当前位置:文档之家› 2-1金属材料的损坏与塑性变形

2-1金属材料的损坏与塑性变形

2-1金属材料的损坏与塑性变形
2-1金属材料的损坏与塑性变形

理论课教案首页

课题:金属材料的损坏与塑性变形

教学目的要求:1. 金属塑性变形本质; 2. 冷塑性变形对金属材料的组织和性能的影响。

教学重点、难点:加工硬化产生的原因及在生产中的利弊

授课方法:面授(课堂教学)

教学参考及教具(含电教设备):《机械工程材料》

授课执行情况及分析:

板书设计或授课提纲

含碳0.3%的钢冷加工后

冲压示意图

机械性能的变化

金属的加工硬化现象会给金属的进一步加工带来困难,

在冷轧过程中会越轧越硬,以致最后轧不动。另一方面人们可以利用加工硬化现象,来提高金属强度和硬度,如冷拔高强度钢丝就是

金属塑性成性原理考试资料

1、塑性:在外力的作用下使金属材料发生塑性变形而不破坏其完整性的能力称为塑性。 2、塑性成形:金属材料在一定的外力作用条件下,利用其塑性使其成形并获得一定力学性能的加工方法称为塑性成形也称塑性加工或压力加工。 3、塑性成形分为块料和板料成形,块料成型又分为一次加工和二次加工。 4、一次加工:生产原材料,加工方法包括轧制、挤压、和拉拔。 5、二次加工:生产零件或坯料,加工方法包括自由锻和模锻。 6、滑移:所谓滑移是指晶体在力的作用下,晶体的一部分沿一定的晶面和晶向,相对于晶体的另一部分发生相对移动或切变。 7、就金属的塑性变形能力来说,滑移方向的作用大于滑移面的作用。 8、滑移面对温度具有敏感性。 9、设拉力P 引起的拉伸力为σ,则在此滑移方向上的切应力分量为τ=σcos Φcos λ,令u=cos Φcos λ,若Φ=λ=45o,则u=u ax m =0.5 τ=τmax =σ/2 10、位错增值:由于晶体产生一个滑移带的位移量

需要上千个位错的移动,且当位错移至晶体表面产生一个原子间距的位移后,位错便消失,这样,为使塑性变形能不断进行,就必须有大量的位错出现,这就是在位错理论中所说的位错的增值。11、晶体中的滑移过程,实质就是位错的移动和增值过程,加工硬化的原因就是位错增值。 12、孪生:是晶体在切应力作用下,晶体的一部分沿着一定的晶面(孪生面)和一定的晶向(孪生方向)发生均匀切变。 13、晶间变形:晶间变形的主要方式是晶粒之间相互滑动和转动。…………晶间变形小,主要是因为晶间变形强度低。 14、塑性变形的特点:(1)各晶粒变形的不同时性(2)各晶粒变形的相互协调性(3)晶粒与晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。 (屈服强度)越大,δ越大,金属A晶粒越细,σ B 的塑性也越好。 15、冷塑性变形对金属组织和性能的影响:(一)组织的变化:1、晶粒形状的变化;2、晶粒内产生亚结构;3、晶粒位向改变;4、晶粒内部出现滑移带和孪生带。(二)性能的变化:金属的力学性能

金属材料的塑性成形

第3章金属材料的塑性成形 概述 3.1金属塑性成形基础 3.2 常用的塑性成形方法 3.3 少、无切削的塑性成形方法3.4 常用的塑性成形金属材料

概述 金属塑性成形是利用金属材料所具有的塑性, 在外力作用下通过塑性变形,获得具有一定形状、尺寸和力学性能的零件或毛坯的加工方法。由于外力多数情况下是以压力的形式出现的,因此也称为金属压力加工。 塑性成形的产品主要有原材料、毛坯和零件三大类。 金属塑性成形的基本生产方式有:轧制、拉拔、挤压、自由锻、模锻、板料冲压等。

塑性成形的特点及应用: (1)消除缺陷,改善组织,提高力学性能。 (2)材料的利用率高。 (3)较高的生产率。如利用多工位冷镦工艺加工内角螺钉,比用棒料切削加工工效提高约400倍。 (4)零件精度较高。应用先进的技术和设备,可实现少切削或无切削加工。如精密锻造的伞齿轮可不经切削加工直接使用。 但该方法不能加工脆性材料和形状特别复杂或体积特别大的零件或毛坯。 塑性成形加工在机械制造、军工、航空、轻工、家用电器等行业得到了广泛应用。例如,飞机上的塑性成形零件约占85%;汽车、拖拉机上的锻件占60%~80%。

