当前位置:文档之家› 运放的主要参数及选型

运放的主要参数及选型

运放的主要参数及选型
运放的主要参数及选型

运放的主要参数介绍

本节以《中国集成电路大全》集成运算放大器为主要参考资料,同时参考了其它相关资料.集成运放的参数较多,其中主要参数分为直流指标和交流指标。

其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。

主要交流指标有开环带宽、单位增益带宽、转换速率SR、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。

1.直流指标

输入失调电压VIO:

输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。

输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:

输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。

输入偏置电流IIB:

输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

输入失调电流IIO:

输入失调电流定义为当运放的输出直流电压为零时,其两输入端偏置电流的差值。输入失调电流同样反映了运放内部的电路对称性,对称性越好,输入失调电流越小。输入失调电流是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电流大约是输入偏置电流的百分之一到十分之一。输入失调电流对于小信号精密放大或是直流放大有重要影响,特别是运放外部采用较大的电阻(例如10k 或更大时),输入失调电流对精度的影响可能超过输入失调电压对精度的影响。输入失调电流越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。

输入失调电流的温度漂移(简称输入失调电流温漂):

输入偏置电流的温度漂移定义为在给定的温度范围内,输入失调电流的变化与温度变化的比值。这个参数实际是输入失调电流的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。输入失调电流温漂一般只是在精密运放参数中给出,而且是在用以直流信号处理或是小信号处理时才需要关注。

差模开环直流电压增益:

差模开环直流电压增益定义为当运放工作于线性区时,运放输出电压与差模电压输入电压的比值。由于差模开环直流电压增益很大,大多数运放的差模开环直流电压增益一般在数万倍或更多,用数值直接表示不方便比较,所以一般采用分贝方式记录和比较。一般运放的差模开环直流电压增益在80~120dB之间。实际运放的差模开环电压增益是频率的函数,为了便于比较,一般采用差模开环直流电压增益。

共模抑制比:共模抑制比定义为当运放工作于线性区时,运放差模增益与共模增益的比值。共模抑制比是一个极为重要的指标,它能够抑制差模输入==模干扰信号。由于共模抑制比很大,大多数运放的共模抑制比一般在数万倍或更多,用数值直接表示不方便比较,所以一般采用分贝方式记录和比较。一般运放的共模抑制比在80~120dB之间。

电源电压抑制比:

电源电压抑制比定义为当运放工作于线性区时,运放输入失调电压随电源电压的变化比值。电源电压抑制比反映了电源变化对运放输出的影响。目前电源电压抑制比只能做到80dB左右。所以用作直流信号处理或是小信号处理模拟放大时,运放的电源需要作认真细致的处理。当然,共模抑制比高的运放,能够补偿一部分电源电压抑制比,另外在使用双电源供电时,正负电源的电源电压抑制比可能不相同。

输出峰-峰值电压:

输出峰-峰值电压定义为,当运放工作于线性区时,在指定的负载下,运放在当前大电源电压供电时,运放能够输出的最大电压幅度。除低压运放外,一般运放的输出输出峰-峰值电压大于±10V。一般运放的输出峰-峰值电压不能达到电源电压,这是由于输出级设计造成的,现代部分低压运放的输出级做了特殊处理,使得在10k 负载时,输出峰-峰值电压接近到电源电压的50mV以内,所以称为满幅输出运放,又称为轨到轨(raid-to-raid)运放。需要注意的是,运放的输出峰-峰值电压与负载有关,负载不同,输出峰-峰值电压也不同;运放的正负输出电压摆幅不一定相同。对于实际应用,输出峰- 峰值电压越接近电源电压越好,这样可以简化电源设计。但是现在的满幅输出运放只能工作在低压,而且成本较高。

最大共模输入电压:

最大共模输入电压定义为,当运放工作于线性区时,在运放的共模抑制比特性显著变坏时的共模输入电压。一般定义为当共模抑制比下降6dB 是所对应的共模输入电压作为最大共模输入电压。最大共模输入电压限制了输入信号中的最大共模输入电压范围,在有干扰的情况下,需要在电路设计中注意这个问题。

最大差模输入电压:

最大差模输入电压定义为,运放两输入端允许加的最大输入电压差。当运放两输入端允许加的输入电压差超过最大差模输入电压时,可能造成运放输入级损坏。

2. 主要交流指标

开环带宽:

开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。

单位增益带宽GB:

单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增以后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。

转换速率(也称为压摆率)SR:

运放转换速率定义为,运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。由于在转换期间,

运放的输入级处于开关状态,所以运放的反馈回路不起作用,也就是转换速率与闭环增益无关。转换速率对于大信号处理是一个很重要的指标,对于一般运放转换速率SR<=10V/μs,高速运放的转换速率SR>10V/μs。目前的高速运放最高转换速率SR达到6000V/μs。这用于大信号处理中运放选型。

全功率带宽BW:

全功率带宽定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个恒幅正弦大信号输入到运放的输入端,使运放输出幅度达到最大(允许一定失真)的信号频率。这个频率受到运放转换速率的限制。近似地,全功率带宽=转换速率/2πVop(Vop是运放的峰值输出幅度)。全功率带宽是一个很重要的指标,用于大信号处理中运放选型。

建立时间:

建立时间定义为,在额定的负载时,运放的闭环增益为1倍条件下,将一个阶跃大信号输入到运放的输入端,使运放输出由0增加到某一给定值的所需要的时间。由于是阶跃大信号输入,输出信号达到给定值后会出现一定抖动,这个抖动时间称为稳定时间。稳定时间+上升时间=建立时间。对于不同的输出精度,稳定时间有较大差别,精度越高,稳定时间越长。建立时间是一个很重要的指标,用于大信号处理中运放选型。

等效输入噪声电压:

等效输入噪声电压定义为,屏蔽良好、无信号输入的的运放,在其输出端产生的任何交流无规则的干扰电压。这个噪声电压折算到运放输入端时,就称为运放输入噪声电压(有时也用噪声电流表示)。对于宽带噪声,普通运放的输入噪声电压有效值约10~20μV。

差模输入阻抗(也称为输入阻抗):

差模输入阻抗定义为,运放工作在线性区时,两输入端的电压变化量与对应的输入端电流变化量的比值。差模输入阻抗包括输入电阻和输入电容,在低频时仅指输入电阻。一般产品也仅仅给出输入电阻。采用双极型晶体管做输入级的运放的输入电阻不大于10兆欧;场效应管做输入级的运放的输入电阻一般大于109欧。

共模输入阻抗:

