当前位置:文档之家› 滤波电感的计算

滤波电感的计算

滤波电感的计算
滤波电感的计算

5.4 滤波电感的分析计算

在直流变换电路中,都设有LC 滤波电路,滤波电感中的电流含有一个直流成分和一个周期性变化的脉动成分。磁场的变化规律如图5-6。下面以Buck 型直流变换电路为例说明滤波电感的设计方法。Buck 电路的原理图如图5-10(a),电感L 的作用是滤除占波开关输出电流中的脉动成分。从滤波效果方面考虑,电感量越大,效果越明显。但是,如果电感量过大,会使滤波器的电磁时间常数变得很大,使得输出电压对占空比变化的响应速度变慢,从而影响整个系统的快速性。一味地追求减小输出电压的纹波成分是不可取的。所以在设计电感参数时应从减小纹波和保持一定的快速性两个方面去考虑。

(a) (b)

图5-10 Buck 电路及其电感的电流

1. 电感量的计算

首先讨论以限制电流波动为目的的电感量的计算。由对斩波器的分析可知,电路进入稳定状态后,电感电流在最小值I Lmin 和最大值I Lmax 之间波动变化,波动的幅度为ΔI ,如图5-10(b),电感L 与ΔI 的关系为

T D I

U L O )1(??= (5.29) 可见电感量越大,电流的波动就越小。一般电流波动ΔI 根据使用要求预先给定,由此来决定电感的大小。式(5.29)还说明,对于同样的ΔI ,在不同占空比下所需的电感是不同的。在占空比较小时需要更大的电感。

在电路工作中,如果负载突然变化,输出电流I O 会随之变化,为了保持输出电压U O 不变,占空比必须做相应的变动。由于滤波器由储能元件构成,不可能立即跟踪占空比的变化,这就会出现一个过渡过程。我们希望这个过渡过程的时间越短越好。设负载变化以前的占空比为D 1,负载变化以后的占空比为D 2。过渡过程时间为T R ,它们之间的关系为

)1(1

2??=D D U I L T O R (5.30) 式(5.30)的推导比较复杂,读者可以参考有关资料。但由上式可以看出,电感越大,对应的过渡过程时间就越大,这说明电感过大对提高快速性是不利的。通常过渡过程时间也是预先给定的,这样,可根据电流波动量ΔI 、输出电压U O 、过渡过程时间T R 以及最大占空比D max 和最小占空比D min 来确定满足快速性的电感量

)1(min

max ??=D D I T U L R O (5.31) 综合两种目的的分析,电感量的取值范围应满足

)1()1(min min max D I

T U l D D I T U O R O ??>>?? (5.32) 2. 电感结构的计算

电感的结构包括磁芯的尺寸、材料、绕组的匝数、导线的直径等内容。电感量越大说明相应的匝数也会增多,磁芯的体积就要大一些;电流越大,说明采用的导线就越粗,也要求磁芯的体积增大。采用高导磁率的材料,同样H 的情况可以得到更大的B ,磁芯的尺寸就会减小。另外,如果允许通过的电流密度J m 大一些,线径可以减小,磁芯尺寸也可以随之减小。反映磁芯尺寸的WS C 乘积与上述物理量之间可由以下经验公式描述

K

J B LI WS m m C 2

=(cm 4) (5.33) 式(5.33)中各量的单位为:B m 为(T );J m 为(A/m 2);L 为(H );I 为(A )。K L 为窗口利用系数,对于环型磁芯K L =0.4;EI 和EE 型K L =0.8;罐型K L =0.3~0.6。

绕组的匝数由以下分析得出,由电磁学理论可知,电流I 、磁通Φ、电感L 和线圈匝数N 之间的关系为:N Φ=LI ,而Φ=BS C ,所以

C

m S B LI N = (5.34) 导线的截面积S L 仍可按通过的电流和允许的电流密度求得,即

m

L J I S =

(5.35) 3. 磁路气隙的计算

由于滤波电感在工作中电流有一个较大的直流成分,很容易引起磁路的饱和,所以电感的磁路一般都加入气隙,气隙的长度l G 由下式计算

L

S N l C O G 2μ= (5.36) 对式(5.36)解释如下,由于气隙的磁阻比磁路的其它部位要大得多,可认为整个磁场能量都集中在气隙部分。磁路的截面积为S C ,气隙长度为l G ,其体积V =S C l G ,总的磁场能量为

G C M l BHS E 2

1=

(5.37) 另一方面,磁场能量也可以表示为 221LI E M =

(5.38) 而N =LI/Φ,B =Φ/S C ,B=μO H ,将这些关系代入式(5.37)和(5.38),然后联立二式,经整理就可得到式(5.36)。式(5.36)中各量的单位为:l G 为(m );L 为(H );S C 为(m 2)。μO =4π×10-7。

详细解析电源滤波电容的选取与计算

电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C. 因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。 采用电容滤波设计需要考虑参数: ESR ESL 耐压值 谐振频率

电感滤波电路作用原理

电感滤波电路作用原理 Final revision by standardization team on December 10, 2020.

