当前位置:文档之家› 电磁传导干扰

电磁传导干扰

电磁传导干扰
电磁传导干扰

电子镇流器中的传导电磁干扰(EMI)分析大量电了镇流器的应用会对周围环境产生较为严重的电磁干扰,但目前照明行业对EMC问题缺乏全面认识,特别是在怎么解决电了镇流器EMC问题上,尚无成熟可靠的技术方法。本文谨就电了镇流器中的传导电磁干扰进行分析。

大量电了镇流器的应用会对周围环境产生较为严重的电磁干扰(电磁干扰),因此很多国家和组织都提出了相应的EM C标准,对电了设备的电磁干扰作了明确限制,我国也已将EM C纳入强制性认证规则。

电磁干扰分析的难点在于怎么确定其噪声源和噪声源阻抗。本文对HID电了镇流器的传导电磁干扰噪声源和藕合途径进行了分析,

建立了相应的传导电磁干扰电路模型,从而可根据阻抗失配规则有针对性地应用EM I滤波电路。

HID电子镇流器电路拓扑很多,半桥拓扑具有成本低,控制方

式灵活等优点,在中小功率镇流器中得到了广泛采用。同时,为了防止用电设备对电网造成严重污染,国家标准对用电设备的输入电流总谐波畸作了明确规定和限制,本文将以电子镇流器为例,分析其传导电磁干扰的产生和传播机理,电了镇流器的常用电路框图如图1所示。

在不加电磁干扰滤波电路的情况下,输入市电经全桥整流、功率因数校正后得到400V的直流母线电压,再经半桥逆变输出高频率交流方波,从而驱动高压气体放电灯正常工作。

传导电磁干扰是指通过导线直接传导到受干扰设备的噪声干扰,为了便于分析,通常把传导电磁干扰分为差模干扰和共模干扰。要有效地抑制传导电磁干扰就必须对电路中的差模和共模干扰信号分别进行抑制,为此需对差模和共模信号的干扰源和藕合路径分别建模和分析。

共模(CM)干扰的主要噪声源是流过镇流器对地寄生电容器的高频率位移电流。由于电了镇流器开关管一般通过散热器壳接地,共模噪声通过开关管漏极对地寄生电容器Cm构成环路。为了避免非固有差模噪声的影响,一般在整流桥直流侧加平衡电容器L Zl,即Ci,其作用是平衡电路,使地线中的噪声电流同时流过L线和N线,变成传统意义上的共模电流,平衡电容器也可加在整流桥交流侧。Ci 一般取11}F或0. 11}F,对高频率共模噪声而言阻抗很小,相当于

短路。此外,正偏导通过程中的二极管对高频率共模电流而言也相当于短路。

不难得出共模电磁干扰的等效电路,V<二即为LISN所测共模噪声。和等效差模噪声源不同,不管是D1 ,D4导通还是D2 ,D3导通,共模噪声电流始终是由开关管漏极流入大地的,因此等效共模噪声源Vsc是单向的。

至此,电了镇流器的传导电磁干扰模型已常用建立,噪声源和噪声源阻抗概念、结构清晰,而目_噪声源及其频谱可通过M atlah, PS 户、等软件仿真模拟,方便了电磁干扰滤波电路的应用。

实验中应用了一台250电了镇流器,根据阻抗失配规则,应用了相应的差模和共模电磁干扰滤波电路。

值得注意的是,由于二极管性能不是理想的,在电源电压过零时整流桥二极管全部截止,致使PFC电流波形在过零点失真,增加了电路的电磁干扰,为此在整流桥输入端加入差模滤波电容C3,以减小波形失真带来的影响。

本文分析了电了镇流器中的传导电磁干扰,建立了相应的电磁干扰电路模型。实验结果表明,该模型对HID灯电了镇流器的电磁干扰滤波电路应用具有一定的指导意义。

电磁干扰及其抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (葛洲坝通信工程有限公司方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和内部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统内部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统内的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率范围。

1.1 EMI特性分析 在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统内部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 E=5.5· P·G d 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰 雷电辐射场到机箱辐射干扰

电磁干扰(EMI)抑制技术

电磁干扰(EMI)抑制技术 时间:2012-08-14 11:38:34 来源:作者: 1 电磁干扰基本概念 在复杂的电磁环境中,任何电子及电气产品除了本身能够承受一定的外来电磁干扰(Electromagnetic Interference,EMI)而保持正常工作外,还不会对其他电子及电气设备产生不可承受的电磁干扰,该产品即具有电磁兼容性(Electromagnetic Compatibility,EMC)[1]。 21世纪将是信息爆炸的时代,信息的产生、传递、接收、处理和储存等都需要依赖电磁波作为载体。广义地说,声波、无线电波、光波均可作为信息载体,因此,广义的电磁兼容性概念也应拓展到声、光、电的广阔领域。 电子及电气产品的电磁干扰发射或受到电磁干扰的侵害都是通过产品的外壳、交/直流电源端口、信号线、控制线及地线而形成的。按照EMI的传播方式,可将其分为电磁辐射干扰和电磁传导干扰两大类。通常,辐射干扰出现在产品周围的媒体中,传导干扰则出现在各种导体中。一般来说,通过外壳发射的电磁干扰,或通过外壳侵入的干扰都是辐射干扰,而通过其它导体发射和入侵的干扰属于传导干扰。 2 人类必须关注电磁兼容问题 2.1 电磁环境不断恶化 20世纪中叶以来,电子技术的迅猛发展,使人类社会的进步和文明上了一个新的台阶,但是也给人们带来了一系列社会问题和环境问题。家用电器、通信、计算机及信息设备、电动工具、航空、航天等工业、科技、医学等各个领域的自动控制、测量仪器以及电力电子系统等的广泛普及、应用,深入千家万户之中,使得电磁污染问题日益突出,而电子设备的高频化、数字化,干扰信号的能量密度增大,使有限空间内的电磁环境更为恶化。 1996年3月,日本SAPIO杂志公布了日本家用电器电磁辐射的检测结果(表1)。瑞典等北欧三国于1993年所作的联合调查指出:人类长期受到2mG(毫高斯)以上的电磁辐射影响,患白血病的机会是正常人的2.1倍,患脑肿瘤的机会是正常人的1.5倍,其他疾病的发病概率也明显增加。 表1 家用电器电磁辐射检测结果(单位:mG)[2] 2.2 电磁污染危害不浅 电磁干扰和污染看不见、摸不着、听不到,因其无色、无味也无形,但它确实无处不在、危害不浅,威胁人体健康。德国专家指出,电磁污染能影响对人体生物钟起作用的激素和传达神经信息的激素,还能破坏细胞膜;美国科学家的研究表明,电磁污染可直接杀伤人

