当前位置:文档之家› 系统生物学-整合各种组学的信息和方法

系统生物学-整合各种组学的信息和方法

系统生物学-整合各种组学的信息和方法
系统生物学-整合各种组学的信息和方法

系统生物学:整合各种组学的信息和方法

姓名:王玉锋学号:061023050 20世纪生物学经历了由宏观到微观的发展过程,由形态、表型的描述逐步分解、细化到生物体的各种分子及其功能的研究。70年代出现的基因工程技术极大地加速和扩展了分子生物学的发展;90年代启动的人类基因组计划是生命科学史上第一个大科学工程,开始了对生物全面、系统研究的探索;2003年已完成了人和各种模式生物体基因组的测序,第一次揭示了人类的生命密码。人类基因组计划和随后发展的各种组学技术把生物学带入了系统科学的时代。

系统生物学是在细胞、组织、器官和生物体整体水平研究结构和功能各异的各种分子及其相互作用,并通过计算生物学来定量描述和预测生物功能、表型和行为。也就是说,系统生物学是以整体性研究为特征的一种大科学。系统生物学将在基因组序列的基础上完成由生命密码到生命过程的研究,这是一个逐步整合的过程,由生物体内各种分子的鉴别及其相互作用的研究到途径、网络、模块,最终完成整个生命活动的路线图。

借助于基因组和转录组的序列、功能基因组和蛋白质组的方法,可以绘制特定有机体的转录组图、蛋白质组图、相互作用图谱、表型组图及所有转录物和蛋白的定位图。这种整合的组学信息可以帮助我们消除单种组学研究方法中带来的假阳性和假阴性,给出基因产物及其相互作用和关系的更好的功能性注释,有利于相关的生物性假设的生成。基于这些整合数据的计算学的方法可以模拟生物过程的进程。系统生物学可以被看作是个种组学方法的整合、数据的整合、生物的系统化和模型化。

系统生物学的特点:

和以往系统科学研究复杂系统相比,系统生物学的研究将更为复杂和困难。非生物的

复杂系统一般由相对简单的元件组合产生复杂的功能和行为,而生物体是由大量结构和功能不同的元件组成的复杂系统,并由这些元件选择性和非线性的相互作用产生复杂的功能和行为。因此,我们要建立多层次的组学技术平台,研究和鉴别生物体内所有分子,研究其功能和相互作用,在各种技术平台产生的大量数据的基础上,通过计算生物学用数学语言定量描述和预测生物学功能和生物体表型和行为。

系统生物学也将使生物学研究发生结构性的变化。长期以来,生物学研究是在规模较小的实验室进行的,系统生物学研究将由各种组学组成的大科学工程和小型生物学实验室有机结合实施的。系统生物学研究也将在更大范围和更高层次进行学科交叉和国际合作,如人类基因组计划、人类单体型图谱计划、人类表观基因组学计划等。

系统生物学的技术平台:

系统生物学的主要技术平台为基因组学、转录组学、蛋白质组学、代谢组学、相互作用组学和表型组学等。基因组学、转录组学、蛋白质组学、代谢组学分别在DNA、mRNA、蛋白质和代谢产物水平检测和鉴别各种分子并研究其功能。相互作用组学系统研究各种分子间的相互作用,发现和鉴别分子机器、途径和网络,构建类似集成电路的生物学模块,并在研究模块的相互作用基础上绘制生物体的相互作用图谱。表型组学是生物体基因型和表型的桥梁,目前还仅在细胞水平开展表型组学研究。

计算生物学可分为知识发现和模拟分析两部分。知识发现也称为数据开采,是从系统生物学各个组学实验平台产生的大量数据和信息中发现隐含在里面的规律并形成假设。模拟分析是用计算机验证所形成的假设,并对体内、外的生物学实验进行预测,最终形成可用于各种生物学研究和预测的虚拟系统。

系统生物学的工作流程:

系统生物学的基本工作流程有这样四个阶段。首先是对选定的某一生物系统的所有组分进行了解和确定,描绘出该系统的结构,包括基因相互作用网络和代谢途径,以及细胞内和细胞间的作用机理,以此构造出一个初步的系统模型。第二步是系统地改变被研究对象的内部组成成分(如基因突变)或外部生长条件,然后观测在这些情况下系统组分或结构所发生的相应变化,包括基因表达、蛋白质表达和相互作用、代谢途径等的变化,并把得到的有关信息进行整合。第三步是把通过实验得到的数据与根据模型预测的情况进行比较,并对初始模型进行修订。第四阶段是根据修正后的模型的预测或假设,设定和实施新的改变系统状态的实验,重复第二步和第三步,不断地通过实验数据对模型进行修订和精练。系统生物学的目标就是要得到一个理想的模型,使其理论预测能够反映出生物系统的真实性。

1. 系统生物学的灵魂——整合

首先,它要把系统内不同性质的构成要素(基因、mRNA、蛋白质、生物小分子等)整合在一起进行研究。系统生物学研究所的第一篇研究论文,就是整合酵母的基因组分析和蛋白质组分析,研究酵母的代谢网络。由于不同生物分子的研究难度不一样,技术发展程度不一样,目前对它们的研究水平有较大的差距。例如,基因组和基因表达方面的研究

已经比较完善,而蛋白质研究就较为困难,至于涉及生物小分子的代谢组分的研究就更不成熟。

其次,对于多细胞生物而言,系统生物学要实现从基因到细胞、到组织、到个体的各个层次的整合。《科学》周刊系统生物学专集中一篇题为“心脏的模型化——从基因到细胞、到整个器官”的论文,很好地体现了这种整合性。我们知道,系统科学的核心思想是:“整体大于部分之和”;系统特性是不同组成部分、不同层次间相互作用而“涌现”的新性质。如何通过研究和整合去发现和理解涌现的系统性质,是系统生物学面临的一个带根本性的挑战。

整合性的第三层含义是指研究思路和方法的整合。经典的分子生物学研究是一种垂直型的研究,即采用多种手段研究个别的基因和蛋白质。首先是在DNA水平上寻找特定的基因,然后通过基因突变、基因剔除等手段研究基因的功能;在基因研究的基础上,研究蛋白质的空间结构,蛋白质的修饰以及蛋白质间的相互作用等等。基因组学、蛋白质组学和其他各种“组学”则是水平型研究,即以单一的手段同时研究成千上万个基因或蛋白质。而系统生物学的特点,则是要把水平型研究和垂直型研究整合起来,成为一种“三维”的研究。此外,系统生物学还是典型的多学科交叉研究,它需要生命科学、信息科学、数学、计算机科学等各种学科的共同参与。

2. 系统生物学的基础——信息

分子生物学时代,研究者们把生命视为一架精密的机器,由基因和蛋白质根据物理、化学的规律来运转。在后基因组时代,科学家把生命视为信息的载体,一切特性都可以从信息的流动中得到实现。