3.1 金属塑性成形基础 3.1.1 单晶体和多晶体的塑性变形3.1.2 金属的塑性变形 3.1.3 塑性成形金属在加热时组织和 性能的变化 3.1.4 金属的塑性成形工艺基础

3.1.1单晶体和多晶体的塑性变形1.单晶体的塑性 变形 金属塑性变形最常 见的方式是滑移。 滑移是晶体在 切应力的作用下, 一部分沿一定的晶 面(亦称滑移面) 和晶向(也称滑移 方向)相对于另一 部分产生滑动。 晶体滑移变形示意图

金属材料热处理变形原因及防止变形的技术措施

金属材料热处理变形原因及防止变形的技术措施 摘要:在金属加工制造行业中,对热处理技术进行应用,能够从根本上实现对金属物理性质、化学性质的提升,满足了当前各项工业生产、制造事宜。在调查中发现,当前金属材料的热处理工作,主要山金属加热、保温和冷却等儿项工作流程所构成,但山于金属热处理工艺对于整体的工作环境、技术应用有着较高标准的要求,所以在实际操作的过程中,材料时常会发生变形的问题,这就需要相关工作人员在传统金属加工制造的基础上,实现热处理工艺技术的高效化应用,提升我国金属材料加工制造的整体质量与水平,进而推动社会的发展。 关键词:金属材料;热处理变形原因;防止变形 对于金属工件而言,基本的变形问题主要集中在尺寸变形以及形状变形两方面,但是,无论是哪种变形情况,都和热处理过程导致的工件内部应力息息相关。结合内应力的相关因素对问题因素进行分析,从而制定具有针对性的监督和管控措施,就能从根本上减少金属材料热处理变形和开裂导致的工件质量缺失性问题。 1金属材料性能分析 在当前的社会生产生活中,金属材料的应用范圉十分的广泛。曲于金属材料具有韧性强、塑性好以及高强度的特点,因此其在诸多行业中均有所应用。当前常用的金属材料主要包括两种:即多孔金属材料以及纳米金属材料。纳米金属材料:一般情况下,只有物质的尺寸达到了纳米的级别,那么该物质的物理性质和化学性质均会发生改变。在分析与研究金属材料性能的过程中,主要分析金属材料的如下两种性能:其一,硬度。一般情况下,金属材料的硬度主要指的是金属材料的抗击能力。其二,耐久性。耐久性能和腐蚀性是金属材料需要着重考虑的一对因素。在应用金属材料的过程中不可避免的会受到各种物质的腐蚀,山此就会导致金属材料出现缝隙等问题。 2金属材料热处理变形的影响因素 在对金属材料热处理变形的影响因素进行探究时,工作人员需要对金属材料热处理过程中各项工艺技术特点,进行全面化的掌握,并在此基础上,釆取一些具有针对性的改善措施,进而才能实现对金属材料变形的有效控制,也为金属材料热处理过程中变形控制工作的开展,起到了一定的促进作用。在对金属材料进行热处理的过程中,山于材料自身的密度构成、结构特点,以及在外界因素的影响下,材料本身可能会出现不等时性、冷热分布不均匀的问题。在金属材料受热的过程中,温度会发生较为明显的变化,这就会使金属材料内部结构的受力情况发生改变,金属材料变形的儿率增大,而这种山于内部应力分布所导致的变形,被称之为是内应力塑性变形。这种变形的特征性较为明显,会表现岀一定的方向性,且发生的频率较高,每一次对金属材料进行热加工,都会对其内部应力结构造成改变,进行热处理的频率越高,内部应力的变化情况越明显。在一般情况下, 金属材料的内应力一般被分成热应力和组织应力变形着两类,在相应的温度条件下,对金属材料展开加热、冷却操作后,可以获得纯热应力变形,组织应力变形和金属材料自身的性能、形状,以及加热冷却方式有着紧密的关联。从实际的操作流程中可以了解到,要想对金属材料的使用性能进行高效化的提升,整个热处理工序将会包含较多的工艺内容,并且在操作过程中,需要根据金属材料的种类、操作规范展开适当的调整,收集各项参数内容。但是在实际执行过程中,山于我国在温度控制、监测精度方面具备局限性,所以温度监测精度难以得到有效的把控,一旦在热处理过程中对温度的控制未能合理实现,那么就会导致比容变形的问题发生,增加金属材料变形儿率。 3金属材料热处理变形控制时需要遵循的原则