电容滤波电路电感滤波 电路作用原理 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量。 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 一、电阻滤波电路: RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数 S=(1/ωC2R)S。

由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合。 二、电感滤波电路: 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。 并联的电容器C在输入电压升高时,给电容器充电,可把部分能量存储在电容器中。而当输入电压降低时,电容两端电压以指数规律放电,就可以把存储的能量释放出来。经过滤波电路向负载放电,负载上得到的输出电压就比较平滑,起到了平波作用。若采用电感滤波,当输入电压增高时,与负载串联的电感L中的电流增加,因此电感L将存储部分磁场能量,当电流减小时,又将能量释放出来,使负载电流变得平滑,因此,电感L也有平波作用。 利用储能元件电感器L的电流不能突变的特点,在整流电路的负载回路中串联一个电感,使输出电流波形较为平滑。因为电感对直流的阻抗小,交流的阻抗大,因此能够得到较好的滤波效果而直流损失小。电感滤波缺点是体积大,成本高。

如果确定开关电源电感值

如果确定开关电源电感值 开关电源电感器是开关电源设备的重要元器件,它是利用电磁感应的原理进行工作的。它的作用是阻交流通直流,阻高频通低频(滤波),也就是说高频信号通过电感线圈时会遇到很大的阻力,很难通过,而对低频信号通过它时所呈现的阻力则比较小,即低频信号可以较容易的通过它。电感线圈对直流电的电阻几乎为零。 本文将阐明为非隔离式开关电源(SMPS)选用电感器的基本要点。所举实例适合超薄型表面贴装设计的应用,像电压调节模块(VRM)和负载点(POL)型电源,但不包括基于更大底板的系统。 图1所示为一个降压拓扑结构开关电源的架构,该构架广泛应用于输出电压小于输入电压的开关电源系统。在典型的降压拓扑结构电路中,当开关(Q1)闭合时,电流开始通过这个开关流向输出端,并以某一速率稳步增大,增加速率取决于电路电感。根据楞次定律,di=E*dt/L,流过电感器的电流所发生的变化量等于电压乘以时间变化量,再除以这个电感值。由于流过负载电阻RL的电流稳定增加,输出电压成正比增大。 在达到预定的电压或电流限值时,开关电源控制集成电路将开关断开,从而使电感周围的磁场衰减,并使偏置二极管D1正向导通,从而继续向输出电路供给电流,直至开关再度接通。这一循环反复进行,而开关的次数由控制集成电路来确定,并将输出电压调控在要求的电压值上。图2所示为在若干个开关循环周期内,流过电感器和其它降压拓扑电路元件上的电压和电流波形。 电感值对于在开关电源开关断开期间保持流向负载的电流很关键。所以必须算出保持降压变换器输出电流所必需的最小电感值,以确保在输出电压和输入电流处于最差条件下,仍能够为负载供应足够的电流。为确定最小的电感值,

开关电源变压器共模电感设计方案注意事项

开关电源变压器共模电感设计注意事项 在电源变压器的设计过程中,工程师们需要严格的计算并完成共模电感设计和数值选取,这直接关系到开关电源变压器的运行精度。在今天的文章中,我们将会就开关电源变压器的共模电感设计展开简要分析,看在电源变压器共模电感设计和计算过程中,都应该注意哪些问题。 在电源变压器的设计和制作过程中,工程师所要进行的共模电感设计,其所需要的基本参数主要有三个,分别是输入电流,阻抗及频率,磁芯选取。先来看输入电流。这一参数值直接决定了绕组所需的线径。在线径的计算和选取时,电流密度通常取值为400A/cm³, 但此取值须随电感温升的变化。通常情况下,绕组使用单根导线作业,这样可削减高频噪声及趋肤效应损失。 在计算过程中,开关电源变压器共模电感的阻抗在所给的频率条件下,一般规定为最小值。串联的线性阻抗可提供一般要求的噪声衰减。但实际上,线性阻抗问题往往是最容易被人忽视的,因此设计人员经常以50W线性阻抗稳定网络仪来测试共模电感,并渐渐成为一种标准测试共模电感性能的方法。但所得的结果与实际通常有相当大的差别。实际上,共模电感在正常时角频首先会产生每八音度增加-6dB 衰减(角频是共模电感产生-3dB)的频率此角频通常很低,以便感抗能 够提供阻抗。因此,电感可以用这一公式来表达,即:Ls=Xx/2 n f

这里还有一个问题需要工程师需要注意,那就是在进行共模电感设计时须注意磁芯材料和所需的圈数问题。首先来看磁芯型号的选取问题,此时如果有规定电感空间,我们就按此空间来选取合适的磁芯型号,如没有规定,通常磁芯型号的随意选取。 在确定了电源变压器的磁芯型号之后,接下来的工作就是计算磁芯所能绕最大圈数。通常来说,共模电感有两绕组,一般为单层,且每绕组分布在磁芯的每一边,两绕组中间须隔开一定的距离。双层及堆积绕组亦有偶尔使用,但此种作法会提高绕组的分布电容及降低电感的高频性能。由于铜线的线径已由线性电流的大小所决定,内圆周长可以由磁芯的内圆半径减去铜线半径计算得来。故最大圈数的就可以铜线加绝缘的线径及每个绕组所占据的圆周来计算。