首先,生物学研究的核心——基因组,是数字化的(digital)。因此生物学可以被完全破译。

其次,生命的数字化核心表现为两大类型的信息,第一类信息是指编码蛋白质的基因,第二类信息是指控制基因行为的调控网络。

再次,生物信息是有等级次序的,而且沿着不同的层次流动。一般说来,生物信息以这样的方向进行流动:DNA→mRNA→蛋白质→蛋白质相互作用网络→细胞→器官→个体→群体。这里要注意的是,每个层次信息都对理解生命系统的运行提供有用的视角。因此,系统生物学的重要任务就是要尽可能地获得每个层次的信息并将它们进行整合。

根据系统论的观点,构成系统的关键不是其组成的物质,而是组成部分的相互作用或部分之间的关系。这些相互作用或者关系,从本质上说就是信息。换一个角度来说,生命是远离平衡态的开放系统,为了维持其有序性,生命系统必须不断地与外部环境交换能量,以抵消其熵增过程。生命系统是一个信息流的过程,系统生物学就是要研究并揭示这种信息的运行规律。

3. 系统生物学的钥匙——干涉(perturbation)

系统生物学一方面要了解生物系统的结构组成,另一方面是要揭示系统的行为方式。相比之下,后一个任务更为重要。系统生物学研究的并非一种静态的结构,而是要在人为控制的状态下,揭示出特定的生命系统在不同的条件下和不同的时间里具有什么样的动力

学特征。

凡是实验科学都有这样一种特征:人为地设定某种或某些条件去作用于被实验的对象,从而达到实验的目的。这种对实验对象的人为影响就是干涉。传统生物学采用非干涉方法如形态观察或分类研究生物体。20世纪形成的分子生物学等实验生物学的特点就是,科学家可以在实验室内利用各种手段干涉生物学材料,如通过诱导基因突变或修饰蛋白质,由此研究其性质和功能。系统生物学同样也是一门实验性科学,也离不开干涉这一重要的工具。

系统生物学中干涉的特点有:

首先,干涉应该是有系统性的。例如人为诱导基因突变,过去大多是随机的;而在进行系统生物学研究时,应该采用的是定向的突变技术。

其次,系统生物学需要高通量的干涉能力,如高通量的遗传变异。现有技术已经能做到在短时间内,把酵母的全部6000多个基因逐一进行突变。对于较为复杂的多细胞生物,可以通过RNA干涉新技术来实现大规模的基因定向突变。

需要注意的是,以测定基因组全序列或全部蛋白质组成的基因组研究或蛋白质组研究等“规模型大科学”,并不属于经典的实验科学。这类工作中并不需要干涉,其目标只是把系统的全部元素测定清楚,以便得到一个含有所有信息的数据库。胡德把这种类型的研究称为“发现的科学”,而把上述依赖于干涉的实验科学称为“假设驱动的科学”,因为选择干涉就是在做出假设。系统生物学不同于一般的实验生物学就在于,它既需要“发现的科学”,也需要“假设驱动的科学”。首先要选择一种条件(干涉),然后利用“发现的科学”的方法,对系统在该条件下的所有元素进行测定和分析;在此基础上做出新的假设,然后再利用“发现的科学”研究手段进行新研究。这两种不同研究策略和方法的互动和整合,是系统生物学成功的保证。

在注重这两类研究手段的同时,不应该忽略系统生物学的另一个特点——对理论的依赖和建立模型的需求。建模过程贯穿在系统生物学研究的每一个阶段。离开了数学和计算机科学,就不会有系统生物学。

系统生物学研究在破译生命密码和应用方面都取得了较大进展。啤酒酵母是人类基因组计划中的一种模式生物,模式生物的系统生物学研究将推动更复杂系统的研究,加速由生命密码到生命的研究进程。

系统生物学使生命科学由描述式的科学转变为定量描述和预测的科学,已在预测医学、预防医学和个性化医学中得到应用,如用代谢组学的生物指纹预测冠心病人的危险程度和肿瘤的诊断和治疗过程的监控;用基因多态性图谱预测病人对药物的应答,包括毒副作用和疗效。表型组学的细胞芯片和代谢组学的生物指纹将广泛用于新药的发现和开发,使新药的发现过程由高通量逐步发展为高内涵,以降低居高不下的新药研发投入。美国能源部2002年启动了21世纪系统生物学技术平台,以推动环境生物技术和能源生物技术产业的发展。系统生物学将不仅推动生命科学和生物技术的发展,而且对整个国民经济、社会和人类本身产生重大和深远的影响。

生物信息学课后题及答案-推荐下载

生物信息学课后习题及答案 (由10级生技一、二班课代表整理) 一、绪论 1.你认为,什么是生物信息学? 采用信息科学技术,借助数学、生物学的理论、方法,对各种生物信息(包括核酸、蛋 白质等)的收集、加工、储存、分析、解释的一门学科。2.你认为生物信息学有什么用?对你的生活、研究有影响吗?(1)主要用于: 在基因组分析方面:生物序列相似性比较及其数据库搜索、基因预测、基因组进化和分 子进化、蛋白质结构预测等 在医药方面:新药物设计、基因芯片疾病快速诊断、流行病学研究:SARS 、人类基因组计划、基因组计划:基因芯片。 (2)指导研究和实验方案,减少操作性实验的量;验证实验结果;为实验结果提供更多的支持数据等材料。 3.人类基因组计划与生物信息学有什么关系? 人类基因组计划的实施,促进了测序技术的迅猛发展,从而使实验数据和可利用信息急剧增加,信息的管理和分析成为基因组计划的一项重要的工作 。而这些数据信息的管理、分析、解释和使用促使了生物信息学的产生和迅速发展。 4简述人类基因组研究计划的历程。 通过国际合作,用15年时间(1990-2005)至少投入30亿美元,构建详细的人类基因组遗传图和物理图,确定人类DNA 的全部核苷酸序列,定位约10万基因,并对其他生物进行类似研究。 1990,人类基因组计划正式启动。 1996,完成人类基因组计划的遗传作图,启动模式生物基因组计划。 1998完成人类基因组计划的物理作图,开始人类基因组的大规模测序。Celera 公司加入,与公共领域竞争启动水稻基因组计划。 1999,第五届国际公共领域人类基因组测序会议,加快测序速度。 2000,Celera 公司宣布完成果蝇基因组测序,国际公共领域宣布完成第一个植物基因组——拟南芥全基因组的测序工作。 2001,人类基因组“中国卷”的绘制工作宣告完成。 2003,中、美、日、德、法、英等6国科学家宣布人类基因组序列图绘制成功,人类基因组计划的.目标全部实现。2004,人类基因组完成图公布。 2.我国自主知识产权的主要基因组测序计划有哪些?水稻(2002),家鸡(2004),家蚕(2007),家猪(2012),大熊猫(2010) 2.第一章 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