电磁干扰产生条件

EMC技术一_电磁干扰的现象,产生条件与兼容标准 (2011-10-14 09:24) 分类:专业学习 一,电磁干扰的现象 一个典型的电磁干扰现象是电视机屏幕上的干扰条纹。这些条纹来自附近的数字设备,例如个人计算机、VCD、DVD或其它数字视频设备。 根据电磁理论,导体中变化的电流会产生电磁场辐射,电流变化率(频率)越高,则辐射效率越高。因此任何依靠高频电流工作的电子设备在工作时都会产生电场波辐射。这些电场波会对附近的敏感设备产生干扰。 数字视频设备与电视接收机之间的干扰问题之所以十分突出,就是因为电视机是灵敏度很高的电场波接收设备,而数字脉冲信号中含有丰富的高次谐波,这些高次谐波的辐射效率很高。 电磁兼容三要素:任何电磁兼容性问题都包含三个要素,即干扰源、敏感源和耦合路径,这三个要素中缺少一个,电磁兼容问题就不会存在。因此,在解决电磁兼容问题时,也要从这三个要素入手进行分析,查清这三个要素是什么,然后根据具体情况,采取适当的措施消除其中的一个。 二,产生电磁干扰的条件: 1,突然变化的电压或者电流即dv/dt或者di/dt很大.2,辐射导线或者传导天线.当电压或电流发生迅速变化时,就会产生电磁辐射现象,导致电磁干扰。 因此,最近电磁干扰问题日益突出的主要原因之一就是脉冲电路(数字电路、脉冲电源)的大量应用。凡是存在这种电压或电流突然变化的地方,都要考虑电磁干扰问题 三,常见的干扰源. 环境中的电磁干扰分为自然的和人为的两种。 自然干扰源:雷电是一种主要的自然干扰源,雷电产生的干扰可以传到数千公里以外的地方。雷电干扰的时域波形是叠加在一串小随机脉冲背景上的一个大尖峰脉冲。宇宙噪声是电离辐射产生的,在一天中不断变化。太阳噪声则随着太阳的活动情况剧烈变化。自然界的噪声主要会对通信造成干扰。 人为干扰源:电磁干扰产生的根本原因是导体中有电压或电流的变化,即较大的 dV/dt或dI/dt。dV/dt或dI/dt能够使导体产生电磁波辐射。一方面,人们可以利用这一特点实现特定的功能,例如,无线通信、雷达和其它功能,另一方面,电子设备在工作时,由于导体中的dV/dt、dI/dt,会产生伴随电磁辐射。无论主观上出于什么目的,客观上对电磁环境造成了污染。 随着电子技术的广泛应用,电磁污染的情况越来越严重。

电磁波有危害生活中处处在 电磁波危害

现代人们的日常生活可以说离不开电磁波,这是因为没有电磁波,也就没有现代的无线电通讯,这样要使用手机打电话、收看电视节目都将是不可能的事情,现在的人们很难想象,如果没有邮电、电话、电报、电视、广播的世界将会是什么样子,电磁波在帮助人们实现美好的梦想、给人类带来极大方便的同时,也不可避免地带来一些危害。 一、什么是电磁波? 电磁波是电场和磁场在空间的传播而形成,它可以在真空或在介质中传播,在真空中,电磁波的传播速度最快,为3×103m/s,这个数值也是物体运动的极限速度,可见光、微波和γ射线都属于电磁波。 二、电磁波的特性 通过做磁铁实验就会发现,磁场的穿透能力非常强,不论是薄木片、垫板、铁片、铝箔纸还是手掌,都无法阻隔电磁波,电磁波中的磁场,与磁铁的磁场一样,它们都是无孔不入,并且具有很强的穿透力。 三、电磁波的产生与危害 由于电磁波的频率会发生变化,因此很容易对人们产生伤害。例如,在家庭照明电路中使用的是交流电,它的频率每秒钟正、反变化50次,也就相当于磁