共模输入阻抗定义为,运放工作在输入信号时(即运放两输入端输入同一个信号),共模输入电压的变化量与对应的输入电流变化量之比。在低频情况下,它表现为共模电阻。通常,运放的共模输入阻抗比差模输入阻抗高很多,典型值在108欧以上。

输出阻抗:

输出阻抗定义为,运放工作在线性区时,在运放的输出端加信号电压,这个电压变化量与对应的电流变化量的比值。在低频时仅指运放的输出电阻。这个参数在开环测试。

运放的选择策略

(1)设计目标的综合考虑

设计者必须综合考虑设计目标的信号电平,闭环增益,要求精度,所需带宽,电路阻抗,环境条件及其他因素,并把设计要求的性能转换成运放的参数,建立各个参数的取值以及它们随温度、时间、电流电压等变化的范围。

(2)深刻理解电路手册中特性指标的意义

不同的制造商可能给出不同的特性指标,这些指标可能是通过不同的测量技术获得的,这就给运放的选择带来了困难。为避免这些困难,设计者必须深刻理解电路手册中特性指标的意义,同时必须了解这些参数是如何测得的,然后把这些特性指标转换成对设计要求有意义的参数。

(3)选择具有最优性能价格比的运放

设计者必须把设计目标的性能、所选择器件的性能指标与价格联系起来,以最低的价格获得符合设计目标提出的物理、电气和环境要求。

运放的分类与几种典型应用

不同类型运放组成近百种运放系列,其中一部分是通用的,称为通用型运放:另一部分为特殊应用提供优化特性,称为专用型运放。通用型运放的各项性能指标都比一般的分立元件直接耦合放大电路有所改善,大致能够满足中等精度的要求,一般情况下无须调零即可使用。专用型运放为了适应特殊应用场合而具有优化特性。根据专用型运算放大器的性能指标,运算放大器可分为:低噪声运放、精密运放、高速运放、低偏置电流运放、低漂移运放、低功耗/微功耗运放等。现在说明几种不同类型的专用型运放及其应用技术。

低噪声运放及其典型应用技术

以AD797为例。它是低噪声、场效应管输入(FET)运算放大器,最大输入电压噪声最大值50nVpp。

AD797组成的低噪声电荷放大器见图1。此时放大作用取决于运放输入端电荷的保持因素,即要求电容CS上的电荷能被传送到电容CF,形成输出电压

ΔQ/CF。在放大器输出端呈现的电压噪声等于放大器输入电压噪声乘以电路的噪声增益(1+(CS/CF))。

图1 AD797组成低噪声电荷放大器

该电路中存在3个重要的噪声源:运放的电压噪声、电流噪声和电阻Rb 引起的电流噪声。该电路利用“T”形网络增大Rb的有效电阻值,改善了低频截止点,但不能改变低频时起支配作用的电阻Rb的噪;须选择足够大的Rb尽可能减小该电阻对整个电路噪声影响。为了达到最佳特性,电路输入端要对信号源内阻进行平衡(由电阻RB1调整);要对信号源电容进行平衡(由电容CB1调整)。当CB1值大于300pF时,电路噪声能有效减小。

精密运放及其典型应用技术

以AD517为例。它是一种单片高精密运算放大器,具有激光调整的低失调电压、低漂移等精密特性,具有内部补偿和短路保护,能防止自锁,具有超低偏置电流电路,偏置电流最大值1nA。管壳单独引出(8脚),使得管壳能单独接到和输入端等电位的点上,从而使管壳上杂散漏电减至最小;能屏蔽输入电路,使其不受外部噪声和电源瞬变的影响。

AD517组成微电流电压转换器的应用技术如图2所示,该电路具有较高的灵敏度,缺点是失调电压漂移和噪声等输入误差会被增益放大,影响仪器性能,但AD517的精密特性可以弥补这个缺憾。由于AD517具有超低输入电流的性能,必须采用防护技术,实现方法是在包裹高阻抗信号线的绝缘材料外部加一个低阻抗自举电位,这个自举电位与高阻抗线的电位保持相等,使绝缘体两侧没有压

降,也就没有漏电。防护体可作为屏蔽层减少噪声拾取,并具有减少输入线有效电容的附加功能。AD517的管壳单独引到管脚8,使管壳也能接到防护电位上,从而真正消除了封装绝缘材料上的电位漏电路径,为敏感电路提供噪声屏蔽。该电路给出了典型的反相防护连接图,如果管脚8不接防护端,则应将它接地或接电源以减少噪声。在许多仪表测量的场合,会遇到从高电压源测量微弱电流的问题,在该类应用中,很有必要对输入端采取一定的保护。AD517具有不同于其他器件的地方,故障形式是由于电流过大导致器件过热而不是电压击穿,只要在受影响的输入端串联一个电阻即可解决问题。实际应用中,所设计仪器仪表的电路板安装完毕后,通常要用高纯度酒精彻底清洗,然后用消除电离的水漂清,再用氮收干,这样可保持漏电最小,性能最佳。

图2 AD517组成微电流电压转换器

视频运放及其典型应用技术

以AD829为例。它是采用互补双极型(CB)制造工艺的单片视频运算放大器,具有优异的直流特性,最大输入失调电压1mV,输入失调电压漂移0.3μV/℃,输入电压噪声为1.7nV/Hz,输入电流噪声为1.5pA/Hz,共模抑制比和电源电压抑制比均为120dB;具有常规补偿;具有优良的建立时间特性(至0.1%为90ns):反相端驱动50Ω或75Ω同轴线时,AD829在3.58MHz和4.43MHz的相位不均匀性为0.04°,增益不均匀性为0.02%。

图3 视频放大的典型应用

视频放大的典型应用如图3所示,此为同相输入,可以通过改变接到管脚2的两个电阻RF和R1阻值的大小来调节整个电路的增益20lg1+RFR1,也可接成反相输入。管脚7接正电源,管脚4接负电源,应注意采用合适的电源退耦,最好采用多个电容并联的形式(如1μF、0.1μF、0.01μF并联组合),使用±5V 电源时,能获得最低的差分增益和差分相位误差,取得优良的视频性能。当驱动多根电缆时,须在电缆的输出之间加入高频隔离。放大器输出端串入75Ω电阻保证运放输出与传输线的匹配,传输线末端并入75Ω电阻保证负载之间匹配,在增益G = 6dB时,差分增益误差0.05%,相位增益误差0.01°,视频性能优良。注意,为减小信号源内阻与放大器输入电容(约3pF)对电路交流特性的影响,应使信号源内阻小于1kΩ;有时需要在反馈电阻RF两端并联一个小电容(3pF)加以补偿,若采用标准NTSC或PAL 或SECAM制式,且电路增益小于10dB和反馈电阻RF值小于500Ω,则补偿电容可以不要;通常情况下,反馈电阻RF值小于1kΩ以有效减小放大器寄生电容对高频特性的影响。

电压转电流

0~5V/4~20mA电压电流转换典型电路

希望对大家的学习有点儿促进作用!