基因组学与生物信息学教案

《基因组学与生物信息学》教案 授课专业:生物学大类各专业 课程名称:基因组学与生物信息学 主讲教师:夏庆友程道军赵萍徐汉福

课程说明 一、课程名称:基因组学与生物信息学 二、总课时数:36学时(理论27学时实验9学时) 三、先修课程:遗传学、分子生物学、基因工程 四、使用教材: 杨金水. 基因组学. 北京:高等教育出版社,2002. 张成岗. 贺福初, 生物信息学方法与实践. 北京:科学出版社,2002. 五、教学参考书: T.A.布朗著,袁建刚译著,基因组(2rd版),北京:科学出版社,2006. 沈桂芳,丁仁瑞,走向后基因组时代的分子生物学,杭州:浙江教育出版社,2005. 罗静初译,生物信息学概论,北京:北京大学出版社,2002. 六、考核方式:考查 七、教案编写说明: 教案又称课时授课计划,是任课教师的教学实施方案。任课教师应遵循专业教学计划制订的培养目标,以教学大纲为依据,在熟悉教材、了解学生的基础上,结合教学实践经验,提前编写设计好每门课程每个章、节或主题的全部教学活动。教案可以按每堂课(指同一主题连续1~2节课)设计编写。教案编写说明如下: 1、编号:按施教的顺序标明序号。 2、教学课型表示所授课程的类型,请在相应课型栏内选择打“√”。 3、题目:标明章、节或主题。 4、教学内容:是授课的核心。将授课的内容按逻辑层次,有序设计编排,必要时标以“*”、“#”“?” 符号分别表示重点、难点或疑点。 5、教学方式既教学方法,如讲授、讨论、示教、指导等。教学手段指教科书、板书、多媒体、模型、 标本、挂图、音像等教学工具。 6、讨论、思考题和作业:提出若干问题以供讨论,或作为课后复习时思考,亦可要求学生作为作业 来完成,以供考核之用。 7、参考书目:列出参考书籍、有关资料。 8、日期的填写系指本堂课授课的时间。

生物信息学填空题(个人整理)

1、BLAST教案所程序中,哪个方法是不存在的?(D) A:BLASTP B:BLASTN C:BLASTX D:BLASTQ 2、下列哪个软件不是常用来观察蛋白质结构视图的?(D) A:AVS B:Chimera C:MICE D:HMM 3、下列哪个不是点突变的类型?(A) A:染色体畸变 B:错义突变 C:无义突变 D:移码突变 4、基因突变的效应不包括:(C) A:有利突变 B:中性突变 C:移码突变D:遗传多态现象 5、人类基因组的结构特点不包括:(A) A:基因进化 B:基因数目 C:基因重复序列 D:基因组复制 6、世界上三大数据库不包括:(B) A:NCBI B:BLAST C:UCSC D:Ensembl 7、常用序列比对方法错误的是:(C) A:编辑距离 B:点阵描图 C:局部比对 D:记分模式 8、下列哪个不是蛋白质结构模型?(D) A:同源性模型 B:折叠识别 C:ab initio折叠 D: MoLScript结构9、下列哪个选项不是微阵列实验设计的内容?(A) A:贝叶斯网络法 B:对照组的选择 C:重复样本的使用 D:随机化原则10、构建序列进化树的一般步骤不包括:(A) A:建立DNA文库 B:建立数据模型 C:建立取代模型 D:建立进化树 11、下列中属于一级蛋白质结构数据库的是:(C) A. EMBL B. DDBJ C. PDB D.SWISS-PROT 12.蛋白质结构预测分为:(B) A.一级和三级结构预测 B. 二级和空间结构预测 C. 三级和空间结构预测 D. 二级和三级结构预测 13.数据挖掘的四个步骤不包括下列哪个:(C) A. 数据选择 B. 数据转换 C. 数据记录 D. 结果分析 14.下列哪项不是生物学研究必备的工具:(A) A.数据分析B.数据统计C.因素分析D.多元回归分析 15.Linux中rmdir 命令的功能是:(D) A.改变工作目录 B.删除工作目录 C. 创建目录 D.删除空目录 16.BLAST教案所程序中,哪个方法是不存在的?(D) A:BLASTP B:BLASTN C:BLASTX D:BLASTQ 17.下列哪个不是蛋白质结构模型?(D) A:同源性模型 B:折叠识别 C:ab initio折叠 D: MoLScript结构18.人类基因组的结构特点不包括:(A) A:基因进化 B:基因数目 C:基因重复序列 D:基因组复制 19、下列哪个选项不是微阵列实验设计的内容?(A) A:贝叶斯网络法 B:对照组的选择 C:重复样本的使用 D:随机化原则20、构建序列进化树的一般步骤不包括:(A) A:建立DNA文库 B:建立数据模型 C:建立取代模型 D:建立进化树三、填空题

基因组学与生物信息学课后作业

基因组学与生物信息学课后作业2016/2/23 名词解释 1 基因组:基因组是指生物体内遗传信息的集合,是某个特定物种细胞内全部DNA分子的总和 2 基因组学:是一门新兴的学科,是在全基因组范围内研究基因的结构、功能、组成及进化的科学,包括多个分支学科 3 C值:指一个单倍体基因组中DNA的总和,一个特定的物种具有其特征性的C值 4 基因家族:来自于一个共同的祖先基因,由基因重复及其突变产生。序列相似,功能相近。 5 假基因:来源于功能基因,但以失去活性的DNA序列,有沉默的假基因,也有可转录的假基因 6 人类基因组计划:旨在为30多亿碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息 问答题

简述真核生物染色体与原核生物染色体的差别。 答:真核生物基因组都由分散的长链线性DNA分子组成,每个DNA分子都与蛋白质结合组成染色体;原核生物基因组有2种独立结构的遗传物质,一种为拟核里的染色质,一种为质粒 另外,真核生物基因组含大量非编码序列(高度重复序列,多位于着丝粒、端粒)、断裂基因,而原核生物大部分基因都可以编码 名词解释 突变:基因组小区段范围内DNA分子发生的突然的、可遗传的变异现象。 重组:指基因组中大范围区段发生重新组合。 同源重组:指发生在非姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合 转座:一段DNA片段或其拷贝从染色体的一个位置转移到另一位置,并在插入位点两侧产生一对短的正向重复序列 基因重复:含有基因的DNA片段发生重复,可能因同源重组作用出错而发生,或是因为反转录转座与整个染色体发生重复所导致 比较基因组学:在基因组水平上研究不同物种和品系之间在基因组结构与功能方面的亲缘关系及其内在联系的一门新兴交叉学科