场的方向每秒钟变化50次,这样变化的磁场可以使人体中产生变化的电流,从而会对人体产生一定的危害作用,对一般情况下使用的小磁铁来说,因为其南、北极固定不变的,因此不至于对人体产生危害, 在我们的日常生活中,到处都充满了电磁波,只要是使用家用电器,就不可避免地会产生电磁波,例如,电风扇、吹风机、果汁机、微波炉、电冰箱、洗衣机、电视机、空调器等这些家用电器在使用的过程中都会产生电磁波,就连墙壁中安装的照明暗线,也可以使电磁波检测笔哔哔叫,因而大家在睡觉时最好不要靠近装有电线的墙壁,以防因电磁波的影响而难以好好的休息。 我们经常使用的手机,它在接打电话时产生的电磁波还是比较强的,如果你是在电脑前接打电话,常常会发现电脑屏有明显的屏幕闪烁感;若是在正在播放节目的收音机前接打手机,收音机也会受到极大的干扰,影响收听的效果;大家看电视时,时常会发生图像抖动和“雪花”现象,这也是因为受到附件其它电器产生电磁波干扰的缘故。 微波炉工作时产生的微波也是很强的电磁波,有人曾经通过实验发现,微波炉工作时产生的微波能够抑制植物的生长!大家可能会觉得不可思议,然而这确是不争的事实,实验过程是这样的,将四盆绿豆苗分别放在微波炉中被微波照射约5s、10s、15s、20 s后,移出置于空旷处,另外一盆完全不照射微波,作为实验控制组,仔细观察这五盆绿豆苗每天的生长进度,发现不受微波照射的实验控制组,绿豆苗生长正常;经过微波照射后的那四盆绿豆苗中,只有照射5s的

开关电源中电磁干扰的产生及其抑制

开关电源中电磁干扰的产生及其抑制 摘要:电磁干扰对开关电源的效率和安全性及使用的影响日益成为人们关注的热点。本文分析了开关电源中电磁干扰产生的原因和传播的路径,并提出了抑制干扰的有效措施。 关键词:开关电源、电磁干扰、耦合通道、电磁屏蔽 1 引言 电磁兼容EMC是英文electro magnetic compatibility 的缩写。它包括两层含义,一是设备在工作中产生的电磁辐射必须限制在一定水平内,二是设备本身要有一定的抗干扰能力,它必须具备三个要素:干扰源、耦合通道、敏感体。给电子线路供电的开关电源对干扰的抑制对保证电子系统的正常稳定运行具有重要意义。本文通过分析开关电源中的干扰源和耦合通道,提出了抑制干扰的有效措施。并提出了开关电源中开关变压器的设计和制作方法。 2 开关电源中的干扰源和耦合通道 开关电源首先将工频交流电整流为直流电,然后经过开关管的控制变为高频,最后经过整流滤波电路输出,得到稳定的直流电压,因此,自身含有大量的谐波干扰。同时,由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰,都会产生不同程度的电磁干扰。开关电源中的干扰源主要集中在电压、电流变化大(即dV/dt或dI/dt很大)的元器件上,尤其是开关管、输出二极管和高频变压器等。同时,杂散电容会将电网的噪声传导到电子系统的电源而对电子线路的工作产生干扰。 这里我们来分析一下几种干扰产生的原因及其耦合的路径。 2.1输入整流滤波电路产生的谐波干扰 开关电源输入端普遍采用桥式整流,电容滤波电路。由于整流二极管的非线性和滤波电容的储能作用,使得输入电流i成为一个时间很短、峰值很高的周期性尖峰电流,如图1所示。这种畸变的输入电流,它除了基波外,还含有丰富的高次谐波分量。

电磁干扰及抑制技术

电磁干扰及常用的抑制技术 摘要:各种干扰是机电一体化系统和装置出现瞬时故障的主要原因。电磁兼容性设计是目前电子设备及机电一体化系统设计时考虑的一个重要原则,它的核心是抑制电磁干扰。电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手,切断干扰耦合的途径,干扰的影响也将被消除。常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔离等。 关键词:电磁干扰干扰抑制屏蔽接地 1.电磁干扰 电磁干扰(electro magnetic interference,EMI)是指系统在工作过程中出现的一些与有用信号无关的、并且对系统性能或信号传输有害的电气变化现象。构成电磁干扰必须具备三个基本条件:①存在干扰源;②有相应的传输介质;③有敏感的接收元件。只要除去其中一个条件,电磁干扰就可消除,这就是电磁抑制技术的基本出发点。 1.1 电磁干扰的分类 常见的各种电磁干扰根据干扰的现象和信号特征不同有以下分类方法。 1、按其来源分类 (1) 自然干扰。 自然干扰是指由于大自然现象所造成的各种电磁噪声。 (2) 人为干扰。

由于电子设备和其他人工装置产生的电磁干扰。 2、按干扰功能分类 (1) 有意干扰。 有意干扰是指人为了达到某种目的而有意识制造的电磁干扰信号。这是当前电子战的重要手段。 (2) 无意干扰。 无意干扰是指人在无意之中所造成的干扰,如工业用电、高频及微波设备等引起的干扰等。 3、按干扰出现的规律分类 (1) 固定干扰。 多为邻近电气设备固定运行时发出的干扰。 (2) 半固定干扰。 偶尔使用的设备(如行车、电钻等)引起的干扰。 (3) 随机干扰。 无法预计的偶发性干扰。 4、按耦合方式分类 (1) 传导耦合干扰。 传导耦合是指电磁噪声的能量在电路中以电压或电流的形式,通过金属导线或其他元件(如电容器、电感器、变压器等)耦合到被干扰设备(电路)。 (2) 辐射耦合干扰。 电磁辐射耦合是指电磁噪声的能量以电磁场能量的形式,通过空