实际应用时,可以在0~5V输入端并一只10K电阻,可以解决部分网友发生输出不可调整的问题. 零点调整电位器上端至电源间的100K电阻换成51K即可.

简要说明:

为提高抗干扰能力,模拟信号经常采用4~20mA电流信号进行远距离传输。本电路的功能是将0~10V的输入电压信号ui转换成4~20mA的电流信号Io供长距离传输用。

思考题:

1.电路中电位器W1、W2和W3的作用各是什么?怎样相互配合调整才能使输出范围为

4~20mA。

2.图中第2级放大器的增益应如何计算?(难点)

回答:

1,首先说明,按照你提供的参数是不能正常工作的!

2,N1在输入10V时会反相饱和导通。原因是你在抄袭电路时,将R2,W1的阻值搞错了。3,第1级N1是反相衰减是放大器,应该将输入的0~10V电压信号变成负0~1.6V的信号。增益A=-(RF/Rf)Ui

RF=R2+W1=1.5KΩ+200Ω

Rf=R1=10KΩ

此时 A=-(1.6/10)Ui=0.16(0~10V)=0~1.6

4, 第2级N2是反相加法器,在接受前级输入的-0~1.6V同时与零点基准电压W2取来的-4V电压相加后,再与反馈电压VR11(0.4~2V)比较取得平衡,从而达到稳定输出电流的目的。

加法器电路是一个典型的反相加法放大器,输出电压Eo可以有以下公式表示:

Eo=-[Vi1(RF/Rf1)+Vi2(RF/Rf2)]

式中 Eo 输出电压

Vi1 前级来的信号电压(-0~1.6V)

Vi2 系统零点基准调节电压(-4V)

RF 加法器反馈电阻(10KΩ+600Ω)

Rf1 前级信号输入电阻(10KΩ)

Rf2 基准调节电压信号的输入电阻(100KΩ)

由于后一级电路要求,反相加法放大器是一个1:1的加法电路。所以

Eo=-[Vi1(RF/Rf1)+Vi2(RF/Rf2)]

=-[Vi1(10.6/10)+Vi2(10.6/100)]

=-[0~1.6(1~1.06)+4(0.1~0.106)]

=-[0~(1.6~1.696)+(0.4~0.424)]

=-0.4~(2~2.12)V

反馈电压VR11=(4~20mA)100Ω=0.4~2V

A,首先调整W2,使输入信号在0时,输出信号为4mA。最好精确测量W2的调节输出为4V。

B,再输入10V信号,调节W1使输出信号为20mA。

C,再将输入信号降为0,观察输出信号是否回到4mA。如果偏离4mA,可微调W3使输出为4mA。D,重复B,C,直到输入0~10V,输出4~20mA即可。

所以,W1=量程满度电位器;W2=零点调节电位器;W3=校正电位器。

电流转电压

积分电路方法

电压可以看作是电流的积分,利用如图电路有:

为保证精度,选取运放时尽量找输入阻抗大的。该电路常用于PID调节,积分电路成熟且放大倍数和精度较好。但要注意这种电路输出电压和输入电流的相位是相反的。

运放直接搭接的方法(跨阻放大器)

充分利用运放“虚短”和“虚断”的概念,将电流转换为电压信号,如图电路

电流通过电阻,在电阻上产生压降,建立起电压和电流的关系为

这种方法避免了运放输入失调电压和输入偏置电流和失调电流影响带来的积分误差。也避免了电容的漏电流带来的误差。但未获得稳定的高精度放大,对电阻和运放的精度要求较高。

三极管方法

三极管同样具有放大能力,但应用上多采用运放。电路如图

下面以实际的例子叙述整个实现过程。

尝试将一个0~5A信号转换为0~5V信号。最简单的是加一个1欧的电阻,但这样发热功率过大,所以需要采用电流互感器将原先的电流变小。按照一般互感器指标是输入0~10A信号,变比为200:1,即0~5A的信号变为0~25mA。下面采用运放直接搭接的方法实现转换。考虑到相位的问题,对电路作了改进。利用50欧电阻在正端产生的电压与负端相等的条件,并利用运放的放大功能,实现最终要求的。如图。另外,用集成运放OP27为的是得到更高的运算精度;50欧的电阻是前端互感器带负载要求。

小信号放大器选型指南

小信号放大器选型总结 李杨2011/12/30 一、小信号放大器选型的几项重要指标 ⑴、电源电压:根据实际需求选择具有合适的工作电压的放大器。 ⑵、放大器精度:放大器的精度主要与输入偏置电压( V)相关,并分别随温度 os 漂移,电源抑制比(PSRR)以及共模抑制比(CMRR)变化。精密型一般是指具有低输入偏执电压及低输入偏置电压温度漂移的运算放大器。放大小信号需要采用高精密度的运算放大器。 ⑶、增益带宽积(GWB):电压反馈型运算放大器的增益带宽积决定了其在某项 应用中的有效带宽。将增益带宽积除以应用中的实际闭环增益,便可大致估算出实际可用带宽。增益带宽积是恒定的常数。选择大带宽/转换速率(slew rate)的运算放大器,能够实现更低的失真,更卓越的线性度、更佳的增益准确度。 4、电压噪声:放大器产生的噪声将会限制系统的最大动态范围、准确度和分辨率。 地电压噪声能够改善精确度。 5、输出偏置电流:当与源阻抗或反馈阻抗相互作用将产生偏置误差。具有高源阻 抗或高反馈阻抗的应用,通常需要有较低的输入偏置电流。场效应(FET)输入及COMS运算放大器一般都能够提供很低的输入偏置电流。 6、转换速率:放大器的最大变化速率。当驱动大信号至高频时,转换速率是一个 很重要的参数。一个运算放大器的最大可用带宽取决于其转换速率。 二、运算放大器选择需要注意的问题 1、输入信号的幅度大小 为确保因输入信号而产生的错误最小化,微小输入信号需要高精度(例如低偏执电压)的放大器,以确保放大信号输出的电压范围涵盖了所需的放大输出的信号范围 2、放大器周围环境的变化 运算放大器对于温度的变化极为敏感,因此,考虑偏置电压随温度偏移很重要 3、共模电压 一般需要确保运算放大器工作在其共模电压范围内,并保证足够的共模抑制比(CMRR)。共模电压会导致额外的偏置电压。 4、电源电压是否会改变 电源电压的改变会影响到偏置电压,这对使用电池供电的放大器尤为重要。三、集成运放的主要技术指标 集成运放的输入级通常由差分放大电路组成,因此一般具有两个输入端以及一个输出端,还有其他以连接电源电压等的引出端。两个输入端中,一个与输出端为反相关系,另一个为同相关系,分别称为反相输入端和同相输入端。 运算放大器的符号如下图所示。其中反相输入端和同相输入端分别用符号“-”和“+”标明。