_系统生物学_建模_分析_模拟_书评

第42卷第1期力学进展Vol.42No.1 2012年1月25日ADVANCES IN MECHANICS Jan.25,2012 《系统生物学—–建模,分析,模拟》书评 陆启韶 北京航空航天大学航空科学与工程学院,北京100191 生命活动属于最复杂的自然界现象.近代生物学研究已从以实验观察为主的方式逐步发展为与生命体的机理性分析密切结合,并且由生物器官组织的宏观形态和表型向生物细胞和分子的微观行为和演变进行深入探讨.随着生物科学实验技术和方法的飞速进步,人们对生物大分子、基因和蛋白质、生物膜的结构和功能等的研究已经积累了相当丰富的知识.由于生命现象都是生物复杂大系统的综合行为的结果,我们必须把生物系统作为一个整体来研究,从系统论的角度进一步探讨细胞的信息、生长、发育、分化、代谢等动态过程以及生物有机体的功能,而不仅把研究重点放在单个的基因,蛋白质或者器官上.系统生物学就是这样一门研究生物系统的内部组分结构,以及在各种内、外部条件下这些组分的相互作用和演化规律的学科,是生命科学的一个前沿领域.目前重点是在分子层次上开展对生命现象(如遗传基因、蛋白质、重大疾病等)的过程和机制的研究,生物化学反应(包括蛋白质–蛋白质相互作用、DNA–蛋白质相互作用等)和生物网络(包括基因网、蛋白质相互作用网、信号转导网、代谢网等)行为在其中起着重要作用.大量的系统生物学研究对象是动态的和随机的,涉及不同的时空尺度下复杂非线性动力学与控制问题. 显然,在生物系统的研究过程中,仅仅通过实验方法很难了解其复杂行为的,特别是动力学性质,因此建立数学模型和进行计算机模拟是十分必要的.系统生物学全面综合地运用生物实验、数据整合和数学建模的研究手段,一般还需要多次反复的过程,才能取得实验结果和模型预测一致的效果.系统生物学研究充分体现了生物学与数学、物理、化学、控制、计算、以及工程等领域的学科交叉,带来了生物学的许多新概念和新方法.它不仅从广度和深度上开创了生物学研究的新纪元,而且能进一步预测和设计复杂的生命过程,为生物工程和医学发展提供了强有力的工具. 雷锦誌博士从事多年的动力系统和系统生物学的研究工作,注重问题驱动的原创思路和方法,在蛋白质折叠问题、胚胎发育信号问题、造血系统疾病、以及哈密顿动力学和微分方程可积性等方面做出较好的研究成果.他多次访问美国、加拿大和新加坡的著名大学,与Mackey M.,Glass L., Huang K.(黄克孙)和Nie Qing(聂青)等国际知名学者保持十分密切的国际交流合作关系.根据学习和科研的体会,他从2006年起在清华大学开设“系统生物学”课程,介绍系统生物学这门新兴学科的研究对象和方法.现在,他又在讲稿和研究成果的基础上对内容进行了扩展、加工和整理,完善了理论体系,在2010年由上海科学技术出版社出版了专著《系统生物学—–建模,分析,模拟》. 全书的内容共包括6章.在分子生物学中,特别是基因调控和蛋白质相互作用等生物学过程中,都可以分解为大量生物化学反应所组成的复杂系统.因在生命行为中的化学反应所涉及的分子个数通常都非常少,反应物的碰撞概率非常小,加上热力学涨落的影响,使得随机性很显著,随机过程成为描述生物化学反应的重要数学手段.该书第1章介绍生物化学反应的数学描述,包括化学主方程、化学速率方程,以及化学郎之万方程和福克–普朗克方程等,作为后面建立系统生物学的各种数学模型的基础. 从第2章到第5章将按照从小到大的尺度介绍几类生物学问题,从问题出发去介绍相关的数学分析方法.基因表达是生物系统的最基本过程,第2章主要介绍基因表达的数学描述,重点了解基因表达过程中随机性的影响.第3章介绍几种基因调控关系的数学模型的建立和分析.基因之间的相互调控是控制细胞的复杂行为和表现形态

生物信息学复习资料全

一、名词解释(31个) 1.生物信息学:广义:应用信息科学的方法和技术,研究生物体系和生物过程 息的存贮、信息的涵和信息的传递,研究和分析生物体细胞、组织、器官的生理、病理、药理过程中的各种生物信息,或者也可以说成是生命科学中的信息科学。狭义:应用信息科学的理论、方法和技术,管理、分析和利用生物分子数据。 2.二级数据库:对原始生物分子数据进行整理、分类的结果,是在一级数据库、 实验数据和理论分析的基础上针对特定的应用目标而建立的。 3.多序列比对:研究的是多个序列的共性。序列的多重比对可用来搜索基因组 序列的功能区域,也可用于研究一组蛋白质之间的进化关系。 4.系统发育分析:是研究物种进化和系统分类的一种方法,其常用一种类似树 状分支的图形来概括各种(类)生物之间的亲缘关系,这种树状分支的图形称为系统发育树。 5.直系同源:如果由于进化压力来维持特定模体的话,模体中的组成蛋白应该 是进化保守的并且在其他物种中具有直系同源性。 指的是不同物种之间的同源性,例如蛋白质的同源性,DNA序列的同源性。(来自百度) 6.旁系(并系)同源:是那些在一定物种中的来源于基因复制的蛋白,可能会 进化出新的与原来有关的功能。用来描述在同一物种由于基因复制而分离的同源基因。(来自百度) 7.FASTA序列格式:将一个DNA或者蛋白质序列表示为一个带有一些标记的 核苷酸或氨基酸字符串。 8.开放阅读框(ORF):是结构基因的正常核苷酸序列,从起始密码子到终止 密码子的阅读框可编码完整的多肽链,其间不存在使翻译中断的终止密码子。(来自百度) 9.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区 域,折叠得较为紧密,各行其功能,称为结构域。 10.空位罚分:序列比对分析时为了反映核酸或氨基酸的插入或缺失等而插入空 位并进行罚分,以控制空位插入的合理性。(来自百度) 11.表达序列标签:通过从cDNA文库中随机挑选的克隆进行测序所获得的部分 cDNA的3’或5’端序列。(来自文献) 12.Gene Ontology 协会: 13.HMM 隐马尔可夫模型:将核苷酸序列看成一个随机序列,DNA序列的编 码部分与非编码部分在核苷酸的选用频率上对应着不同的Markov模型。14.一级数据库:数据库中的数据直接来源于实验获得的原始数据,只经过简单 的归类整理和注释 15.序列一致性:指同源DNA顺序的同一碱基位置的相同的碱基成员, 或者蛋 白质的同一氨基酸位置的相同的氨基酸成员, 可用百分比表示。 16.序列相似性:指同源蛋白质的氨基酸序列中一致性氨基酸和可取代氨基酸所 占的比例。 17.Blastn:是核酸序列到核酸库中的一种查询。库中存在的每条已知序列都将 同所查序列作一对一地核酸序列比对。(来自百度) 18.Blastp:是蛋白序列到蛋白库中的一种查询。库中存在的每条已知序列将逐 一地同每条所查序列作一对一的序列比对。(来自百度)