电磁干扰的危害

电磁干扰的危害 作者:张林昌 作者单位:北方交通大学抗电磁干扰研究中心 刊名: 安全与电磁兼容 英文刊名:SAFETY & EMC 年,卷(期):2001(1) 被引用次数:8次 本文读者也读过(10条) 1.张林昌电磁辐射测量场地与设施的进展[期刊论文]-华北电力大学学报2002,29(z1) 2.窦维苹.张林昌.DOU Weiping.Zhang Linchang暴露于手机下45°人体模型内外场和能量分布的研究[期刊论文]-微波学报2000,16(3) 3.高攸纲展望21世纪的环境电磁学及电磁兼容技术[会议论文]-1999 4.杨长杰电磁兼容发射辐射测试中的新技术[期刊论文]-安全与电磁兼容2004(3) 5.海涛印制板设计的电磁抑制技术[期刊论文]-通信技术2000(2) 6.廖欣国外电磁兼容标准化动态[期刊论文]-中国标准化1998(11) 7.展望电工技术前沿活跃学术问题交流--"电工技术前沿问题学术论坛"胜利落幕[期刊论文]-电工技术杂志 2004(11) 8.贾好来PWM系统电磁兼容设计[期刊论文]-电气自动化2001,23(1) 9.张林昌测量接收机[期刊论文]-电子质量2001(5) 10.周克生.张林昌高速电气化铁道无线电噪声预测[期刊论文]-铁道学报1999(2) 引证文献(8条) 1.李丽光.谭业发.蔡文利.储伟俊.李华兵表面改性SiO2复合材料吸波性能的研究[期刊论文]-兵工学报 2009(6) 2.李丽光.谭业发.储伟俊.王小龙.谭华Ni-SiC/铁氧体复合材料涂层的制备及其吸波性能[期刊论文]-机械工程材料 2009(3) 3.雷停.管登高.徐冠立.孙遥.龚赢赢.孙传敏含镀锡镍玻璃纤维新型电磁屏蔽涂料的研制[期刊论文]-安全与电磁兼容 2012(5) 4.沈远茂.石丹.高攸纲.刘鹤勇.刘素玲利用多天线源搅拌改善混响室场均匀性的分析[期刊论文]-电波科学学报2009(4) 5.叶高文开关柜的抗电磁干扰技术研究[期刊论文]-机电产品开发与创新 2010(6) 6.李晓图书馆自动化设备的电磁兼容[期刊论文]-现代图书情报技术 2003(3) 7.李晓EMC--给图书馆设备带来的安全问题[期刊论文]-安全 2003(1) 8.管登高.孙传敏.孙遥.林金辉.陈善华.龙剑平.王自友.卢长寿一种新研制的电磁屏蔽涂料及其在EMC中的应用[期刊论文]-电讯技术 2009(12) 本文链接:https://www.doczj.com/doc/bd732607.html,/Periodical_aqydcjr200101002.aspx

电磁干扰诊断技巧实例分析

电磁干扰诊断技巧实例分析 一.前言 关于电磁干扰的对策,许多刚接触的工程师往往面临一个问题,虽然看了不少对策的书籍,但是却不知要用书中的那些方法来解决产品的EMI问题。这是一个很实际的问题,看别人修改似乎没什么困难,对策加了噪声便能适当的降低,而自己修改时下了一大堆对策,找了一大堆的问题点,却总不能有效地降低噪声。 事实上,这往往也是EMI修改最耗时间的地方,笔者把一些基本的判断方法做详细的介绍,以提供刚入门或正面临EMI困扰问题的读者参考,整理了一些原则与判断技巧,希望能够对读者有帮助。 二. 水平、垂直判断技巧 EMI的测试接收天线分为水平与垂直二个极化,亦即要分别测试记录此二个天线方向的最大读值,噪声必须要在天线为水平及垂直测量时皆能符合规格,测量天线要测量量水平及垂直二个方向,除了要记录到噪声最大时的读值外,也能显示出噪声的特性,由这个特性的显示,我们可初步判断造成EMI问题的重点,对于细部的诊断是很有帮助的,通常这个方法是很容易为修改对策人员所忽略。在本期的分析中,笔者要介绍几种EMI的判图技巧,也就是如何从静态的频谱分析仪所得到的 噪声频谱图做初步的分析,另外也会介绍一般对策修改人员最常用的一些动态分析技巧。 许多工程师常常花了许多时间与精神,却感觉无法掌握到重点,可能就是缺乏基本分析的技巧,在噪声的判断上有一些混淆,如果能够掌握一些分析方法,可以节省不少对策的时间。这里所提的一些方法,一直被不少资深的EMI工程师视为秘诀,因为其中往往是累积了多年的心得与经验才体悟出来的方法,而这些方法通常都是非常有效的。 实例一水平与垂直读值的差异 说明:

1.这是Modem&Telephone的产品,读者可以很明显地看出来,天线水平时的噪 声和垂直时的噪声有很大的差异,那么这其中代表了什么意义呢? 分析讨论 要清楚的认识这个问题,首先必须要了解天线的基本理论,我们先假设发射与接收天线皆为偶极天线。 发射天线接收天线 上图为当发射天线与接收天线同方向时,由于所产生的电磁波极化相同,故此时接收天线可得到最大的共振接收强度 发射天线接收天线 当发射天线与接收天线不同方向时,则由于发射天线的电磁波为水平极化,而接收 天线的电磁波为垂直极化,故在共振接收的强度上最小。 以上述这个观念来分析水平与垂直噪声的强度差异,当接收天线为水平时噪声强度较高,可以推测此噪声来源主要是由产品内或外的水平线所造成,而当接收天线为垂直时噪声强度较高,可以推测此噪声来源主要是由产品内或外的垂直线所造成,也就是从天线共振的角度去思考问题,把产品的辐射源也想象成一假想的天线,那么在相同方向其所造成的共振效应会最大。 以这个观点来看问题有时往往很快能找到问题的重点,尤其是一些比较复杂的产品其内部及外部皆有许多导线、连接线的产品,如果能先以水平、垂直的读值做初步的分析,则比较不容易误判造成噪声的机制。 实例二水平与垂直读值的差异