20170425-开关电源中的电感面积积设计公式(一)

开关电源中的电感面积积设计公式(一) 普高(杭州)科技开发有限公司 张兴柱 博士 A :直流滤波电感的面积积设计公式: (t i L t I I 图1: 一般化的直流滤波电感和其电流波形 图1是开关电源中的一个一般化的直流滤波电感和其电流波形。当该电感的电感量和电流已知时,我们可以通过适当的推导,得到上述一般化直流滤波电感的面积积设计公式。具体推导如下: 由电感的磁链公式,可得:m c L m L Lpeak B A N N LI =Φ= 所以有: m L Lpeak c B N LI A = (1) 其中:m B 为电感电流峰值所对应的磁密,其选取须保证sat m B B <。在电感采用(H ),电流采用(A ),磁密采用(Gass ),截面积采用2)(cm 这一单位制时,上式中要加一个系数,如下所示: 28)(10cm B N LI A m L Lpeak c ×= (2) 根据窗口方程: a Lrms L KW J I N = (3) 其中:J 为绕组的电流密度,K 为窗口系数,a W 为铁芯的窗口面积,所以有: KJ I N W Lrms L a = (4) 在电流采用(A ),电流密度采用2)/(mm A ,窗口面积采用2)(cm 这一单位制时,上式中要

加一个系数,如下所示: 22)(10cm KJ I N W Lrms L a ?×= (5) 从式(2)和式(5),可以得到: 46)(10cm KJ B I LI A W m Lpeak Lrms c a ××= × (6) 其中:Lrms I 为图1中电感电流的有效值,当电感电流的纹波较小时,L Lrms I I ≈;在电感电流纹波较大时,可通过计算获得该有效值电流。 B :交流滤波电感的面积积设计公式: (t i L 图2: 一般化的交流滤波电感和其电流波形 图2是开关电源中的一个一般化的交流滤波电感和其电流波形。它与直流滤波电感中的电流波形之区别在于:交流滤波电感电流中有两个频率分量,一个是开关频率分量,一个是输出低频分量,图中的峰值电感电流指的是包含开关纹波后的峰值电流值。当该电感的电感量和电流波形已知时,通过推导可获得交流滤波电感的面积积设计公式同样为(6)式,只是其有效值电流可用电流波形中的低频分量有效值近似。

开关电源电感的选取

为开关电源选择合适的电感 电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。 杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。 当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点: 1. 当电感L 中有电流I 流过时,电感储存的能量为: E=0.5×L×I2 (1) 2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为: V=(L×di)/dt (2) 由此可看出,纹波电流的大小跟电感值有关。 3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。只要电感电压变化,电流变化率di/dt 也将变化;正向电压使电流线性上升,反向电压使电流线性下降。 计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要 从图1 可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。这个纹波电压应尽可能低,以免影响电源系统的正常操作,一般要求峰峰值为10mV~500mV。 纹波电流的大小同样会影响电感器和输出电容的尺寸,纹波电流一般设定为最大输出电流的10%~30%,因此对降压型电源来说,流过电感的电流峰值比电源输出电流大5%~15%。 降压型开关电源的电感选择 为降压型开关电源选择电感器时,需要确定最大输入电压、输出电压、电源开关频率、最大

线圈电感量的计算详解

线圈电感量的计算详解 在开关电源电路设计或电路试验过程中,经常要对线圈或导线的电感以及线圈的匝数进行计算,以便对电路参数进行调整和改进。下面仅列出多种线圈电感量的计算方法以供参考,其推导过程这里不准备详细介绍。 在进行电路计算的时候,一般都采用SI国际单位制,即导磁率采用相对导磁率与真空导磁率的乘积,即:μ=μrμ0 ,其中相对导磁率μr是一个没有单位的系数,μ0真空导磁率的单位为H/m。 几种典型电感 1、圆截面直导线的电感 其中: L:圆截面直导线的电感 [H] l:导线长度 [m] r:导线半径 [m] μ0 :真空导磁率,μ0=4π10-7 [H/m] 【说明】这是在 l>> r的条件下的计算公式。当圆截面直导线的外部有磁珠时,简称磁珠,磁珠的电感是圆截面直导线的电感的μr倍,μr是磁芯的相对导磁率,μr=μ/μ0 ,μ为磁芯的导磁率,也称绝对导磁率,μr是一个无单位的常数,它很容易通过实际测量来求得。 2、同轴电缆线的电感 同轴电缆线如图2-33所示,其电感为:

其中: L:同轴电缆的电感 [H] l:同轴电缆线的长度 [m] r1 :同轴电缆内导体外径 [m] r2:同轴电缆外导体内径 [m] μ0:真空导磁率,μ0=4π10-7 [H/m] 【说明】该公式忽略同轴电缆外导体的厚度。 3、双线制传输线的电感 其中: L:输电线的电感 [H]

l:输电线的长度 [m] D:输电线间的距离 [m] r:输电线的半径 [m] μ0:真空导磁率,μ0=4π10-7 [H/m] 【说明】该公式的应用条件是: l>> D ,D >> r 。 4、两平行直导线之间的互感 两平行直导线如图2-34所示,其互感为: 其中: M:输电线的互感 [H] l :输电线的长度 [m] D:输电线间的距离 [m] r:输电线的半径 [m] μ0:真空导磁率,μ0=4π10-7 [H/m] 【说明】该公式的应用条件是: >> D ,D >> r 。 5、圆环的电感 其中: L:圆环的电感 [H] R:圆环的半径 [m] r:圆环截面的半径 [m]

浅谈开关电源输出电感的设计

――DC/DC 电路中电感的选择 原文:Fairchild Semiconductor AB-12:Insight into Inductor Current 下载 翻译:frm (注:只有充分理解电感在DC/DC电路中发挥的作用,才能更优的设计DC/DC电路。本文还包括对同步DC/DC及异步DC/DC概念的解释。) 本文PDF文档下载 简介 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。 在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2所示: 通过上图我们可以看到,流过电感的最大电流为DC电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流:

电容、电感滤波电路

滤波电路 交流电经过二极管整流之后,方向单一了,但是大小(电流强度)还是处在不断地变化之中。这种脉动直流一般是不能直接用来给无线电装供电的。要把脉动直流变成波形平滑的直流,还需要再做一番“填平取齐”的工作,这便是滤波。换句话说,滤波的任务,就是把整流器输出电压中的波动成分尽可能地减小,改造成接近恒稳的直流电。 一、电容滤波 电容器是一个储存电能的仓库。在电路中,当有电压加到电容器两端的时候,便对电容器充电,把电能储存在电容器中;当外加电压失去(或降低)之后,电容器将把储存的电能再放出来。充电的时候, 电容器两端的电压逐渐升高,直到接近充电电 压;放电的时候,电容器两端的电压逐渐降低, 直到完全消失。电容器的容量越大,负载电阻值 越大,充电和放电所需要的时间越长。这种电容 带两端电压不能突变的特性,正好可以用来承担 滤波的任务。 图5-9是最简单的电容滤波电路,电容器与负载电阻并联,接在整流器后面,下面以图5-9(a)所示半波整施情况说明电容滤波的工作过程。在二极管导通期间,e2 向负载电阻R fz提供电流的同时,向电容器C充电,一直充到最大值。e2 达到最大值以后逐渐下降;而电容器两端电压不能突然变化,仍然保持较高电压。这时,D受反向电压,不能导通,于是Uc便 通过负载电阻R fz放电。由于C和R fz较大,放电 速度很慢,在e2 下降期间里,电容器C上的电压降 得不多。当e2 下一个周期来到并升高到大于Uc时, 又再次对电容器充电。如此重复,电容器C两端(即 负载电阻R fz:两端)便保持了一个较平稳的电压, 在波形图上呈现出比较平滑的波形。 图5-10(a)(b)中分别示出半波整流和全波整流时电容滤波前后的输出波形。

最有效的开关电源纹波计算方法

对滤波效果而言,电容的ESL和ESR参数都很重要,电感会阻止电流的突变,电阻则限制了电流的变化率,这些影响对电容的充放电显然都不利。优质的电容在设计及制造时都采取了必要的手段来降低ESL和ESR,故而横向比较起来,同样的容量滤波效果却不同。

漏电流小,ESR小,一般都是认为要选择低ESR的系列,不过也与负载有关,负载越大,ESR不变时,纹波电流变大,纹波电压也变大。我们从公式上来看看,dV=C*di*dt;dv就是纹波,di是电感上电流的值,dt是持续的时间。一般的开关电源书籍都会讲到怎么算纹波,大题分解为:滤波电容对电压的积分+滤波电容的ESR+滤波电容的ESL+noise,如下图: 一般对纹波的计算通常是估算 有关开关电源纹波的计算,原则上比较复杂,要将输入的矩形波进行傅立叶展开成各次谐波的级数,计算每个谐波的衰减,再求和。最后的结果不仅与滤波电感、滤波电容有关,而且与负载电阻有关。当然,计算时是将滤波电感和滤波电容看成理想元件,若考虑电感的直流电阻以及电容的ESR,那就更复杂了。所以,通常都是估算,再留出一定余量,以满足设计要求。对样机需要实际测试,若不能满足设计要求,则需要更改滤波元件参数。 以Buck电路为例,电感中电流连续和断续,开关电源的传递函数完全不同。电流连续时环路稳定,电流断续时未必稳定。而电感中电流是否连续,除与电感量等有关外,还与负载有关。更严重的是,电流是否连续还与占空比有关,而占空比是由反馈电路控制的。不仅Buck,其它如Boost以及由基本拓扑衍生出来的正激、反激等也是一样。 若要求所有可能产生的工作状态下都稳定,通常要加假负载以保证Buck电路电感电流总是连续(对Buck/Boost或反激则保证不会在连续断续之间转变),或者把反馈环路时间常数设计得非常大(这会在很大程度上降低开关电源的响应速度)。对输出电压可调整的开关电源(例如实验室用的0~30V输出电源),环路稳定的难度更大。对这类电源,往往要在开关电源之后再加一级线性调整。 电解电容的选择很重要 在输出端采用高频性能好、ESR低的电容,高频下ESR阻抗低,允许纹波电流大。可以在高频下使用,如采用普通的铝电解电容作输出电容,无法在高频(100kHz以上的频率)下工作,即使电容量也无效,因为超过10kHz时,它已成电感特性了。