常用运算放大器型号及功能

常用运算放大器型号及功能 型号(规格) 功能简介 兼容型号 CA3130 高输入阻抗运算放大器 CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器 MC14573 ICL7650 斩波稳零放大器 LF347 带宽四运算放大器 KA347 LF351 BI-FET 单运算放大器 LF353 BI-FET 双运算放大器 LF356 BI-FET 单运算放大器 LF357 BI-FET 单运算放大器 LF398 采样保持放大器 LF411 BI-FET 单运算放大器 LF412 BI-FET 双运放大器 LM124 低功耗四运算放大器(军用档) LM1458 双运算放大器 LM148 四运算放大器 LM224J 低功耗四运算放大器(工业档) LM2902 四运算放大器 LM2904 双运放大器 LM301 运算放大器 LM308 运算放大器 LM308H 运算放大器(金属封装) LM318 高速运算放大器 LM324 四运算放大器 HA17324,/LM324N LM348 四运算放大器 LM358 通用型双运算放大器 HA17358/LM358P LM380 音频功率放大器 LM386-1 音频放大器 NJM386D,UTC386 LM386-3 音频放大器 LM386-4 音频放大器 LM3886 音频大功率放大器 LM3900 四运算放大器 LM725 高精度运算放大器

229 LM733 带宽运算放大器 LM741 通用型运算放大器 HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器 NE5534 高速低噪声单运算放大器 NE592 视频放大器 OP07-CP 精密运算放大器 OP07-DP 精密运算放大器 TBA820M 小功率音频放大器 TL061 BI-FET 单运算放大器 TL062 BI-FET 双运算放大器 TL064 BI-FET 四运算放大器 TL072 BI-FET 双运算放大器 TL074 BI-FET 四运算放大器 TL081 BI-FET 单运算放大器 TL082 BI-FET 双运算放大器 TL084 BI-FET 四运算放大器

按应用分类的运算放大器选型指南

ADI 公司开发创新能源解决方案已逾十年。我们的高性能放大器产品组合在促进变电站设备中的电能质量监控方面起着重要作用,而且随着再生能源系统的最新发展,它们也有助于实现突破性的解决方案。 能源应用放大器 欲了解有关能源应用的更多信息,请访问:https://www.doczj.com/doc/bd9443900.html,/zh/energy 典型太阳能电池系统图 典型变电站自动化系统图

过程控制和工业自动化应用放大器 40多年来,工业过程控制系统设计者与ADI公司密切合作,以定义、开发、实施针对各种应用进行优化的完整信号链解决方案。我们提供基于业界领先技术和系统性专业技术的精密控制与监测解决方案,使过程控制同时具备可靠性与创新性。 欲了解有关过程控制和工业自动化应用的更多信息,请访问:https://www.doczj.com/doc/bd9443900.html,/zh/processcontrol

仪器仪表和测量应用放大器 ADI公司提供高性能模拟解决方案,用来检测、测量、控制各种传感器。我们的技术支持广泛的创新设备鉴别、测量液体、粉末、固体和气体。领先的放大器产品可帮助客户优化定性和定量仪器的性能。 网络分析仪框图 电子秤框图 欲了解有关仪器仪表和测量应用的更多信息,请访问:https://www.doczj.com/doc/bd9443900.html,/zh/instrumentation

电机和电源控制应用放大器 针对电机和电源控制解决方案,ADI公司提供齐全的产品系列以优化系统级和应用导向设计。ADI公司的放大器产品在电流检测和电压检测应用中具有许多优势。 欲了解有关电机和电源控制应用的更多信息,请访问:https://www.doczj.com/doc/bd9443900.html,/zh/motorcontorl

健器械的未来。 脉搏血氧仪功能框图

集成运放的主要参数和含义

集成运放数据手册中的主要参数和含义 一、直流参数: 1.---输入失调电压 为了是集成运放在零输入时达到零输出,需在其输入端加一个直流补偿电压,这个直流补偿电压的大小即为输入失调电压,两者方向相反。输入失调电压一般是毫伏(mV)数量级。采用双极型三极管作为输入级的运放,其为1-10mV;采用场效应管作为输入级的运放,其大得多;而对于高精度的集成运放,其的值一般很小。 2.---输入失调电压的温度系数 在确定的温度变化范围内,失调电压的变化与温度的变化的比值定义为输入失调电压的温度系数。一般集成运放的输入失调电压的温度系数为10-20;而高精度、低漂

移集成运放的温度系数在1以下。 3.----输入偏置电流 当集成运放的输入电压的输入电压为零,输出电压也为零时,其两个输入端偏置电流的平均值定义为输入偏执电流。两个输入端的偏置电流分别记为和,而表示为 双极型晶体管输入的集成运放,其为10nA-1;场效应管输入的集成运放,其一般小于1nA。 4.—输入失调电流 当集成运放的输入电压威灵,输出电压也为零时,两个输入偏置电流的差值称为输入失调电流,即 一般来说,集成运放的偏置电流越大,其输入失调电流也越大。输入偏置电流和输入失调电流的温度系数,分别用/ 和/来表示。由于输入失调电压和输入失调电流及输入偏置电流均为温度的函数,所以产品手册中均应注明这些参数的测试温度。另外,需要指出的是,上述各参数均与电源电压及集成运放输入端所加的共模电压值有关。手册中的参数一般指在标准电源电压值及零共模输入电压下的测试值。 5.---差模开环直流电压增益 集成运放工作在线性区时,差模电压输入以后,其输出电压变化与差模输入电压变化的比值,称为差模开环电压增益,即 = 差模开环电压增益一般用分贝(dB)为单位,可用下式表示 ( )=20lg()(dB)