电磁波的危害和防护

电磁波的危害和防护 随着经济的发展和物质文化生活水平的不断提高,各种家用电器——电视机、空调器、电脑、手机等已经成为现代都市家庭不可或缺的东西。然而,各种家用电器和电子设备在使用过程中会产生多种不同波长和频率的电磁波。在特定条件下,这些电磁波可能成为“电磁污染”,危害到人们的健康。 1 电磁污染危害人体的机理 电磁污染危害人体的机理主要是热效应、非热效应和累积效应等。 热效应:人体70%以上是水,水分子受到电磁波辐射后相互摩擦,导致体温升高,从而影响到体内器官的正常工作。 非热效应:人体的器官和组织都存在微弱的电磁场,一旦受到外界电磁场的干扰,处于平衡状态的微弱电磁场将遭到破坏,人体也会遭受损伤。 累积效应:热效应和非热效应对人体的伤害具有累积效应,其伤害程度会随时间和影响程度发生累积,久而久之会成为永久性病态。对于长期接触电磁波辐射的群体,即使电磁波功率很小、频率很低,也可能被诱发意想不到的病变。 2 电磁污染的危害

1998年世界卫生组织调查显示,电磁辐射对人体有五大影响:(1)电磁辐射是心血管疾病、糖尿病、癌突变的主要诱因之一; (2)电磁辐射会对人体生殖系统、神经系统和免疫系统造成直接伤害; (3)电磁辐射是造成孕妇流产、不育、畸胎等病变的诱发因素之一; (4)过量的电磁辐射直接影响儿童身体组织、骨骼发育,导致视力、肝脏造血功能下降,严重者可导致视网膜脱落; (5)电磁辐射可使男性性功能下降、女性内分泌紊乱。 3 电磁波的防护 3.1电磁环境标准及相关规定 为控制现代生活中电磁波对环境的污染,保护人们身体健康,1989年12月22日我国卫生部颁布了《环境电磁波卫生标准》( GB9175-88),规定居住区环境电磁波强度限制值:长、中、短波应小于lOV/m,超短波应小于5V/m,微波应小于10μW/cm2。我国有关部门还制订了《电视塔辐射卫生防护距离标准》,国家环保局也颁布了《电磁辐射环境保护管理办法》。

继电器电磁干扰的分析及抑制

摘要:本文主要介绍了对电气设备中继电器及其开关触点干扰抑制的机理,提出了抑制干扰的有效措施。 关键词:继电器电磁干扰分析抑制 1前言 随着科学技术的飞速发展,电子、电力电子、电气设备应用越来越广泛,它们在运行过程中会产生较强的电磁干扰和谐波干扰。其中,电磁干扰具有很宽的频率范围(从几百Hz 到MHz),又有一定的幅度,经过传导和辐射会污染电磁环境,对电子设备造成干扰,有时甚至危及操作人员的安全。特别是大功率中、短波广播发射中心,其周围电磁环境尤为复杂,要想保证设备安全稳定运行,电子设备及电源必须具有更高的电磁兼容性。 2电磁干扰的抑制 电磁干扰EMI(Electromagnetic Interference)是指由无用信号或电磁骚扰(噪声)对有用电磁信号的接收或传输所造成的损害。一个系统或系统内,某一线路受到电磁干扰的程度可以表示为如下关系式: N=G×C/I 其中:G为噪声源强度; I为受干扰电路的敏感程度;

C为噪声通过某种途径传导受干扰处的耦合因素。 从上式可以看出,电磁干扰抑制的技术就是围绕这三个要素所采取的各种措施,归纳起来就是: (1)抑制电磁干扰源; (2)切断电磁干扰耦合途径; (3)降低电磁敏感装置的敏感性。 2.1抑制电磁干扰源 首先必须确定干扰源在何处,越靠近干扰源的地方采取措施抑制效果越好,一般来说,电流电压瞬变的地方(即di/dt或du/dt)即是干扰源,如:继电器开合、电容充放电、电机运转、集成电路开关工作等都可能成为干扰源。另外,市电并非理想的50Hz正弦波,其中充满各种频率噪声,也是不可忽视的干扰源。 抑制干扰源就是尽可能的减小di/dt或du/dt,这是抗干扰设计时最优先和最重要的原则。减小di/dt的干扰源,主要是在干扰回路串联电感或电阻以及增加续流二极管来实现;减小du/dt的干扰源,则是通过在干扰源两端并联电容来实现。 抑制方法通常采用低噪声电路、瞬态抑制电路、稳压电路等,所选用的器件应尽可能采用低噪声、高频特性好、稳定性高的电子元件,特别要注意,抑制电路中不适当的器件选择可能会产生新的干扰源。

电磁干扰的来源及屏蔽方法介绍

电磁干扰的来源及屏蔽方法介绍 EMC问题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具体的抑制方法。 电磁兼容性(EMC)是指一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEE C63.12-1987)。对于无线收发设备来说,采用非连续频谱可部分实现EMC性能,但是很多有关的例子也表明EMC并不总是能够做到。例如在笔记本电脑和测试设备之间、打印机和台式电脑之间以及蜂窝电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。EMC问题来源 所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。 EMI有两条途径离开或进入一个电路:辐射和传导。信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。 很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。 对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。 金属屏蔽效率 可用屏蔽效率(SE)对屏蔽罩的适用性进行评估,其单位是分贝,计算公式为:

