d )的方向都相同时, 略去上式中矢量号仍成立。 当电荷可以看作点电荷时, i i i i r r q E 3 04 . 二、高斯定理 1.电场的图示: 电场线 规定电场线上一点的切线方向是该点处电场强度的方向, 与电场线垂直的

随意编辑 面元上单位面积的电场线条数与该处电场强度的大小相等。 2. 电场强度通量(许多书和习题集中也称电通量) 通过面元S d 的元电场强度通量S d E d e 等于通过该面元的电场线数。 通过曲面S 的电场强度通量S d E S e 等于通过该面的电场线数。规定 封闭曲面面元的法线方向向外(背离封闭面包围的空间),积分号采用 ?。 3. 高斯定理 )1 (/0 0V d q S d E V i i s 高斯定理中的封闭曲面又称高斯面,式中q i 表示被高斯面包围的电荷的代数和, 是空间一点处的电荷密度。 高斯定理说明电场线只起源于正电荷,终止于负电荷,不在没有电荷处中断。即静电场是有源场。 4. 电位移、电位移线、电位移通量 电位移D 的定义: E D 。 式中D 、、E 分别是电场中同一点处的电位移、电容率和电场强度。 规定电位移线上一点的切线方向是该点电位移矢量的方向,与电位移线垂直的面元上单位面积的电位移线数与该处电位移大小相等。

大学物理 电学练习题答案

电学练习题参考答案 一、选择题 1、D 2、D 3、B 4、D 5、D 6、B 二、填空题 1. ??? ??-R r q 1140πε 2. 0,0,εεq q - 3. 零,不为零 4. 大于, 5. (1)增大电容;(2)提高电容器的耐压能力 6. 204R q πε 7. 24εq 8. ,20εσ方向水平向右; 023εσ方向水平向右; 0 2εσ方向水平向左。 三.小计算题 1. 见教材16页例10.3.1 2. 见教材26页例10.5.1 3. 解:导体球带电,由于静电平衡,电荷只能分布在球体表面,所以0U 即 为球体表面电势。 000044RU Q R Q U πεπε=?=

由高斯定理求其场强分布: 球体内: 0=E 球体外: 02 20002 0444U r R r RU r Q E == = πεπεπε 4. 解:在距球心为r 处任取一厚dr 的球壳,带电量为dr r dV dq ??==24πρρ 所以,整个球体带电量为 40204aR dr r ar dV dq Q R R ππρ=??===???` 5. 解:(1)环心处的电势 ? ?= ==R Q R dq dU U 00044πεπε, (2)电场力做功 ()R Qq U U q qU A o 004πε=--=-=∞∞ 四.大计算题 1.解:(1)建立如图所示坐标系,细杆的电荷线密度l q = λ,在x 处取电荷元l qdx dx dq ==λ,它在P 点产生的电势为 x a l dx l q x a l dq dU -+=-+= 00441 εππε 整个杆上电荷在P 点产生的电势为 () a l a l q x a l l q x a l dx l q dU U l l += -+-=-+= =??ln 4ln 4400 000 επεπεπ (2) 电荷元dq 在P 点产生的场强大小为 2 020)(4)(41 x a l dx x a l dq dE -+= -+= πελπε