共模滤波电感原理分析

共模滤波电感器不是电感量越大越好.主要看你要滤除的共模干扰的频率范围,先说一下共模电感器滤波原理:共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果.当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用. 这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz 或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000h00的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号. 因此首先要确认你要滤除共模干扰的频率范围然后再选择合适的滤波电感器材料. 共 模电感的测量与诊断 电源滤波器的设计通常可从共模和差模两方面来考虑。共模滤波器 最重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个 显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考 虑的一个重要问题是它的漏感,也就是差模电感。通常,计算漏感的办 法是假定它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之 间。在设计最优性能的扼流圈时,这个误差的影响可能是不容忽视的。 漏感的重要性 漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即 使没有磁芯,其所有磁通都集中在线圈“芯”内。但是,如果环形线圈 没有绕满一周,或者绕制不紧密,那么磁通就会从芯中泄漏出来。这种 效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。共模扼流圈有 两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方 向相反,从而使磁场为0。如果为了安全起见,芯体上的线圈不是双线 绕制,这样两个绕组之间就有相当大的间隙,自然就引起磁通“泄漏”, 这即是说,磁场在所关心的各个点上并非真正为0。共模扼流圈的漏感 是差模电感。事实上,与差模有关的磁通必须在某点上离开芯体,换句 话说,磁通在芯体外部形成闭合回路,而不仅仅只局限在环形芯体内。 如果芯体具有差模电感,那么,差模电流就会使芯体内的磁通 发生偏离零点,如果偏离太大,芯体便会发生磁饱和现象,使共模电感 基本与无磁芯的电感一样。结果,共模辐射的强度就如同电路中没有扼 流圈一样。差模电流在共模环形线圈中引起的磁通偏离可由下式得出:

开关电源中电感的设计

开关电源中电感的设计 在开关电源的设计中电感的设计为工程师带来的许多的挑战。工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。本文专注于解释:电感上的DC 电流效应。这也会为选择合适的电感提供必要的信息。 理解电感的功能 电感常常被理解为开关电源输出端中的LC 滤波电路中的L(C 是其中的输出电容)。虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。 在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC 输出电压。另一端通过开关频率切换连接到输入电压或GND。 在状态1 过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。在状态2 过程中,电感连接到GND。由于使用了这类的控制器,可以采用两种方式 实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。如果是后 一种方式,转换器就称为“同步(synchronus)”方式。 现在再考虑一下在这两个状态下流过电感的电流是如果变化的。在状态1 过程中,电感的一端连接到输入电压,另一端连接到输出电压。对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。相反,在状态2 过程中,原来连接到输入电压的电感一端被连接到地。对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。 我们利用电感上电压计算公式: V=L(dI/dt) 因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。通过电感的电流如图2 所示:

通过上图我们可以看到,流过电感的最大电流为DC 电流加开关峰峰电流的一半。上图也称为纹波电流。根据上述的公式,我们可以计算出峰值电流: 其中,ton 是状态1 的时间,T 是开关周期(开关频率的倒数),DC 为状态1 的占空比。 警告:上面的计算是假设各元器件(MOSFET上的导通压降,电感的导通压降或异步电路中肖特基二极管的正向压降)上的压降对比输入和输出电压是可以忽略的。 如果,器件的下降不可忽略,就要用下列公式作精确计算: 同步转换电路: 异步转换电路:其中,Rs 为感应电阻阻抗加电感绕线电阻的阻。Vf 是肖特基二极管的正向压降。R 是Rs加MOSFET 导通电阻,R=Rs+Rm。