电磁波,无线电频率.抗干扰性,穿透能力的粗浅关系

抗干扰能力与频段的高低没有直接关系,任何频段都可以出现不同程度的同频或者临频干扰。 低频段电波绕射能力较强,高频段电波穿透能力较强 频率越高,它的信号衰落越大 频率越高,波长越短,穿透作用越强。(波粒二象性:波长越短,能量越大,穿透能力越强) 对于电磁波,高频率电波波长短,绕射能力弱,传输距离近。 无线电技术的原理在于,导体中电流强弱的改变会产生无线电波。利用这一现象,通过调制可将信息加载于无线电波之上。当电波通过空间传播到达收信端,电波引起的电磁场变化又会在导体中产生电流。通过解调将信息从电流变化中提取出来,就达到了信息传递的目的。 频率越高波长越短,饶射(衍射效果)能力越弱,但穿透能力(不变方向)越强,信号穿透会损失很大能量,所以传输距离就可能越近,频率越高在传播过程的损耗越大。 但高频信号本身携带的能量很高,具有很强的穿透能力,比如当无线电波频率很高时,他会穿透电离层,不会在电离层形成反射。

频率高带宽就宽,带宽变宽速率就快,速率快,传送的信息量就大 频率高的波适合去直线传播穿透能力比较强低频波适合用于远距离传播衍射能力比较强. 电磁波包括无线电波和光波。因为无线电波分为12个波段,3Hz~3×1012 Hz,而光波的波长比无线电波的中微波波长还短,超出了无线电波的范畴,无线电波不包含光波。而电磁波包括光波和无线电波。电磁波包括宇宙射线、X射线、紫外线、可见光、红外线(前面这些合称光波)和无线电波等。它们都各有不同的波长和振动频率。 在整个电磁波范围内,并不是所有的光都有色彩,更确切地说,并不是所有的光的色彩我们肉眼都可以分辨。只有波长在380纳米至780纳米之间的电磁波才能引起人的色知觉。这段波长的电磁波叫可见光谱,或叫做光。其余波长的电磁波,都是肉眼所看不见的,通称不可见光。 也就是说,无线电波是电磁波的一种,光波也是电磁波。电磁波与无线电波的关系就是电磁波包含无线电波。 一个东西不同的波长罢啦

电磁干扰的传播过程

电磁干扰的传播过程 电磁干扰是电子电路设计过程中最常见的问题,设计师们一直在寻找能够完全消除或降低电磁干扰,也就是EMI的方法。但想要完全的消除EMI的干扰,首先需要的就是了解EMI是什么,它的传播过程是怎样的,本文就将对EMI的传播过程进行一个大致的介绍。 EMI是电磁干扰的统称,但实际上电磁干扰分为两种,一种是传到干扰,另一种是辐射干扰。传导干扰主要是电子设备产生的干扰信号是通过导线或公共电源线进行传输,互相产生干扰。进一步细分,传导干扰又分共模干扰和差模干扰。 EMI的传播过程 EMI的传播过程主要途经三个部分,干扰源、干扰途径、接收器。对于开关电源来说,最后一部分是不需要考虑的,干扰源也不能消灭,因为它也是开关电源之所以能工作的源头,但是可以通过软开关、加缓冲等方式来使干扰源的干扰小一些。控制干扰途径是降低开关电源EMI的重要一环,也是本文的重点。 信号源波形产生的频谱

电压波形产生的频谱 周期信号的频谱是没有偶次谐波的,正负对称的波形产生的频率分量更少,像桥式电路。高数都忘光了,有兴趣的做一下FFT。 占空比和波形斜率的影响 占空比越大时,干扰的幅度也大一些,这个可由FFT的系数算出来。 波形的斜率对干扰的高频部分影响非常大。低频部分几乎没有影响。低频部分主要由波形的幅度和高电平部分的宽度决定的,但高频部分大幅度下降的转折点为1/(3.14*tr),所以tr 越大时,转折点的频率越低,高频下降越大。 所以我们应该想到降低斜率的措施,缓冲电路。

小结: 电压和电流波形都有很丰富的频率成分 超过200M时由于幅值已经很低,所以影响很小 波形影响低频部分 上升沿和下降沿影响高频部分 占空比对个频谱幅值有一点影响 可以看到电磁干扰的过程并不简单,但也并非复杂难解。只有在充分理解EMI的原力之后才能对EMI进行行之有效的规避和抑制,希望大家在阅读过本文后能对EMI有进一步的了解。