实验5 集成运算放大器参数测试

实验五 集成运算放大器参数测试 一、实验目的: 1.通过对集成运算放大器741参数的测试,了解集成运算放大器组件主要参数的定义和表示方法。 2.掌握运算放大器主要参数的测试方法。 二、实验原理: 集成运算放大器是一种使用广泛的线性集成电路器件,和其它电子器件一样,其特性是通过性能参数来表示的。集成电路生产厂家为描述其生产的集成电路器件的特性,通过大量的测试,为各种型号的集成电路制定了性能指标。运算放大器的性能参数可以使用专用的测试仪器进行测试(“运算放大器性能参数测试仪”),也可以根据参数的定义,采用一些简易的方法进行测试。本次实验是学习使用常规仪表,对运算放大器的一些重要参数进行简易测试的方法。 实验中采用的集成运算放大器型号为741,其引脚排列如图5.1所示。它是一种八脚双列直插式器件,其引脚定义如下: ①、⑤调零端; 图 5.1 741引脚 ②反相输入端; ③同相输入端; ④电源负极; ⑥输出端; ⑦电源正极; ⑧空脚。 以下为主要参数的测试方法: 1.输入失调电压: 理想运算放大器,当输入信号为零时其输出也为零。但在真实的集

成电路器件中,由于输入级的差动放大电路总会存在一些不对称的现象(由晶体管组成的差动输入级,不对称的主要原因是两个差放管的U BE 不相等),使得输入为零时,输出不为零。这种输入为零而输出不为零的现象称为“失调”。为讨论方便,人们将由于器件内部的不对称所造成的失调现象,看成是由于外部存在一个误差电压而造成,这个外部的误差电压叫做“输入失调电压”,记作U IO或V OS。 输入失调电压在数值上等于输入为零时的输出电压除以运算放大器的开环电压放大倍数: 式中:U IO — 输入失调电压 U OO — 输入为零时的输出电压值 A od — 运算放大器的开环电压放大倍数 本次实验采用的失调电压测试电路如图5.2所示。闭合开关K1及K2, 使电阻R B短接,测量此时的输出电压U O1即为输出失调电压,则输入失调电压 图5.2 U IO,I IO测试电路 实际测出的U O1可能为正,也可能为负,高质量的运算放大器U IO一般在1mV以下。 测试中应注意: ①要求电阻R1和R2,R3和R F的阻值精确配对。 2.输入失调电流I IO 当输入信号为的零时,运放两个输入端的输入偏置电流之差称为输入失调电流,记为I IO(有的资料中使用符号I OS)。 式中:I B1,I B2分别是运算放大器两个输入端的输入偏置电流。 输入失调电流的大小反映了运放内部差动输入级的两个晶体管的失配度,由于I B1,I B2本身的数值已很小(μA或nA级),因此它们的差值通常不是直接测量的,测试电路如图5.2所示,测试分两步进行:1)闭合开关K1及K2,将两个R B短路。在低输入电阻下,测出输出

运放参数解释

运放带宽相关知识! 一、单位增益带宽GB 单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 二、运放的带宽是表示运放能够处理交流信号的能力(转) 对于小信号,一般用单位增益带宽表示。单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。 对于大信号的带宽,既功率带宽,需要根据转换速度来计算。 对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。 1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。 2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。 3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。 就是Gain Bandwidth=放大倍数*信号频率。 当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。 在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。 也就是在设计电路时要同时满足增益带宽和功率带宽。 运放关于带宽和增益的主要指标以及定义 开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽

如何选择运放

如何选择运放? 您坐下来为您的电路选择合适的运算放大器(op amp) 时,首先要做的便是确定系统通过该放大器进行传输的信号带宽。一旦您确定下来这一点,您便可以开始寻找正确的放大器。来自高速设计专家的告诫是:您应该避免使用相对您的应用而言速度过快的模拟器件。因此,您要尽量选择一种闭环带宽稍高于信号最大频率的放大器。 它听起来好像是一种较好的产品选择方案,但是这种设计方法将可能会给您的应用板带来灾难性的后果。在实验室中,您可能会发现当您将应用最大频率的输入正弦波信号置入系统时,您放大器的输出信号并未穿过希望的全刻度模拟范围。信号增益远低于预期。您放大器的转换速率(slew rate ——SR)等级超出所需。另外,您并没有驱动放大器输出至电源轨中。哪里出错了呢? 不要再反复检查您的电阻值了!在增益单元中设计某个放大器时,为这项工作选择备选放大器时您需要了解一些事情。例如,您的信号最大带宽(SBW) 是多少?放大器闭环噪声增益(NG)是多少,以及考虑中的放大器的增益带宽产品(GBWP,我认为应该是增益带宽积GBW更合适) 是什么?另外,您想要容许多少增益误差?闭环噪声增益就是放大器增益,就像一个小电压源与运算放大器同相输入串联。 让我们通过例子来说明这个问题。例如,以1 MHz信号带宽(SBW) 开始,图1 所示放大器电路噪声增益(NG = 1 + 9R/R)为10V/V。图1还显示了具有相对于该电路刚好足够带宽的放大器的开

环频率响应;或者您认为合适的开环频率响应。放大器GBWP 为16 MHz。 由图1 所示可知,像它这样的运算放大器可以支持1 MHz 频率10 V/V (20 dB) 的增益,但我们需要进一步研究。SBW 开环增益曲线的增益为: 在我们的例子中,1 MHz频率下放大器的开环增益(AVOL-SBW) 等于16 V/V。但是,没什么好抱怨的。该电路的闭环增益误差等于NG/(AOL-SBW + NG)。在我们的例子中,1 MHz 闭环增益误差等于0.385,即38.5% 的增益误差! 就该电路而言,如果您想要容许放大器0.05 的增益误差,同时您知道因产品和温度的不同,放大器的GBWP 会改变30% 最大值,则您需要一个具有247 MHz GBWP 的放大器。产品选择部分的指导公式如下:

运放的主要参数

集成运放的参数较多,其中主要参数分为直流指标和交流指标。其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏臵电流、输入失调电流、输入偏臵电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰最大差模输入电压。 主要交流指标有开环带宽、单位增益带宽、转换速率宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。 1、输入失调电压VIO(Input Offset Voltage)输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。 输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 2、输入失调电压的温漂αVIO(Input Offset Voltage Drift) 输入失调电压的温度漂移(又叫温度系数)定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 3、输入偏臵电流IB(Input Bias Current) 输入偏臵电流定义为当运放的输出直流电压为零时,其两输入端的偏臵电流平均值。输入偏臵电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏臵电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏臵电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏臵电流一般低于1nA。对于双极性运放,该值离散性很大,但几乎不受温度影响;而对于MOS型运放,该值是栅极漏电流,值很小,但受温度影响较大。 4、输入失调电流(Input Offset Current)输入失调电流定义为当运放的输出直流电压为零时,其两输入端偏臵电流的差值。输入失调电流同样反映了运放内部的电路对称性,对称性越好,输入失调电流越小。输入失调电流是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电流大约是输入偏臵电流的百分之一到十分之一。输入失调电流对于小信号精密放大或是直流放大有重要影响,特别是运放外部采用较大的电阻(例如10k或更大时),输入失调电流对精度的影响可能超过输入失调电压对精度的影响。输入失调电流越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 5、输入阻抗 (1)差模输入阻抗差模输入阻抗定义为,运放工作在线性区时,两输入端的电压变化量与对应的输入端电流变化量的比值。差模输入阻抗包括输入电阻和输入电容,在低频时仅指输入电阻。 (2)共模输入阻抗共模输入阻抗定义为,运放工作在输入信号时(即运放两输入端输入同一个信号),共模输入电压的变化量与对应的输入电流变化量之比。在低频情况下,它表现为共模电阻。 6、电压增益 (1)开环电压增益(Open-Loop Gain)在不具负反馈情况下(开环路状况下),运算放大器的放大倍数称为开环增益,记作AVOL,有的datasheet上写成:Large Signal Voltage Gain。AVOL 的理想值为无限大,一般约为数千倍至数万倍,其表示法有使用dB及V/mV等。 (2)闭环电压增益(Closed-Loop Gain顾名思义,就是在有反馈的情况下,运算放大器的放大倍数、

(完整版)TI常用运放芯片型号

CA3130 高输入阻抗运算放大器Intersil[DA TA] CA3140 高输入阻抗运算放大器 CD4573 四可编程运算放大器MC14573 ICL7650 斩波稳零放大器 LF347(NS[DATA])带宽四运算放大器KA347 LF351 BI-FET单运算放大器NS[DA TA] LF353 BI-FET双运算放大器NS[DA TA] LF356 BI-FET单运算放大器NS[DA TA] LF357 BI-FET单运算放大器NS[DA TA] LF398 采样保持放大器NS[DATA] LF411 BI-FET单运算放大器NS[DATA] LF412 BI-FET双运放大器NS[DA TA] LM124 低功耗四运算放大器( 军用档 ) NS[DATA]/TI[DATA] LM1458 双运算放大器NS[DATA] LM148 四运算放大器NS[DATA] LM224J 低功耗四运算放大器(工业档 ) NS[DATA]/TI[DA TA] LM2902 四运算放大器NS[DATA]/TI[DATA] LM2904 双运放大器NS[DATA]/TI[DA TA] LM301 运算放大器 NS[DATA] LM308 运算放大器 NS[DATA] LM308H运算放大器(金属封装)NS[DATA] LM318 高速运算放大器NS[DATA] LM324(NS[DATA]) 四运算放大器HA17324,/LM324N(TI) LM348 四运算放大器NS[DATA] LM358 NS[DATA]通用型双运算放大器HA17358/LM358P(TI) LM380 音频功率放大器NS[DATA] LM386-1 NS[DATA]音频放大器NJM386D,UTC386 LM386-3 音频放大器NS[DATA] LM386-4 音频放大器NS[DATA] LM3886 音频大功率放大器NS[DATA] LM3900 四运算放大器 LM725 高精度运算放大器NS[DATA] LM733 带宽运算放大器 LM741 NS[DATA]通用型运算放大器HA17741 MC34119 小功率音频放大器 NE5532 高速低噪声双运算放大器TI[DATA] NE5534 高速低噪声单运算放大器TI[DATA] NE592 视频放大器 OP07-CP 精密运算放大器TI[DA TA] OP07-DP 精密运算放大器TI[DATA] TBA820M小功率音频放大器ST[DATA] TL061 BI-FET单运算放大器 TI[DATA] TL062 BI-FET双运算放大器TI[DATA] TL064 BI-FET四运算放大器TI[DATA]

运放关键参数及选型原则

运放参数解释及常用运放选型 集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。本文以NE5532为例,分别对各指标作简单解释。下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。 极限参数 主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极限参数如下: 直流指标 运放主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。NE5532的直流指标如下:

输入失调电压Vos 输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV 之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电压的温度漂移(简称输入失调电压温漂)ΔVos/ΔT 输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 输入偏置电流Ios 输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。 Input bias current(偏置电流)是运放输入端的固有特性,是使输出电压为零(或规定值)时,流入两输入端电流的平均值。偏置电流bias current就是第一级放大器输入晶体管的基极直流电流。这个电流保证放大器工作在线性范围, 为放大器提供直流工作点。 输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

集成运放的主要参数以及测试方法

集成运放的性能主要参数及国标测试方法 集成运放的性能可用一些参数来表示。 集成运放的主要参数: 1.开环特性参数 (1)开环电压放大倍数Ao。在没有外接反馈电路、输出端开路、在输入端加一个低频小信号电压时,所测出输出电压复振幅与差动输入电压复振幅之比值,称为开环电压放大倍数。Ao越高越稳定,所构成运算放大电路的运算精度也越高。 (2)差分输入电阻Ri。差分输入电阻Ri是运算放大器的主要技术指标之一。它是指:开环运算放大器在室温下,加在它两个输入端之间的差模输入电压变化量△V i与由它所引起的差模输入电流变化量△I i之比。一般为10k~3M,高的可达1000M以上。在大多数情况下,总希望集成运放的开环输入电阻大一些好。 (3)输出电阻Ro。在没有外加反馈的情况下,集成运放在室温下其输出电压变化与输出电流变化之比。它实际上就是开环状态下集成运放输出级的输出电阻,其大小反映了放大器带负载的能力,Ro通常越小越好,典型值一般在几十到几百欧。 (4)共模输入电阻Ric。开环状态下,两差分输入端分别对地端呈现的等效电阻,称为共模输入电阻。 (5)开环频率特性。开环频率特性是指:在开环状态下,输出电压下降3dB所对应的通频带宽,也称为开环-3dB带宽。 2.输入失调特性 由于运算放大器输入回路的不对称性,将产生一定的输入误差信号,从而限制里运算放大器的信号灵敏度。通常用以下参数表示。 (1)输入失调电压Vos。在室温及标称电源电压下,当输入电压为零时,集成运放的输出电位Vo0折合到输入端的数值,即: Vos=Vo0/Ao 失调电压的大小反映了差动输入级元件的失配程度。当集成运放的输入端外接电阻比较小时。失调电压及其漂移是引起运算误差的主要原因之一。Vos一般在mV级,显然它越小越好。 (2)输入失调电流Ios。在常温下,当输入信号为零时,放大器两个输入端的基极偏置电流之差称为输入失调电流。即: Ios=Ib- — Ib+ 式中Ib-、Ib+为放大器内两个输入端晶体管的基极电流。Ios一般在零点几微安到零点零几微安数量级,其值越小越好。失调电流的大小反映了差动输入级两个晶体管B值的失配程度,当集成运放的输入端外接电阻比较大时,失调电流及其漂移将是运算误差的主要原因。 (3)输入失调电流温漂dIos。温度波动对运算放大器的参数是有影响的。如温度变化时,不仅能使集成运放两输入晶体管的基极偏置电流Ib-、Ib+发生变化,而且两者的变化率也不相同。也就是输入失调电流Ios将随温度而变化,不能保持为常数。一般常用的集成运放的dIos指标如下: ●通用I型低增益运放。在+25℃~+85℃范围约为5~20nA/℃,-40℃~+25℃范围约为 20~50nA/℃。 ●通用Ⅱ型中增益运放。dIos约为5~20nA/℃。 ●低漂移运放。dIos约为100PA/℃ (4)输入失调电压温漂dVos。在规定的工作温度范围内,Vos随温度的平均变化率,