系统生物学

系统生物学 摘要:现代系统生物学是一门新兴的,整在不断发展的交叉学科。依据Hood的定义:系统生物学是研究生物系统中所有组成成分(基因、mRNA、蛋白质等)的构成,以及在特定条件下这些组分间的相互关系的学科。本文主要是就系统生物学的起源,方法进行说明。 关键词:系统生物学模型分析 作为人类基因组计划的发起人之一,美国科学家莱诺伊·胡德(Leroy Hood)也是系统生物学的组学(omics)生物技术开创者之一。依据Hood的定义:系统生物学是研究生物系统中所有组成成分(基因、mRNA、蛋白质等)的构成,以及在特定条件下这些组分间的相互关系的学科。也就是说,系统生物学不同于以往的实验生物学——仅关心个别的基因和蛋白质,它要研究所有的基因、所有的蛋白质以及组分间的所有相互关系。正是在基因组学、蛋白质组学、代谢组学和信号转导系统等生物系统科学的发展的基础上,孕育了系统生物学。反之,系统生物学的诞生进一步提升了后基因组时代的生命科学研究能力。 系统生物学的工作流程主要分为四步: (1)对选定的某一生物系统的所有组分进行了解和确定,描述出该系统的结构,包括基因相互作用网络和代谢途径,以及细胞内和细胞间的作用机理等,以此构造出一个初步的系统模型。 (2)系统地改变研究对象的内部组分(如基因突变)或外部生长条件,然后观测在这些情况下系统组分或结构所发生的相应变化,包括基因表达、蛋白质表达和相互作用、代谢途径等的变化,并把得到的有关信息进行整合(系统与层级)。 (3)模型上述现象并求解、机理分析与预测,把通过实验得到的数据与根据模型预测的情况进行比较,并对初始模型进行修正。 (4)根据修正后的模型的预测或假设,设定和实施新的改变系统状态的实验,重复第二步和第三步,不断地通过实验数据对模型进行修正和精练。 系统生物学的目标是得到一个理想的模型,使其机理分析与理论对于现象的预测能够反映出生物系统的真实性。 系统生物学的主要手段就是建模,但它不同于以往的生物数学的建模,而是对于生物系统的建模,是整合目标下的建模。也就是,即要对于每个生物层次的各个生物系统建立模型,而且还要将不同层次的系统之间的关联结构建模。如果将不同系统的集合称为系统簇的话,系统生物学将对生物系统的这个簇结构建模。 对于不同的研究对象,我们也要选择不同的建模方法,我也对一些系统生物学模型作了一些了解,我主要了解了以下三种模型: (1)结构主义建模方法,它是注重系统的结构分析,建立结构的专业模型并且通过对数学结构的对应建立系统的数学模型。 (2)系统的动力学模型,其主要作用是对生物系统行为的预测。动力学的数学模型方法很多,连续的微分方程组和代数方程组,离散的迭代格式、布尔方程组,随机的马氏过程和随机微分方程组等等。动力系统模型求解,特别对于高维问题,通常使用定性分析与计算模拟,可以确定系统状态的动态变化,例如稳定的吸引子、周期和混沌吸引子等等。这些动态解表示了系统长时间的发展趋势,对于生物系统有主要的预测意义。同时,不同状态下的网络的静态结构的差异,有助于从结构角度理解生物系统不同状态的区分方法。例如正常细胞的基因网络与疾病状态的基因网络结构特征的稳定的差别,可以帮助发觉关键基因和区别两类细胞,往往可以用于医学诊断。 (3)正向建模与逆向建模。正向建模是通过集成各个独立的关联性实验数据(数据量小)构建网络,包括从文献和数据库查找相应的数据。这种方法适合于网络基本已经构建,需要

浅谈生物信息学在生物方面的应用

浅谈生物信息学在生物方面的应用 生物信息学(bioinformaLics)是以核酸和蛋白质等生物大分子数据库及其相关的图书、文献、资料为主要对象,以数学、信息学、计算机科学为主要手段,对浩如烟海的原始数据和原始资料进行存储、管理、注释、加工,使之成为具有明确生物意义的生物信息。并通过对生物信息的查询、搜索、比较、分析,从中获得基因的编码、凋控、遗传、突变等知识;研究核酸和蛋白质等生物大分子的结构、功能及其相互关系;研究它们在生物体内的物质代谢、能量转移、信息传导等生命活动中的作用机制。 从生物信息学研究的具体内容上看,生物信息学可以用于序列分类、相似性搜索、DNA 序列编码区识别、分子结构与功能预测、进化过程的构建等方面的计算工具已成为变态反应研究工作的重要组成部分。针对核酸序列的分析就是在核酸序列中寻找过敏原基因,找出基因的位置和功能位点的位置,以及标记已知的序列模式等过程。针对蛋白质序列的分析,可以预测出蛋白质的许多物理特性,包括等电点分子量、酶切特性、疏水性、电荷分布等以及蛋白质二级结构预测,三维结构预测等。 生物信息学中的主要方法有:序列比对,结构比对,蛋白质结构的预测,构造分子进化树,聚类等。基因芯片是基因表达谱数据的重要来源。目前生物信息学在基因芯片中的应用主要体现在三个方面。 1、确定芯片检测目标。利用生物信息学方法,查询生物分子信息数据库,取得相应的序列数据,通过序列比对,找出特征序列,作为芯片设计的参照序列。 2、芯片设计。主要包括两个方面,即探针的设计和探针在芯片上的布局,必须根据具体的芯片功能、芯片制备技术采用不同的设计方法。 3、实验数据管理与分析。对基因芯片杂交图像处理,给出实验结果,并运用生物信息学方法对实验进行可靠性分析,得到基因序列变异结果或基因表达分析结果。尽可能将实验结果及分析结果存放在数据库中,将基因芯片数据与公共数据库进行链接,利用数据挖掘方法,揭示各种数据之间的关系。 生物信息学在人类基因组计划中也具有重要的作用。 大规模测序是基因组研究的最基本任务,它的每一个环节都与信息分析紧密相关。目前,从测序仪的光密度采样与分析、碱基读出、载体标识与去除、拼接与组装、填补序列间隙,到重复序列标识、读框预测和基因标注的每一步都是紧密依赖基因组信息学的软件和数据库的。特别是拼接和填补序列间隙更需要把实验设计和信息分析时刻联系在一起.拼接与组装中的难点是处理重复序列,这在含有约30%重复序列的人类基因组中显得尤其突出。 人类基因组的工作草图即将完成,因此发现新基因就成了当务之急。使用基因组信息学的方法通过超大规模计算是发现新基因的重要手段,可以说大部分新基因是靠理论方法预测出来的。比如啤酒酵母完整基因组(约1300万bp)所包含6千多个基因,大约60%是通过信息分析得到的。 当人类基因找到之后,自然要解决的问题是:不同人种间基因有什么差别;正常人和病人基因又有什么差别。”这就是通常所说的SNPs(单核苷酸多态性)。构建SNPs及其相关数据库是基因组研究走向应用的重要步骤。1998年国际已开展了以EST为主发现新Spps 的研究。在我国开展中华民族SNPs研究也是至重要的。总之,生物信息学不仅将赋予人们各种基础研究的重要成果,也会带来巨大的经济效益和社会效益。在未来的几年中DNA 序列数据将以意想不到的速度增长,这更离不开利用生物信息学进行各类数据的分析和解释,研制有效利用和管理数据新工具。生物信息学在功能基因组学同样具有重要的应用目前应用最多的是同源序列比较、模式识别以及蛋白结构预测。所谓同源序列,是指从某一共同祖先经趋异进化而形成的不同序列。利用数据库搜索找出未知核酸或蛋白的同源序列,是序列分析的基础[lol。如利用BLASTn和BLASTx两种软件分别进行核苷酸和氨基