电磁波的危害

电磁波的危害 郑 20090012 众所周知,广播能播音,电视能播画面,手机能联络,卫星太空通讯能实现,都是由于电磁波的存在。雷达、微波炉、无线网络以及X光同样都是通过电磁波来工作的。电磁波使用的范围十分广泛,已经囊括了整个世界。 随着电子、电气、通讯及信息产业的飞速发展,以集成电路(IC)和大规模集成电路为核心所组成的电子仪器和电子设备,在广泛地应用到现代社会的各个领域的同时,也给人们带来了一系列新的问题,主要表现在电磁波辐射带来的危害:如电磁波干扰、电磁波信息泄密及电磁环境污染的危害等,它己成为一个越来越严重且愈来愈被人们所关注的问题 电磁波世界,无所不有。有长波、短波,有高能波、低能波,有强波、微波,有可见的、不可见的,而看不见的电磁波要远远多于可见波。每一种电磁波其实都是一种能量,它的体积等于零,但荷载着电,名字叫量子,在振动中以光速移动。电磁波冲击着宇宙中无处不在的电磁波大气。这些小小的量子在光的世界里可以被称作光子,人们从强度、波长和频率三方面来给它定义。波长有点像人的脚步,波长可以短到十亿分之一米,也可以长到几百万公里。频率则可与呼吸或与心律相比较。电磁波的“脚步”越大,它的频率就越低。 一、什么是电磁辐射 电磁波是一种物质存在形式,从古至今就存在于我们周围,比如:阳光、闪电、热能等。无线电波、微波、红外线、紫外线、可见光、射线等都属于电磁波。肉眼看得见的可见光属于电磁波中很短的一段。 电磁辐射是指能量以电磁波形式由源发射到空间的现象,或解释为能量以电磁波形式在空间传播,人们还称其为"电子烟雾"。科学家研究发现,只要有电,电磁波无处不在。各种电子设备,包括电脑、电视机、空调机、手机、电视机、微波炉等,在正常工作时都会产生各种不同的波长和频率的电磁波。打个比方,当我们向水中扔一块石子时,在石子入水处会形成一个中心,水此以此中心向周围传播。电磁辐射在空中传播也类似水波,如果假设没有损耗,就可以无限远地传播开来。但是,由于空气和空间物体有吸收作用,电磁辐射也只能在有限的范围内传播。我们可以用家中取暖的壁炉与电磁波做一个比较。不管壁炉大小,如果你把手放在火苗上烤,哪怕就是短短几秒,也肯定会烫伤。如果把手放到距离火苗50厘米的高度,手很快就会被烤得焦黄。离火苗两三米高,既能享受取暖,也不存在任何风险。但如果把手提高到离火苗10米的地方,就失去取暖的作用了。如果把你烤火获得的能量量化,那么,在距离火苗1厘米处呆1分钟获得的能量,等于在距离火苗1米远的地方呆了1个星期获得的能量,但获得的效果则完全不同,对电磁波来说情况也是一样。不过分靠近电磁波有益于健康。距离多远才合适,取决于电磁波传播的强度。 二、电磁辐射在哪里 电磁辐射就在我们身边,如高压线、变电站、电台、电视台、雷达站、电磁波发射塔和电子仪器、医疗设备、办公自动化设备和微波炉、收音机、电视机、电脑以及手机等家用电器工作时所产生的各种不同波长频率的电磁波。更如电

电磁干扰及其抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (洲坝通信工程方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是 EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率围。

1.1 EMI特性分析 在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI 成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰

常见电磁干扰

常见电磁干扰 所谓的电磁干扰,广义来说,一切进入信道或通信系统的非有用信号,均称之为电磁干扰。按照干扰产生的方式,可分为自然干扰和人为干扰两类。自然干扰以其发生源不可控制为特点。例如:大气噪声、宇宙噪声和太阳噪声等。人为干扰以其发生源可知并且可控为特点,又可分为无线电干扰和非无线电干扰两大类。无线电干扰主要是指通讯设备收、发信机产生的各种干扰。如由发信机产生的杂散辐射(发信机寄生辐射)、边带噪声,由收信机产生的寄生响应,以及由收、发信机都可能产生的互调干扰等。非无线电干扰包括工业、科研、医疗及家用电气设备产生的干扰,还包括电力线干扰及由各种方式产生的火花干扰等。 本文主要探讨移动通信中常出现的干扰。近几年来,随着计算机技术和微电子技术的不断发展,传统的移动通信在技术上也取得了一系列的突破,并以其容量大,保密性好,通信稳定和机动、灵活等特点,在军事领域及水利、气象、交通、公安等部门得到了广泛应用。特别是深圳地区,其应用范围之广,数目之多是惊人的,然而,由于空间道路即无线电频率的紧张和拥挤,移动通信网中的无线电干扰问题也显得日益严重,在利用移动网时,应特别注意解决干扰问题,除了要进行必要的线路技术分析以外,还要根据不同的信道条件。正确选择通信机类型及其参数指标。 一、移动通信网中常见的几种干扰类型 1.邻道干扰 2.发信机噪声 3.发信机辐射和收信机寄生响应 4.互调干扰 5.同频干扰(同信道干扰) 根据抑制措施的不同,这五种干扰粗略地可分为两类:一类是在组网前,通过选择技术性能优良的机型便可以克服的干扰。如前三种干扰,它反映了设备的内在性能、质量即电磁兼容性问题。从源头上消除干扰源;二是在组网后,通过采取一些技、战术措施便可以消除干扰,如后两种,它在一定程度上反映了设备及网络的管理维护水平。 二、移动通信网常见干扰的形成及抑制措施 1.邻道干扰 邻道干扰是来自相邻波道信号。它是由于收信机选择性差,或者是邻道发信机频带过宽造成的(这种干扰一般来源于2-3Km范围内的发信电台)。对于前者,可以靠提高收信机的选择性来消除;而后者只能以限制相邻频道发信机带宽的方法加以解决。所有这些,只有通过提高收、发信机的设计要求和技术指标才能实现。 2.发信机噪声 是以载频为中心,分布在数十千赫到数兆赫范围之内的频率,对其它收信机造成的干扰。发信机噪声的大小,主要由振荡器的信噪比和串入倍频器、调制器的噪声来决定的。为了降低发信机的噪声,一是要选择好振荡器的供电电源(采用稳压电源、加滤波器等),二是要减少倍频次数。 3.发信机寄生辐射和收信机寄生响应 (1)发信机寄生辐射:由于发信机多级倍频器的非线性及滤波特性的不完善,在发信机的输出端将产生许多寄生物,称之为寄生辐射,即发信机杂波辐射。