电源电感功耗计算

电感损耗包括铁损和铜损。 电感磁芯中的功耗磁滞损耗和涡流损耗。 电感线圈中的功耗介绍。 解决方案: xx定律等数学物理方法计算功耗。 双极性变化的磁通对电感施加变化的正弦电压信号得到磁芯损耗与磁感应强度的关系曲线。 用估算法计算电感总损耗。 众所周知,电感损耗包括两方面: 其一是与磁芯相关的损耗,即传统的铁损;其二是与电感绕组相关的损耗,即通常所谓的铜损。 功率电感在开关电源中作为一种储能元件,开关导通期间存储磁能,开关断开期间把存储的能量传送给负载。磁滞特性是磁芯材料的典型特性,正是它产生电感磁芯的损耗。导磁率越大,磁滞曲线越窄,磁芯功耗越小。 电感磁芯中的功耗 电感在一个开关周期内由于磁场强度改变产生的能量损耗是在开关导通期间输入电感的磁能与开关断开期间输出磁能之间的差值。如果用ET代表一个开关周期电感的能量,则:。根据安培定律: 和xx定律: ,上述等式中的ET为: 。随着电感电流减小,磁场强度减弱,而磁感应强度从另一回路返回并变小。在此期间,大部分能量传送给负载,而存储能量和传送能量之间的差值即为损失的能量。而磁芯由于磁滞特性引起的功耗是上述能量损耗乘以开关频

率。该损耗大小与艬n有关,对于大多数铁氧体材质磁芯而言,n介于2.5~3之间。到目前为止,上述磁芯储能和损耗的推导与结论都基于下列条件: 磁芯工作在非饱和区;开关频率在磁芯正常工作范围内。 电感磁芯除了上述的磁滞损耗外,第二种主要损耗是涡流损耗。感应涡流在磁芯中流动将产生I2×R(或V2/R)的功耗。如果把磁芯想象为一个高阻值元件RC,那么,在RC将产生感应电压,根据法拉第定律,,其中AC为磁芯的有效截面积,因此功耗为: ,由此可见,磁芯由于涡流导致的功耗与磁芯中单位时间内磁通变化量的平方成正比。另外,由于磁通变化量直接与所加电压成正比,所以,磁芯的涡流功耗与电感电压和占空比成正比,即: ,其中VL为电感电压,tAPPLIED为一个开关周期(TP)中开关的导通(ON)或截止(OFF)时间。由于磁芯材料的高阻特性,通常涡流损耗比磁滞损耗小得多,通常数据手册中给出的磁芯损耗包括涡流损耗和磁滞损耗。 为电流渗透率(为导体的电阻率,是绕组材料的电阻系数(通常为铜材,其),Area为绕阻导线有效截面积。由于体积较小的电感通常采用线径较细的导线,因此有效截面积较小,直流电阻较大。再者,电感量较大的电感需要绕制的匝数较多,因此线圈导线较长,电阻也会增大。对于直流电压,线圈损耗是由于绕组的直流电阻(RDC)产生的,电感的数据手册都会给出该参数。随着频率的提高,将出现众所周知的电流趋肤现象,因此对于交流电,绕阻的实际电阻会随频率的升高而增大,大于RDC,绕阻的铜损增加。电感线圈交流电阻的大小由特定频率下电流在导体中的渗透深度决定。渗透深度界定点为: 该点的电流密度减小到导体表面电流密度的1/e(或直流电时),计算公式为: ,其中实际电感的功耗还包括线圈中的功耗,即铜损(或线损)。直流供电时,线圈中的功耗是因为线圈导线并非理想导体,有直流电阻存在,有电流流过时,将消耗功率,即IRMS2×RDC。线圈的电阻定义为:

推挽式变压器开关电源储能滤波电容参数的计算

储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。 图1-35-a)是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。 图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。 1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算 在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL

为: eL = Ldi/dt = Up – Uo —— K1接通期间(1-136) 式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。 在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。 对(1-136)式进行积分得: 式中i(0)为初始电流(t = 0时刻流过电感L的电流),即:控制开关K1刚接通瞬间,流过电感L的电流,或称流过电感L的初始电流。从图1-35中可以看出i(0)= Ix 。 当控制开关K由接通期间Ton突然转换到关断期间Toff的瞬间,流过电感L的电流iL达到最大值: (1-139)和(1-140)式就是计算推挽式变压器开关电源输出电压的表达式。式中,Uo为推挽式变压器开关电源输出电压,Ui为推挽式变压器开关电源输入电压,Up为推挽式变压器开关电源开关变压器次级线圈N3绕组的正激输出电压,Up-为推挽式变压器开关电源开关变压器次级线圈N3绕组的反激输出电压,n为开关电源次级线圈N3绕组与初级线圈N1绕组或N2绕组的匝数比。

滤波电路中电感的作用(图文版)

滤波电路中电感的作用 一.电感的作用 基本作用:滤波、振荡、延迟、陷波等 形象说法:“通直流,阻交流” 细化解说:在电子线路中,电感线圈对交流有限流作用,它与电阻器或电容器能组成高通或低通滤波器、移相电路及谐振电路等;变压器可以进行交流耦合、变压、变流和阻抗变换等。 由感抗XL=2πfL 知,电感L越大,频率f越高,感抗就越大。该电感器两端电压的大小与电感L成正比,还与电流变化速度△i/△t 成正比,这关系也可用下式表示: 电感线圈也是一个储能元件,它以磁的形式储存电能,储存的电能大小可用下式表示:WL=1/2 Li2 。 可见,线圈电感量越大,流过越大,储存的电能也就越多。 电感在电路最常见的作用就是与电容一起,组成LC滤波电路。我们已经知道,电容具有“阻直流,通交流”的本领,而电感则有“通直流,阻交流”的功能。如果把伴有许多干扰信号的直流电通过LC滤波电路(如图),那么,交流干扰信号将被电容变成热能消耗掉;变得比较纯净的直流电流通过电感时,其中的交流干扰信号也被变成磁感和热能,频率较高的最容易被电感阻抗,这就可以抑制较高频率的干扰信号。 变成磁感和热能,频率较高的最容易被电感阻抗,这就可以抑制较高频率的干扰信号。 LC滤波电路