电学计算题大学物理

电学计算题 3(1352) 来顿瓶是早期的一种储电容器,它是一内外贴有金属簿膜的圆柱形玻璃瓶.设玻璃瓶内直径为8 cm ,玻璃厚度为2 mm ,金属膜高度为40 cm .已知玻璃的相对介电常数为 5.0,其击穿场强是 1.5×107 V/m .如果不考虑边缘效应,试计算:(1) 来顿瓶的电容值;(2) 它 顶多能储存多少电荷.[真空介电常量ε 0 = 8.85×10-12 C 2·N -1·m -2 ] 3 (1352-10) 解:(1) 设内、外金属膜圆筒半径分别为R 1和R 2,高度均为L ,其上分别带电荷+Q 和-Q .则玻璃内的场强为 )(2210R r R Lr Q E r <<π= εε 2分 内、外筒之间的电势差 ??=2 1 d R R r E U ?π= 2 1d 20R R r r r L Q εε120ln 2R R L Q r εεπ= 2分 来顿瓶的电容 1 2 0ln 2R R L U Q C r εεπ= = =2.28×10-9 F 2分 (2) 柱形电容器两金属膜之间场强以靠近内膜处场强为最大,令该处场强等于击穿场强,即 E LR Q R E r =π= 1 012)(εε(击穿) 2分 则 E LR Q r 102εεπ=(击穿)= 6.67×10-5 C 此即所能储存的最大电荷. 2分 四、证明题(共10分) 1 (5095) 有一带电球壳,内、外半径分别为a 和b ,电荷体密度ρ = A / r ,在球心处有一点电荷Q ,证明当A = Q / ( 2πa 2 )时,球壳区域内的场强E 的大小与r 无关. 证明题(共10分) 1(5095) 证:用高斯定理求球壳内场强: () 02 /d 4d ερ??+=π?=?V S V Q r E S E 而 ?? ?π=π?=r r a v r r A r r r A V 02d 4d 4d ρ a b Q ρ r Q a b ρ

(完整版)大学物理_电磁学公式全集

静电场小结 一、库仑定律 二、电场强度 三、场强迭加原理 点电荷场强点电荷系场强 连续带电体场强 四、静电场高斯定理 五、几种典型电荷分布的电场强度 均匀带电球面均匀带电球体 均匀带电长直圆柱面均匀带电长直圆柱体无限大均匀带电平面

六、静电场的环流定理 七、电势 八、电势迭加原理 点电荷电势点电荷系电势 连续带电体电势 九、几种典型电场的电势 均匀带电球面均匀带电直线 十、导体静电平衡条件 (1) 导体内电场强度为零;导体表面附近场强与表面垂直。 (2) 导体是一个等势体,表面是一个等势面。 推论一电荷只分布于导体表面 推论二导体表面附近场强与表面电荷密度关系 十一、静电屏蔽 导体空腔能屏蔽空腔内、外电荷的相互影响。即空腔外(包括外表面)的电荷在空腔内的场强为零,空腔内(包括内表面)的电荷在空腔外的场强为零。

十二、电容器的电容 平行板电容器圆柱形电容器 球形电容器孤立导体球 十三、电容器的联接 并联电容器串联电容器 十四、电场的能量 电容器的能量电场的能量密度电场的能量 稳恒电流磁场小结 一、磁场 运动电荷的磁场毕奥——萨伐尔定律 二、磁场高斯定理 三、安培环路定理 四、几种典型磁场 有限长载流直导线的磁场 无限长载流直导线的磁场 圆电流轴线上的磁场

圆电流中心的磁场 长直载流螺线管内的磁场 载流密绕螺绕环内的磁场 五、载流平面线圈的磁矩 m和S沿电流的右手螺旋方向 六、洛伦兹力 七、安培力公式 八、载流平面线圈在均匀磁场中受到的合磁力 载流平面线圈在均匀磁场中受到的磁力矩 电磁感应小结 一、电动势 非静电性场强电源电动 势 一段电路的电动势闭合电路的电动势 当时,电动势沿电路(或回路)l的正方向,时沿反方向。 二、电磁感应的实验定律 1、楞次定律:闭合回路中感生电流的方向是使它产生的磁通量反抗引起电磁感应的磁通量变化。楞次定律是能量守恒定律在电磁感应中的表现。 2、法拉第电磁感应定律:当闭合回路l中的磁通量变化时,在回路中的感应电动势为 若时,电动势沿回路l的正方向,时,沿反方向。对线图,为全磁通。