低频电磁波的屏蔽

低频电磁波的屏蔽一、前言 凡是有电源的地方、有用电设备的地方、几百米内有高压电线的地方、几十米内有地下电缆的地方,甚至只有金属管道和金属梁架的地方,都可能有高达数十以至数百毫高斯的低频电磁干扰。低频电磁干扰的强度变化常常无规律可循,短时间内就会有相当大的上下波动;低频电磁干扰的来源往往难以确定,这样就更增加了屏蔽设计的难度。 二、低频电磁屏蔽与其它屏蔽的差异比较 1、低频电磁场 根据电磁波传输的基本原理,在频率很低的时候良导体中的电磁波只存在于导体表面有“趋肤效应”(波从表面进入导电媒质越深,场的幅度就越小,能量就变得越小,这一效应就是趋肤效应)。 高频电路中,传导电流集中到导线表面附近的现象也有这样的问题又称“集肤效应”。交变电流通过导体时,由于感应作用引起导体截面上电流分布不均匀,愈近导体表面电流密度越大。这种“趋肤效应”使导体的有效电阻增加。频率越高,趋肤效应越显著。当频率很高的电流通过导线时,可以认为电流只在导线表面上很薄的一层中流过,这等效于导线的截面减小,电阻增大。既然导线的中心部分几乎没有电流通过,就可以把这中心部分除去以节约材料。因此,在高频电路中可以采用空心导线代替实心导线。此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。在工业应用方面,利用趋肤效应可以对金属进行表面淬火。)、磁滞损耗(放在交变磁场中的铁磁体,因磁滞现象而产生一些功率损耗,从而使铁磁体发热,这种损耗叫磁滞损耗。铁磁材料在磁化过程中由磁滞现象引起的能量损耗。磁滞指铁磁材料的磁性状态变化时,磁化强度滞后于磁场强度,它的磁通密度B与磁场强度H之间呈现磁滞回线关系。经一次循环,每单位体积铁心中的磁滞损耗等于磁滞回线的面积。这部分能量转化为热能,使设备升温,效率降低,这在交流电机一类设备中是不希望的。软磁材料的磁滞回线狭窄,其磁滞损耗相对较小。硅钢片因此而广泛应用于电机、变压器、继电器等设备中。)以及反射损耗(反射损耗是指由于屏蔽的内部反射导致的能量损耗的数量,他随着波阻和屏蔽阻抗的比率而变化)都很小,低频电磁波的能量基本由磁场能量构成。所以这时我们所要屏蔽的应该是电磁波的磁场分量(电磁屏蔽的

电磁干扰及常用的抑制技术

电磁干扰及常用的抑制技术 刘宇媛 哈尔滨工程大学 摘要:各种干扰是机电一体化系统和装置出现瞬时故障的主要原因。电磁兼容性设计是目前电子设备及机电 一体化系统设计时考虑的一个重要原则,它的核心是抑制电磁干扰。电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手,切断干扰耦合的途径,干扰的影响也将被消除。常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔离等。 关键词:电磁干扰干扰抑制屏蔽接地 1.电磁干扰 电磁干扰(electro magnetic interference,EMI)是指系统在工作过程中出现的一些与有用信号无关的、并且对系统性能或信号传输有害的电气变化现象。构成电磁干扰必须具备三个基本条件:①存在干扰源;②有相应的传输介质;③有敏感的接收元件。只要除去其中一个条件,电磁干扰就可消除,这就是电磁抑制技术的基本出发点。 1.1 电磁干扰的分类 常见的各种电磁干扰根据干扰的现象和信号特征不同有以下分类方法。 1、按其来源分类(1) 自然干扰。自然干扰是指由于大自然现象所造成的各种电磁噪声。 (2) 人为干扰。由于电子设备和其他人工装置产生的电磁干扰。 2、按干扰功能分类 (1) 有意干扰。有意干扰是指人为了达到某种目的而有意识制造的电磁干扰信号。这是当前电子战的重要手段。 (2) 无意干扰。无意干扰是指人在无意之中所造成的干扰,如工业用电、高频及微波设备等引起的干扰等。 3、按干扰出现的规律分类 (1) 固定干扰。多为邻近电气设备固定运行时发出的干扰。 (2) 半固定干扰。偶尔使用的设备(如行车、电钻等)引起的干扰。 (3) 随机干扰。无法预计的偶发性干扰。 4、按耦合方式分类 (1) 传导耦合干扰。传导耦合是指电磁噪声的能量在电路中以电压或电流的形式,通过金属导线或其他元件(如电容器、电感器、变压器等)耦合到被干扰设备(电路)。 (2) 辐射耦合干扰。电磁辐射耦合是指电磁噪声的能量以电磁场能量的形式,通过空间辐射传播,耦合到被干扰设备(或电路)。 1.2 电磁噪声耦合途径 干扰源对电子设备的干扰是通过一定耦合形式进行的,无论是内部干扰或外部干扰,都是通过“路”(传输线路或电路)或“场”(静电场或交变电磁场)耦合到被干扰设备中的。 1、电磁噪声传导耦合 (1)直接传导耦合。电导性直接传导耦合最简单、最常见,但它也是最易被人们忽视的一种耦合方式。在考虑电磁兼容性问题时,必须考虑导线不但有电阻足,而且有电感L,漏电阻R,以及杂散电容C。在实际使用中尤其是频率比较高时,这些分布参数对信号的传输有着十分重要的影响。如何考虑分布参数的影响与传输线的长度密切相关。根据传输线的长度与传输信号频率的关系可把传输线分为长线和短线,对短信号线不必进行阻抗匹配,而对长信号线应在终端进行阻抗匹配。 (2)公共阻抗耦合。当干扰源的输出回路与被干扰电路存在一个公共阻抗时,两者之间就会产生公共阻抗耦合。干扰源的电磁噪声将会通过公共阻抗耦合到被干扰电路而产生干扰。所谓“公共阻抗”通常不是人们故意接人的阻抗,而是由公共地线和公共电源线的引线电感所

相关主题
文本预览
相关文档 最新文档