在线路板电源部分的电感一般是由线径非常粗的漆包线环绕在涂有各种颜色的圆形磁芯上。而且附近一般有几个高大的滤波铝电解电容,这二者组成的就是上述的LC滤波电路。另外,线路板还大量采用“蛇行线+贴片钽电容”来组成LC电路,因为蛇行线在电路板上来回折行,也可以看作一个小电感。 二、电感的主要特性参数 2.1 电感量L 电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。 2.2 感抗XL 电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为XL=2πfL 2.3 品质因素Q 品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R。线圈的Q值愈高,回路的损耗愈小。线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。线圈的Q值通常为几十到几百。采用磁芯线圈,多股粗线圈均可提高线圈的Q值。 2.4 分布电容 线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。采用分段绕法可减少分布电容。 2.5 允许误差:电感量实际值与标称之差除以标称值所得的百分数。 2.6 标称电流:指线圈允许通过的电流大小,通常用字母A、B、C、D、E分别表示,标称电流值为50mA 、150mA 、300mA 、700mA 、1600mA 。 三、常用电感线圈 3.1 单层线圈 单层线圈是用绝缘导线一圈挨一圈地绕在纸筒或胶木骨架上。如晶体管收音机中波天线线圈。 3.2 蜂房式线圈 如果所绕制的线圈,其平面不与旋转面平行,而是相交成一定的角度,这种线圈称为蜂房式线圈。而其旋转一周,导线来回弯折的次数,常称为折点数。蜂房式绕法的优点是体积小,分布电容小,而且电感量大。蜂房式线圈都是利用蜂房绕线机来绕制,折点越多,分布电容越小 3.3 铁氧体磁芯和铁粉芯线圈 线圈的电感量大小与有无磁芯有关。在空芯线圈中插入铁氧体磁芯,可增加电感量和提高线圈的品质因素。 3.4 铜芯线圈

开关电源变压器的计算

1:线径的计算: 一般铜线截面积每平方mm取值5安培电流。(高频取4.95,低频取3.5.) 公式1:。公式2: 。r=半径。 例题: 假设铜线半径是1mm. 3.141×1=3.141×5A=15.705A电流。15.7A. =2.0mm铜线直径。 2: 峰值功率计算。 Pout = (Vout+Vf) Iout 1.2 3:初级峰值电流计算: IPmax = IPmin = KIP1 K为脉动电流,取值:0.4. 4:输入电流公式: ÷PF=Pin÷Vin=Iin。 3:肖特基的取值计算。 肖特基一般取输出电流的2-3倍。 匝比一般是10比1 输出峰值电压的计算: 〈(Vin(max)×)+80V〉÷n + Vout=峰值电压。 〈〔最大输入电压×〕+80V〉÷匝比+输出电压。 例题: 以输出5V为例: 〈〔最大输入电压264V×1.414〕+80V〉÷匝比10+输出电压5V。 峰值电压等于==50.32V. /*****************************************************************/ 开关变压器计算步骤: P-初级,S-次级,D-占空比,n匝比,L-电感量,f频率,η-效率, K-脉动电流。T-时间,ON-开,NP-初级匝数,IP 峰值电流。 AE-磁芯截面积,查磁芯表。Bm-磁通密度。单位-高斯。 /******************************************************************* 要求:输入电压《85-265V》。

最大占空比0.45左右。根据IC资料选择。 η-效率。0.75 Vout-输出电压。5V Iout-输出电流。2A f –开关频率。100K IC方案,选择7535. 10W /******************************************************************** 1:估算初级输入电流:I in ÷PF=Pin÷Vin=Iin。 /0.6=22.22/85=0.2614 A 根据输入电流计算输入线径: = 0.13mm1.2=0.156 输出线径; = 1.01579mm /*******************************************************************/ 1: Ton计算导通时间。 T:时间。T= = = 10us Ton = 100.45 =4.5us. 导通时间。 Toff = 10 0.55 = 5.5us. 截至时间。 /********************************************/ 2:算出初次级匝比. N = N = = = 14.131661 /********************************************/ 3:IP 峰值功率。 Pout = (Vout+Vf) Iout 1.2 = (5+1) 2 1.2 = 14.4W /********************************************/