生物信息学复习题及答案

一、名词解释: 1.生物信息学:研究大量生物数据复杂关系的学科,其特征是多学科交叉,以互联网为媒介,数据库为载体。利用数学知识建立各种数学模型; 利用计算机为工具对实验所得大量生物学数据进行储存、检索、处理及分析,并以生物学知识对结果进行解释。 2.二级数据库:在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步的整理。 序列格式:是将DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。 序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释;第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“询序列(query sequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。P98 8.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。P29 9.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。P29 10.空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影响,序列中的空位的引入不代表真正的进化事件,所以要对其进行罚分,空位罚分的多少直接影响对比的结果。P37值:衡量序列之间相似性是否显著的期望值。E值大小说明了可以找到与查询序列(query)相匹配的随机或无关序列的概率,E值越接近零,越不可能找到其他匹配序列,E值越小意味着序列的相似性偶然发生的机会越小,也即相似性越能反映真实的生物学意义。P95 12.低复杂度区域:BLAST搜索的过滤选项。指序列中包含的重复度高的区域,如poly(A)。 13.点矩阵(dot matrix):构建一个二维矩阵,其X轴是一条序列,Y轴是另一个序列,然后在2个序列相同碱基的对应位置(x,y)加点,如果两条序列完全相同则会形成一条主对角线,如果两条序列相似则会出现一条或者几条直线;如果完全没有相似性则不能连成直线。 14.多序列比对:通过序列的相似性检索得到许多相似性序列,将这些序列做一个总体的比对,以观察它们在结构上的异同,来回答大量的生物学问题。 15.分子钟:认为分子进化速率是恒定的或者几乎恒定的假说,从而可以通过分子进化推断出物种起源的时间。 16.系统发育分析:通过一组相关的基因或者蛋白质的多序列比对或其他性状,可以研究推断不同物种或基因之间的进化关系。 17.进化树的二歧分叉结构:指在进化树上任何一个分支节点,一个父分支都只能被分成两个子分支。 系统发育图:用枝长表示进化时间的系统树称为系统发育图,是引入时间概念的支序图。 18.直系同源:指由于物种形成事件来自一个共同祖先的不同物种中的同源序列,具有相似或不同的功能。(书:在缺乏任何基因复制证据的情况下,具有共同祖先和相同功能的同源基因。) 19.旁系(并系)同源:指同一个物种中具有共同祖先,通过基因重复产生的一组基因,这些基因在功能上可能发生了改变。(书:由于基因重复事件产生的相似序列。) 20.外类群:是进化树中处于一组被分析物种之外的,具有相近亲缘关系的物种。 21.有根树:能够确定所有分析物种的共同祖先的进化树。

系统生物学——一生命科学的新领域.

系统生物学——一生命科学的新领域 [摘要] 20世纪生物学从宏观到微观进步巨大,传统的分析还原的研究方法受到质疑。在此背景下,系统生物学是继基因组学、蛋白质组学之后一门新兴的生物学交叉学科。从系统角度来进行生物学研究逐步成为现代生物学研究方法的主流。在研究上,了解一个复杂的生物系统需要整合实验和计算方法、基因组学和蛋白质组学中的高通量方法为系统生物学发展提供大量的数据,计算生物学通过数据处理、模型构建和理论分析,成为系统生物学发展的一个必不可缺的、强有力的工具,已经在诸多医学前沿领域的研究中成为重要研究方法而被广泛应用。本文旨在阐述系统生物学的发展现状及其应用前景,希望能对广大相关领域的读者有所价值。 [关键词] 系统生物学;基因组学;蛋白质组学;计算生物学 近代生物学研究主要是以分子生物学和细胞生物学研究为主。研究方法皆采用典型的还原论方法。目前为止,还原论的研究已经取得了大量的成就,在细胞甚至在分子层次对生物体都有了很具体的了解,但对生物体整体的行为却很难给出系统、圆满的解释。生物科学还停留在实验科学的阶段,没有形成一套完整的理论来描述生物体如何在整体上实现其功能行为,这实际上是还停留在牛顿力学思想体系的简单系统的研究阶段。但是生物体系统具有纷繁的复杂性[1,2]。尽管对一个复杂的生物系统来说,研究基因和蛋白质是非常重要的,而且它将是我们系统生物学的基础,但是仅仅这些尚不能充分揭示一个生物系统的全部信息。这种研究结果只限于解释生物系统的微观或局部现象,并不能解释系统整体整合功能的来源,不能充分揭示一个生物系统的信息,且忽略了系统中各个层面的交互、支持、整合等作用,限制了生物学研究的发展。在这种现状下,20世纪末人类基因组计划完成后,生物学领域的科学家都在考虑一个问题:未来生物学研究的方向在哪里?为此学术界也不乏辩论。得出的共识是:生物学的发展未来主要面对如下问题:(1)如何弄清楚单一生物反应网络,包括反应分子之间的关系、反应方式等;(2)如何研究生物反应网络之间的关系,包括量化生物学反应及生物反应网络;(3)如何利用计算机信息及生物工程技术进行生物反应,生物反应网络,乃至器官及生物体的重建。 早在1969年,Bertalanfy LV就提出了一般系统理论(general systems theory),他在文章中指出生物体是一个开放系统,对其组成及生物学功能的深入研究最终需要借助于计算机和工程学等其他分支学科才能完成[3]。1999年,由Leroy Hood创立的系统生物学(systems biology)则是在以还原论为主流的现代生物学中反其道而行之,把这种以整体为研究对象的概念重新提出。他给系统生物学赋予了这样的定义,系统生物学(systems biology)是研究一个生物系统中所有组成成分(基因、mRNA、蛋白质等)的构成,以及在特定条件下这些组分间的相互关系的学科。换言之,以往的实验生物学仅关心基因和蛋白质的个案,而系统生物学则要研究所有的基因、所有的蛋白质、组分间的所有相互关系。显然,系统生物学是以整体性研究为特征的一种大科学,是生物学领域革命性的方法论。以胡德的观点,基因、蛋白质以及环境之间不同层次的

生物信息学札记(第4版)

生物信息学札记(第4版) 樊龙江 浙江大学作物科学研究所 浙江大学生物信息学研究所 浙江大学IBM生物计算实验室 2017年9月 本材料已由浙江大学出版社出版:《生物信息学》,樊龙江主编,2017 部分内容可通过下列网址获得: https://www.doczj.com/doc/bd9066836.html,/bioinplant/

札记前言 第一版 这份材料是我学习和讲授《生物信息学》课程时的备课笔记,材料大多是根据当时收集的一些外文资料翻译编辑而成。学生在学习过程中经常要求我给他们提供一些中文的讲义或材料,这促使我把我的这份笔记整理并放到网上,供大家参考。要提醒使用者的是,这份材料仅是根据我对生物信息学的一些浮浅的认识整理而成,其中的错误和偏颇只能请读者自鉴了。 2001年6月 第二版 自1999年开始接触生物信息学以来,一晃已近六年,而本札记也近四岁了。2001和2002年中国科学院理论物理所的郝柏林院士在浙江大学首次开设生物信息学研究生课程,我作为他的助教系统地学习了生物信息学;同时,借着我国水稻基因组测序计划的机遇,在他的带领下从2001年开始从事水稻基因组分析,从此自己便完全投入到这一崭新、引人入胜的领域中来。 不断有来信向我索要本札记的电子版文件,同时在不少网站上看到推荐该札记的内容。生物信息学、基因组学等发展很快,现在再回头审看该札记,有些部分已惨不忍读,这促使我下决心更新它。但因时间和学识问题,还是有不少部分自己不甚满意,就只有待日后再努力了。欢迎告诉我札记中的BUG,我的信箱fanlj@https://www.doczj.com/doc/bd9066836.html,或bioinplant@https://www.doczj.com/doc/bd9066836.html,。 2005年3月30日 第三版 近年来高通量测序技术产生的序列数据大量出现(如小RNA和大规模群体SNP数据),本次更新根据这一进展增加了两章内容,分别是第七章有关小RNA的分析和第八章遗传多态性及正向选择检测。两章内容由我的博士生王煜为主编写,李泽峰和刘云参与了文献整理。另外还更新了第四章有关水稻基因组分析一节。 2010年1月 第四版 2014年浙江大学开展本科生教材建设工作,我当时作为系主任要带头,就承诺编写我主讲的《生物信息学》教材。编写教材的确不是一件容易的事,经过几番挣扎和多方努力,总算完成了编写,算是了却了一桩心思。该教材内容比较完整,也跟踪了生物信息学领域的最新进展。我就权且把该教材内容作为札记的第四版,也算给该札记一个完美的结尾。 2017年9月