大学物理电磁学知识点总结

大学物理电磁学总结 一、三大定律库仑定律:在真空中,两个静止的点电荷q1 和q2 之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。 uuu r q q ur F21 = k 1 2 2 er r ur u r 高斯定理:a) 静电场:Φ e = E d S = ∫ s ∑q i i ε0 (真空中) b) 稳恒磁场:Φ m = u u r r Bd S = 0 ∫ s 环路定理:a) 静电场的环路定理:b) 安培环路定理:二、对比总结电与磁 ∫ L ur r L E dl = 0 ∫ ur r B dl = 0 ∑ I i (真空中) L 电磁学 静电场 稳恒磁场稳恒磁场 电场强度:E 磁感应强度:B 定义:B = ur ur F 定义:E = (N/C) q0 基本计算方法:1、点电荷电场强度: E =

ur r u r dF (d F = Idl × B )(T) Idl sin θ 方向:沿该点处静止小磁针的N 极指向。基本计算方法: ur q ur er 4πε 0 r 2 1 r ur u Idl × e r 0 r 1、毕奥-萨伐尔定律:d B = 2 4π r 2、连续分布的电流元的磁场强度: 2、电场强度叠加原理: ur n ur 1 E = ∑ Ei = 4πε 0 i =1 r qi uu eri ∑ r2 i =1 i n r ur u r u r 0 Idl × er B = ∫dB = ∫ 4π r 2 3、安培环路定理(后面介绍) 4、通过磁通量解得(后面介绍) 3、连续分布电荷的电场强度: ur ρ dV ur E=∫ e v 4πε r 2 r 0 ur ? dS ur ur λ dl ur E=∫ er , E = ∫ e s 4πε r 2 l 4πε r 2 r 0 0 4、高斯定理(后面介绍) 5、通过电势解得(后面介绍) 几种常见的带电体的电场强度公式: 几种常见的磁感应强度公式:1、无限长直载流导线外:B = 2、圆电流圆心处:B = 3、圆电流轴线上:B = ur 1、点电荷:E = q ur er 4πε 0 r 2 1 0 I 2R 0 I 2π r 2、均匀带电圆环轴线上一点: ur E=

大学物理实验电学部分

电学部分 交流电及整流滤波电路实验与示波器测量时间实验 (1) 凯特摆测重力加速度实验及超声波的传播速度实验 (4) 交流谐振电路实验和交流电桥实验 (5) CSY10A型传感器系统实验 (8) 螺线管测磁场 (10) 霍尔效应 (11) 直流电测量 (12) 用直流电位差计精确测量电压 (12) 双臂电桥测低电阻 (14) 电磁测量是物理实验中最重要的基础内容,它在当今生活、生产和科学研究中有着最广泛的应用。实验过程中所使用的仪器种类繁多,所以我们在验证实验原理的同时,也要让同学们学会对各种电磁测量仪器仪表的正确使用。只有在对实验仪器能正确使用的前提下,我们才能保证实验过程中的数据的准确性和精确性。尤其近年来,电磁学实验室更新了大部分的仪器,而且也增添了许多新的实验内容和仪器,这样就有必要对这些新的仪器设备的使用测量方法以及维修维护等知识加以了解,以便在实验过程中教会学生仪器的正确使用方法以及仪器出现故障或其他异常情况我们如何来加以排除。 交流电及整流滤波电路实验与示波器测量时间实验 由于这两个实验实验仪器基本都是电子仪器<示波器、信号发生器、数字电压表),所以在使用过程中请同学们注意使用安全,不要擅自接触仪器的电源插头,以免发生意外,如果感觉仪器不太好用请及时联系实验室老师加以解决。同时由于实验对象是大一的本科生,相当一部分同学以前很少接触到电子仪器,所以在实验过程中可能会出现各种问题,现根据经验将部分常出现的故障现象及排除方法写出来,供大家参考。 一、示波器测量时间实验: 1.现象:示波器屏幕上没有任何信号。 可能的原因有: <1)示波器的电源开关没有打开; <2)亮度设置太低,请调节亮度旋扭,增加亮度;

相关主题
文本预览
相关文档 最新文档