串联式开关电源储能滤波电感的计算

?串联式开关电源储能滤波电感的计算 ?串联式开关电源储能滤波电容的计算 串联式开关电源储能滤波电感的计算 从上面分析可知,串联式开关电源输出电压Uo与控制开关的占空比D有关,还与储能电感L的大小有关,因为储能电感L决定电流的上升率(di/dt),即输出电流的大小。因此,正确选择储能电感的参数相当重要。 串联式开关电源最好工作于临界连续电流状态,或连续电流状态。串联式开关电源工作于临界连续电流状态时,滤波输出电压Uo正好是滤波输入电压uo的平均值Ua,此时,开关电源输出电压的调整率为最好,且输出电压Uo的纹波也不大。因此,我们可以从临界连续电流状态着手进行分析。我们先看(1-6)式: 当串联式开关电源工作于临界连续电流状态时,即D = 0.5时,i(0) = 0,iLm = 2 Io,因此,(1-6)式可以改写为: 式中Io为流过负载的电流(平均电流),当D = 0.5时,其大小正好等于流过储能电感L最大电流iLm的二分之一;T为开关电源的工作周期,T正好等于2倍Ton。 由此求得: 或: (1-13)和(1-14)式,就是计算串联式开关电源储能滤波电感L的公式(D = 0.5时)。(1-13)和(1-14)式的计算结果,只给出了计算串联式开关电源储能滤波电感L的中间值,或平均值,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。 如果增大储能滤波电感L的电感量,滤波输出电压Uo将小于滤波输入电压uo的平均值Ua,因此,在保证滤波输出电压Uo为一定值的情况下,势必要增大控制开关K的占空比D,以保持输出电压Uo的稳定;而

控制开关K的占空比D增大,又将会使流过储能滤波电感L的电流iL不连续的时间缩短,或由电流不连续变成电流连续,从而使输出电压Uo的电压纹波ΔUP-P进一步会减小,输出电压更稳定。 如果储能滤波电感L的值小于(1-13)式的值,串联式开关电源滤波输出的电压Uo将大于滤波输入电压uo的平均值Ua,在保证滤波输出电压Uo为一定值的情况下,势必要减小控制开关K的占空比D,以保持输出电压Uo的值不变;控制开关K的占空比D减小,将会使流过滤波电感L的电流iL出现不连续,从而使输出电压Uo的电压纹波ΔUP-P增大,造成输出电压不稳定。 由此可知,调整串联式开关电源滤波输出电压Uo的大小,实际上就是同时调整流过滤波电感L和控制开关K占空比D的大小。 由图1-4可以看出:当控制开关K的占空比D小于0.5时,流过滤波电感L的电流iL出现不连续,输出电流Io小于流过滤波电感L最大电流iLm的二分之一,滤波输出电压Uo的电压纹波ΔUP-P将显著增大。因此,串联式开关电源最好不要工作于图1-4的电流不连续状态,而最好工作于图1-3和图1-5表示的临界连续电流和连续电流状态。 串联式开关电源工作于临界连续电流状态,输出电压Uo等于输入电压Ui的二分之一,等于滤波输入电压uo的平均值Ua;且输出电流Io也等于流过滤波电感L最大电流iLm的二分之一。 串联式开关电源工作于连续电流状态,输出电压Uo大于输入电压Ui的二分之一,大于滤波输入电压uo的平均值Ua;且输出电流Io也大于流过滤波电感L最大电流iLm的二分之一。 串联式开关电源储能滤波电容的计算 我们同样从流过储能电感的电流为临界连续电流状态着手,对储能滤波电容C的充、放电过程进行分析,然后再对储能滤波电容C的数值进行计算。 图1-6是串联式开关电源工作于临界连续电流状态时,串联式开关电源电路中各点电压和电流的波形。图1-6中,Ui为电源的输入电压,uo为控制开关K的输出电压,Uo为电源滤波输出电压,iL为流过储能滤波电感电流,Io为流过负载的电流。图1-6-a)是控制开关K输出电压的波形;图1-6-b)是储能滤波电容C的充、放电曲线图;图1-6-c)是流过储能滤波电感电流iL的波形。当串联式开关电源工作于临界连续电流状态时,控制开关K的占空比D等于0.5,流过负载的电流Io等于流过储能滤波电感最大电流iLm的二分之一。 在Ton期间,控制开关K接通,输入电压Ui通过控制开关K输出电压uo ,在输出电压uo作用下,流过储能滤波电感L的电流开始增大。当作用时间t大于二分之一Ton的时候,流过储能滤波电感L的电流iL 开始大于流过负载的电流Io ,所以流过储能滤波电感L的电流iL有一部分开始对储能滤波电容C进行充电,储能滤波电容C两端电压开始上升。 当作用时间t等于Ton的时候,流过储能滤波电感L的电流iL为最大,但储能滤波电容C的两端电压并没有达到最大值,此时,储能滤波电容C的两端电压还在继续上升,因为,流过储能滤波电感L的电流iL 还大于流过负载的电流Io ;当作用时间t等于二分之一Toff的时候,流过储能滤波电感L的电流iL正好等于负载电流Io,储能滤波电容C的两端电压达到最大值,电容停止充电,并开始从充电转为放电。

相关主题
文本预览
相关文档 最新文档