生物信息学在基因组学中的应用_沈春修

作者简介沈春修(1979-),男,湖南溆浦人,硕士,助教,从事水稻遗传 育种与抗病分子机制方面的研究。 收稿日期 2007!04!01 基因的研究是指在许多基因同时存在的基础上对多个基因同时进行研究,分析各自与它们之间的结构与功能的相互关系。因而它至少涉及3个相关领域:结构基因组———主要关心DNA碱基序列水平上的基因结构;比较基因组———寻找种内、种属间产生基因结构差异的分子基础,以期获取与目的性状相关的基因;功能基因组———着重研究基因与其表达产物及功能活性的调控关系。结构基因组是其他领域的基础,比较基因组为功能基因组研究提供等位基因,蛋白质组则是在蛋白质水平上分析基因表达的功能基因组研究的派生分枝。生物信息学是在前面三者研究的基础上,获取、整理、综合分析提取大量已有复杂生物数据的新学科,对相关学科的研究有很大的推动作用。 1生物信息学在结构基因组中的应用 随着化学分析方法的改进,DNA测序水平的提高,科 研成本的降低,已开始对多种模式生物进行基因组全序列的测序。如拟南芥和水稻的全基因组测序,将来会有越来越多的重要作物基因组被全测序。因而,今后的工作重点将是基因组中信息的分析与鉴定,对植物抗性基因来说,是分析鉴定其组织结构及其相关调控序列的鉴定。结构基因组的研究对抗性基因的研究有许多指导意义。 在现在已知的许多种已克隆的抗性基因(不含Hm1和 Hm2)中,分析其序列结构,都含有或部分含有核苷酸结合 位点(NBS),富含亮氨酸重复(LRR),跨膜结构域(TM)以及丝氨酸-苏氨酸激酶(STK)保守序列。根据已知抗性基因都含有NBS序列的特征,从测序结果中可预测某一生物中含有与抗性基因有关的基因数目有多少[1]。在拟南芥与水稻测序的过程中,发现许多与抗性有关的NBS序列。在已测序的拟南芥67Mb中(相当于大于50%的拟南芥基因组序列),有120个可预见的基因产物与植物抗性基因的NBS结构相似[2]。假设剩余的另外50%未知基因也按这样的比例分布,那么拟南芥中将有200个左右的基因与抗性有关。在这些与抗性有关的200个基因中,它们要么是编码信号传导的组分,要么是编码抗微生物的蛋白,这些基因序列的总长度大约占拟南芥总基因数的1%。而在水稻中,通过对重叠的BAC克隆末端序列分析(占全部水稻基因的5%)来看,大约有750 ̄1500个基因具有编码NBS的能力[3-5]。 从已知抗性基因的定位结果来看,NBS序列在拟南芥基因组中倾向于成簇排列。测序结果也表明,植物中的抗性基因一般与抗性基因的多种同源共生序列在一起,共同组成 高度重复区域,这种区域统称为基因簇。Rpp5基因簇包含 8 ̄10个同源序列,散布在90kb的区域上,并且被蛋白激酶 的假基因与反向转座子等隔开。Cf!4/9基因簇由5个抗性基因同源序列组成,散布在36kb的区域内,Cf!4/9的同源序列被Lox基因隔开,成为高度重复区域。Pto基因簇包含5个同源序列,分布在60kb的区域内,这其中的Prf基因编码NBS!LRR,对Pto基因的功能是必需的。Dm3基因是目前已知的最大的抗性基因,至少由24个抗性基因同源序列组成,横跨3.5Mb。因而,随着更多模式植物的全基因组测序的完成,人们可以从基因组测序信息中直接读出有用数据,分析寻找抗性基因的组织结构特征与分布规律。 2生物信息学在比较基因组学中的应用 随着多种生物的全基因组测序完成,有越来越多的数 据可以直接利用。首先,通过比较多种属植物抗性基因的定位特点,发现抗性基因大多定位在较不稳定的区域,其区域的结构不很保守,如拟南芥的抗性基因RPM1的同源序列在感病表型的植株上丢失[6]。进一步研究发现,抗性基因的位置要么是端粒区域,要么是接近着丝粒区域。例如,通过原位荧光杂交分析得知:莴苣的两抗性基因分别定位在端粒区域与接近着丝粒区域,高粱Rpg1基因位于端粒区域,番茄的Mi基因位于异染色质的着丝粒边缘[7]。第2,通过测序分析,可以确定基因成簇的模式与范围,通过比较种属间亲缘关系,来预测某一功能相似的基因在其他物种中的位置。进而根据已克隆的抗性基因间的相似性,可以采用适当的引物进行PCR扩增获得抗性基因的候选序列,而且这些候选序列的片段均可定位到已知的抗性基因的位置上[8]。从现在公开的数据中,比较多种NBS基因的相似性,用PCR获得了130个候选抗性基因,此数据将继续增长。第3,比较基因组的另一作用在于可以区分同源区域与同源共生区域。这对本身就位于同源共生区域的抗性基因家族可能困难,但是抗性基因相关序列的种间比较结果显示:同源区域比同源共生区域更加相似。这提示:物种为了赶上病原菌的变化步伐而采取快速进化来抵抗随时间而变化的病原群体。通过分析拟南芥的RPm1基因侧翼序列也得到这样的结论。第4,比较基因组学也可对某特定等位基因的变化的分子基础进行研究[9]。至今,只有极少数通过同源重组,实现蛋白质结构域的域置换试验成功。这些结果显示NBS!LRR编码基因的LRR区域是非常重要的,但它不是专一性的唯一决定簇。随着测序效率的提高,将建立抗性基因相关序列的数据库,这些序列信息可作为基因步行试验的模板,为克隆新的抗性基因提供极大的帮助。第5,比较基因组作图表明,染色体上的DNA标记排列具有共线性[10]。如小麦的基 生物信息学在基因组学中的应用 沈春修 (宜春学院,江西宜春336000) 摘要随着计算机科学、物理学、数学等与生命科学的相互渗透和交叉,生物信息学愈来愈显示出其重要性,尤其是在抗病基因的研究中。笔者从结构基因组、比较基因组、功能基因组与生物信息学等方面论述了生物信息学在基因组学中的应用。关键词抗性基因;结构基因组;比较基因组;功能基因组;生物信息学 中图分类号Q78文献标识码A文章编号0517-6611(2007)20-06054-02 安徽农业科学,JournalofAnhuiAgri.Sci.2007,35(20):6054-6055,6057责任编辑王淼责任校对王淼