运放分类及选型

运放分类及选型 对于较大音频、视频等交流信号,选SR (转换速率)大的运放比较合适。 对于处理微弱的直流信号的电路,选用精度比较高的运放比较合适(即失调电流,失调电压及温漂均比较小) 运算放大器大体上可以分为如下几类: 1、 通用型运放 2、 高阻型运放 3、 低温漂型运放 4、 高速型运放 5、 低功耗型运放 6、 高压大功率型运放 1、 通用型运放 其性能指标能适合于一般性(低频以及信号变化缓慢)使用,例如741A μ,LM358(双运放),LM324及场效应管为输入级的LF356. 2、 高阻型运放 这类运放的特点是差模输入阻抗非常高,输入偏置电流非常小。实现这些指标的主要措施是利用场效应管的高输入阻抗的特点,但这类运放的输入失调电压较大。 这类运放有LF356、LF355、LF347、CA3130、CA3140等 3、 低温漂型运放 在精密仪器、弱信号检测等自动控制仪表中,希望运放的失调电压要小,且不随温度的变化而变化。底温漂型运放就是为此设计的。 目前常用的低温漂型运放有OP07、OP27、OP37、AD508及MOSFET 组成的斩波稳零型低温漂移器件ICL7650等。 4、 高速型运放 在快速A/D 及D/A 以及在视频放大器中,要求运放的转换速率SR 一定要高,单位增益带宽BWG 一定要足够大。高速型运放的主要特点是具有高的转换速率和宽的频率响应。 常见的运放有LM318、175A μ等。其SR=50~70V/ms 5、 低功耗型运放 由于便携式仪器应用范围的扩大,必须使用低电源电压供电、低功耗的运放。 常用的低功耗运放有TL-022C ,TL-160C 等。 6、 高压大功率型运放 运放的输出电压主要受供电电源的限制。在普通运放中,输出的电压最大值一般仅有几十伏,输出电流仅几十毫安,若要提高多输出电压或输出电流,运放外部必须要加辅助电路。 高压大功率运放外部不需要附加任何电路,即可输出高电压和大电流。D41运放的电源电压可达V 150±,791A μ运放的输出电流可达1A 。 Not e1:精密运放是指漂移和噪声非常低、增益和共模抑制比非常高的运放。这类运放的温度漂移一般低于C V ? /1μ Note 2:高输入阻抗运放是指采用结型场效应管或MOS 管做的输入级集成运放。它的一个附带特性是转换速度比较高。高输入阻抗运放应用十分广泛,如采样-保持电路、积分器、对数放大器、测量放大器、带通滤波器等。

常用芯片型号大全

常用芯片型号大全 4N35/4N36/4N37 "光电耦合器" AD7520/AD7521/AD7530/AD7521 "D/A转换器" AD7541 12位D/A转换器 ADC0802/ADC0803/ADC0804 "8位A/D转换器" ADC0808/ADC0809 "8位A/D转换器" ADC0831/ADC0832/ADC0834/ADC0838 "8位A/D转换器" CA3080/CA3080A OTA跨导运算放大器 CA3140/CA3140A "BiMOS运算放大器" DAC0830/DAC0832 "8位D/A转换器" ICL7106,ICL7107 "3位半A/D转换器" ICL7116,ICL7117 "3位半A/D转换器" ICL7650 "载波稳零运算放大器" ICL7660/MAX1044 "CMOS电源电压变换器" ICL8038 "单片函数发生器" ICM7216 "10MHz通用计数器" ICM7226 "带BCD输出10MHz通用计数器" ICM7555/7555 CMOS单/双通用定时器 ISO2-CMOS MT8880C DTMF收发器 LF351 "JFET输入运算放大器" LF353 "JFET输入宽带高速双运算放大器" LM117/LM317A/LM317 "三端可调电源" LM124/LM124/LM324 "低功耗四运算放大器" LM137/LM337 "三端可调负电压调整器" LM139/LM239/LM339 "低功耗四电压比较器"

LM158/LM258/LM358 "低功耗双运算放大器" LM193/LM293/LM393 "低功耗双电压比较器" LM201/LM301 通用运算放大器 LM231/LM331 "精密电压—频率转换器" LM285/LM385 微功耗基准电压二极管 LM308A "精密运算放大器" LM386 "低压音频小功率放大器" LM399 "带温度稳定器精密电压基准电路" LM431 "可调电压基准电路" LM567/LM567C "锁相环音频译码器" LM741 "运算放大器" LM831 "双低噪声音频功率放大器" LM833 "双低噪声音频放大器" LM8365 "双定时LED电子钟电路" MAX038 0.1Hz-20MHz单片函数发生器 MAX232 "5V电源多通道RS232驱动器/接收器" MC1403 "2.5V精密电压基准电路" MC1404 5.0v/6.25v/10v基准电压 MC1413/MC1416 "七路达林顿驱动器" MC145026/MC145027/MC145028 "编码器/译码器" MC145403-5/8 "RS232驱动器/接收器" MC145406 "RS232驱动器/接收器"

运放参数说明(加选型和例子)