系统生物学

系统生物学的定义:系统生物学是系统性地研究一个生物系统中所有组成成分(基因、mRNA、蛋白质等)的构成以及在特定条件下这些组分间的相互关系,并通过计算生物学建立一个数学模型来定量描述和预测生物功能、表型和行为的学科。 系统生物学的工作流程①对选定的某一生物系统的所有组分进行研究,构建系统模型。②系统地改变被研究对象的内部组成成分或外部生长条件,观测系统所发生的相应变化,整合全部信息③把通过实验得到的数据与根据模型预测的情况进行比较,并对初始模型进行修订。④是根据修正后的模型,设定新的改变系统状态的实验,重复第二步和第三步,不断地通过实验数据对模型进行修订和精练。 系统生物学研究的4个问题:系统结构的阐述;系统行为的分析;控制系统的方法;如何设计系统 遗传图谱又称连锁图谱或遗传连锁图谱:指基因组内基因和专一的多态性DNA标记相对位置的图谱。 遗传作图的DNA(分子)标记:第一代:限制性片段长度多态性;第二代:简单序列长度多态性;第三代:单核苷酸多态性标记 物理作图:定义:以一段已知核苷酸序列的DNA片段(限制性酶切位点、序列标签位点等)为标记,以Mb或Kb作为图距绘制的基因组图。基本要素:路标、单位、顺序、可复制的DNA片段 为什么要进行物理作图?遗传学图谱分辨率有限;遗传学图谱精确度有限 物理作图的基本原理:物理图谱的本质是路标和克隆测序;单一克隆或重叠克隆都不是图谱,重叠克隆的延续可以制成图谱,克隆末端的数量决定了可排DNA片段的数量 文库的概念:含有某种生物体全部基因的随机片段的重组DNA克隆群体 宿主:能容纳外源DNA片段的生物体,常用的有大肠杆菌、酵母等 载体:能携带外源DNA进入宿主细胞的工具,常用的载体有质粒载体、噬菌体载体、细菌人工染色体等 作为载体的基本要求:能在宿主细胞中进行独立的复制;具有多克隆位点,可插入外源DNA片段;有合适的筛选标记,如抗药性;大小合适,易于分离纯化;拷贝数多 序列图谱:以某一染色体上所含的全部碱基顺序绘制的图谱。既包括课转录序列,也包括非转录序列,是转录序列、调节序列和功能未知序列的综合。 转录图谱:把mRNA先分离、定位,再转录成cDNA,这就构成一张人类基因的转录图,cDNA片段又称表达序列标签(EST),因此转录图也称为表达序列图。 人类基因组计划的测序:绘制人类基因组的高分辨率遗传图谱;绘制人类级某些模式生物基因组的各种物理图谱;确定人类及某些模式生物的DNA全序列;收集、储存、传播和分析所得资料;发展用于此研究的一系列新技术。 测序策略:全基因组散弹法;逐步克隆法 全基因组散弹法(鸟枪法):大分子DNA被随机地“敲碎”成许多小片段,收集这些随机小片段并将它们全部连接到合适的测序载体(如M13噬菌体);小片段测序完成后,根据重叠区计算机将小片段整合出大分子DNA序列。这就是所谓的鸟枪测序法。优点:不需要高密度的图谱;速度快、简单、成本低缺点:拼接组装困难,尤其在重复序列多的区域,主要用于重复序列少、相对简单的原核生物基因组 逐步克隆法:是在鸟枪法基础上发展起来的 两种方法的比较:全基因组霰弹法:基因组DNA-》霰弹法克隆-》测序并进行全基因组序列组装-》完整的基因组序列;逐步克隆法:基因组DNA-》BAC文库-》根据物理图谱正确定位的BAC 或contig-》用于霰弹法测序的候选克隆-》用于霰弹法测序的亚克隆-》测序并组装 第一代DNA测序技术:Sanger法双脱氧核苷三磷酸(ddNTP)链末端终止法为测序基础,以四色荧光标记的ddNTP为终止剂,采用毛细管电泳技术取代聚丙烯酰胺平板电泳,使4个测序反应物在一根毛细管内电泳。毛细管末端配有激光照射装置,诱发出不同的发射波长的荧光,经光栅打到CCD 摄像机上同步成像,经电脑转换将光信号转换为DNA序列。第二代DNA测序技术:边合成边测序 罗氏454测序平台:焦磷酸测序:通过核苷酸和模板结合后释放的焦磷酸引发酶级联反应,促使荧光素发光并进行检测测序的反应体系:反应酶:DNA聚合酶三磷酸腺苷硫酸化酶,荧光素酶,双磷酸酶;反应底物:磷酰硫酸,荧光素焦磷酸/单克隆测序原理步骤:单链DNA模板被合成互补链,4种dNTP按碱基互补配对原则次序结合到模板上,每当一个dNTP成功结合到模板时会释放焦磷酸(ppi),其释放量与结合进入DNA的dNTP数量一致。ppi被硫酰酶催化形成ATP,ATP促进荧光素酶氧化荧光素,这些酶促反应能实时发射出荧光被CCD相机记录下来。 454测序流程1. 文库准备2. 连接接头:在单链DNA的3′端和5′端分别连上不同的接头3. 形成微反应器4. 扩增 5. 测序 6. 数据分析 ①提取基因组DNA并切割成80-120bp片段并变性成单链后加一个专门接头使DNA片段与琼脂糖凝胶小球结合。②此小球与一种进行PCR反应的混合乳胶小滴结合。③DNA扩增在乳胶小滴中进行,扩增使小球充满某一段DNA的10^7拷贝。④乳胶小滴破裂,DNA链变性,携带单链DNA克隆的小球沉淀进入光学纤维片的井中,在井中完成单克隆测序并用CCD相机记录⑤计算机分析并得出结果 454测序技术的特点:速度快;读长长;通量高;准确度高Illumina测序的基本原理:可逆终止法,边合成边测序 电子克隆的概念:利用两端有重叠序列的EST可以组成全长的CDNA序列。 电子克隆原理:选定的EST序列进入DNA序列库中进行对位排列,寻找片段端部能互补配对的一致性序列,从而使EST的末端得以延伸。获得第一轮配对延伸的片段后再继续第二轮对位排列,如此反复进行有望将多个EST组装起来直到找到起始密码子和终止子。 功能基因组学:利用结构基因组学所获得的各种信息,建立与发展各种技术和实验模型来测定基因及基因非编码序列的生物学功能。目的:基因功能的发现,基因表达分析及突变检测。 比较基因组学:研究不同物种基因组的异同,目的:寻找物种间共有的,即在进化上保守的基因或DNA序列,这些基

相关主题
文本预览
相关文档 最新文档