1、输入失调电压(Input Offset Voltage) V OS 若将运放的两个输入端接地,理想运放输出为零,但实际运放输出不为零。此时,用输出电压除以增益得到的等效输入电压称为输入失调电压。 其值为数mV,该值越小越好,较大时增益受到限制。 输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在 1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 本文来自: https://www.doczj.com/doc/bd9443900.html, 原文网址: https://www.doczj.com/doc/bd9443900.html,/info/analog/3366_2.html 2、输入失调电压的温漂(Input Offset Voltage Drift),又叫温度系数 TC V OS 一般为数uV/.C 输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 本文来自: https://www.doczj.com/doc/bd9443900.html, 原文网址: https://www.doczj.com/doc/bd9443900.html,/info/analog/3366_2.html 3、输入偏置电流(Input Bias Current) I BIAS 运放两输入端流进或流出直流电流的平均值。 对于双极型运放,该值离散性较大,但却几乎不受温度影响;而对于MOS型运放,该值是栅极漏电流,值很小,但受温度影响较大。 输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

运放选型指南

小信号放大器选型指南 小信号放大器选型的几项重要指标 ⑴、电源电压:根据实际需求选择具有合适的工作电压的放大器。 ⑵、放大器精度:放大器的精度主要与输入偏置电压(osV)相关,并分别随温度漂移,电源抑制比(PSRR)以及共模抑制比(CMRR)变化。精密型一般是指具有低输入偏执电压及低输入偏置电压温度漂移的运算放大器。放大小信号需要采用高精密度的运算放大器。⑶、增益带宽积(GWB):电压反馈型运算放大器的增益带宽积决定了其在某项应用中的有效带宽。将增益带宽积除以应用中的实际闭环增益,便可大致估算出实际可用带宽。增益带宽积是恒定的常数。选择大带宽/转换速率(slew rate)的运算放大器,能够实现更低的失真,更卓越的线性度、更佳的增益准确度。 4、电压噪声:放大器产生的噪声将会限制系统的最大动态范围、准确度和分辨率。地电压噪声能够改善精确度。 5、输出偏置电流:当与源阻抗或反馈阻抗相互作用将产生偏置误差。具有高源阻抗或高反馈阻抗的应用,通常需要有较低的输入偏置电流。场效应(FET)输入及COMS运算放大器一般都能够提供很低的输入偏置电流。 6、转换速率:放大器的最大变化速率。当驱动大信号至高频时,转换速率是一个很重要的参数。一个运算放大器的最大可用带宽取决于其转换速率。 二、运算放大器选择需要注意的问题 1、输入信号的幅度大小 为确保因输入信号而产生的错误最小化,微小输入信号需要高精度(例如低偏执电压)的放大器,以确保放大信号输出的电压范围涵盖了所需的放大输出的信号范围 2、放大器周围环境的变化 运算放大器对于温度的变化极为敏感,因此,考虑偏置电压随温度偏移很重要 3、共模电压一般需要确保运算放大器工作在其共模电压范围内,并保证足够的共模抑制比(CMRR)。共模电压会导致额外的偏置电压。 4、电源电压是否会改变 电源电压的改变会影响到偏置电压,这对使用电池供电的放大器尤为重要。 三、集成运放的主要技术指标 集成运放的输入级通常由差分放大电路组成,因此一般具有两个输入端以及一个输出端,还有其他以连接电源电压等的引出端。两个输入端中,一个与输出端为反相关系,另一个为同相关系,分别称为反相输入端和同相输入端。 运算放大器的符号如下图所示。其中反相输入端和同相输入端分别用符号“-”和“+”标明 为了描述集成运放的性能,提出了许多项技术指标,现将常用的几项分别介绍如下: 一、开环差模电压增益Aod Aod是指运放在无外加反馈情况下的直流差模增益,一般用对数表示,单位为分贝。Aod是决定运放精度的重要因素,理想情况下希望Aod为无穷大。实际集成运放一般Aod为100dB 左右,高质量的集成运Aod可达140dB以上。 二、输入失调电压U10 它的定义是,为了使输出电压为零,在输入端所需要加的补偿电压。其数值表征了输入级差分对管UBE(或场效应管UGS)失配的程度,在一定程度上了反映温漂的大小。一般运放的U10值为1~10mV,高质量的在1mV以下。 三、输入失调电压温漂ΑU10

集成运放的主要技术参数

集成运放的主要技术参数 评价集成运放好坏的参数很多,它们是描述一个实际运放与理想放大器件接近程度的数据,这里仅介绍其中主要的几种。 一、输入参数 1.输入失调电压U O及其温漂 在室温及标准电源电压下,为了使静态U O = 0,而在输入端需要加的补偿电压值称为U OS,它反映电路中的对称程度和电位配置情况。典型值为2mV 。 是在指定温度范围内UOS随温度变化的平均变化率。是运放电压漂移特性的量度。单位μV/℃,一般为0.3~30μV/℃。2.输入偏置电流I B I B是在室温及标准电源电压下,以理想恒流源驱动两输入端,使U O=0时的两个输入端电流的平均值,即 I B=(I B1+I B2 )/2。通常,I B为0.1~10μA 。 3.输入失调电流I OS及其温漂 I OS是指在U O = 0时,两输入端静态电流之差,即I OS=I B1 - I B2,一般为0.5~5μA。 是在指定温度变化范围内,I OS随温度的变化率。其值为3pA/℃~50nA/℃。 二、差模特性参数 1.开环差模电压放大倍数A od及其频率特性。 A od是指在标准电源及规定负载凡下的开环差模电压放大倍数。|A d(jω)| 下降到直流差模电压放大倍数A od的时所对应的频率为f H。 2.最大差模输入电压U idm U idm是指两个输入端之间所能承受的最大电压差值。超过该值,输入级某一侧将出现PN结反向击穿现象。 3.差模输入电阻r id r id是在室温下,开环运放两输入端之间的差模输入信号的动态电阻。双极型管输入级r id在几十kΩ~几MΩ;场效应管差动输入级r id可达108Ω以上。 三、共模特性参数 1.最大共模输入电压U icm U icm是共模输入电压范围。是在标准电压下,两输入端相同电位时的最大输入电压值。一旦超过U icm,则CMRR将明显下降。2.共模输入电阻r ic r ic是指室温下,每个输入端到地的共模动态电阻。 3.共模抑制比CMRR C MRR定义为运放开环差模电压放大倍数与其共模电压放大倍数之比,即 或

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

相关主题
文本预览
相关文档 最新文档