金属材料的塑性

塑性是指金属材料在载荷外力的作用下,产生永久变形(塑性变形)而不被破坏的能力。金属材料在受到拉伸时,长度和横截面积都要发生变化,因此,金属的塑性可以用长度的伸长(延伸率)和断面的收缩(断面收缩率)两个指标来衡量。 金属材料的延伸率和断面收缩率愈大,表示该材料的塑性愈好,即材料能承受较大的塑性变形而不破坏。一般把延伸率大于百分之五的金属材料称为塑性材料(如低碳钢等),而把延伸率小于百分之五的金属材料称为脆性材料(如灰口铸铁等)。塑性好的材料,它能在较大的宏观范围内产生塑性变形,并在塑性变形的同时使金属材料因塑性变形而强化,从而提高材料的强度,保证了零件的安全使用。此外,塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。因此,选择金属材料作机械零件时,必须满足一定的塑性指标。字串2 编辑本段 金属材料的硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 1.布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 2.洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的甓壤幢硎荆?HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 3 维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。

金属材料损坏与变形

金属材料与热处理陈健 晶体的缺陷第二章金属材料的性能 ⑴了解金属材料的失效形式, ⑵了解塑性变形的基本原理, ⑶提高对金属材料的性能的认识。 正确理解载荷,内力、应力的含义。 应力的应用意义。 ⑴与变形相关的概念 ⑵金属的变形 讲授、提问引导、图片展示、举例分析、

一,晶体的缺陷: 1点缺陷:间隙原子,空位原子,置代原子,在材料上表现为:使材料强度,硬度和电阻增加。 2线缺陷:刃位错(如图:P-6),在材料上表现为:使得金属材料的塑性变形更加容易。 3面缺陷:有晶界面缺陷和亚晶界面缺陷,表现为金属的塑性变形阻力增大,内部具有更高的强度和硬度。因此晶界越多,金属材料的力学性能越好。 第二章金属材料的性能 导入新课: 我们经常见到一些机械零件因受力过大被破坏,而失去了工作能力。大家能否举些身边的例子呢? ——如:弯曲的自行车辐条,断掉的锯条、滑牙的螺栓等。 机械零件常见的损坏形式有三种: 变形:如铁钉的弯曲。 断裂:如刀具的断崩。 磨损:如螺栓的滑扣。 本次课给大家介绍金属材料损坏的形式、变形概念与本质等等,首先我们来了解一些基本概念。

一、与变形相关的概念 ㈠、载荷 1、概念 金属材料在加工及使用过程中所受的外力。 2、分类:根据载荷作用性质分,三种: ⑴、静载荷:大小不变或变化过程缓慢的载荷。 ——如:桌上粉笔盒的受力,用双手拉住一根粉笔两端慢慢施力等。 ⑵、冲击载荷:突然增加的载荷。 ——如:用一只手捏住粉笔的一端,然后用手去弹击粉笔。 ⑶、变交载荷:大小、方向或大小和方向随时间发生周期性变化的载荷。 ——如:通过在黑板上绘图分析自行车轮转动时辐条的受力。 根据载荷作用形式分,载荷又可以分为拉伸载荷、压缩载荷、弯曲载荷、剪切载荷和扭曲载荷等。 拉伸载荷压缩载荷弯曲载荷 剪切载荷扭曲载荷 ㈡、内力 见车工工艺书 P32, 图2—20

金属材料强度

金属材料强度:强度就是指材料在外力作用下抵抗变形与破坏得能力.主要指标可分为抗拉(最基本强度指标)、抗压、抗弯、抗扭与抗剪强度. 塑性:材料在外力(静载)作用下产生永久变形而不被破坏得能力.主要指标为伸长率与断面收缩率。 硬度:材料抵抗更硬物体压入得能力.常用指标为布氏硬度、洛氏硬度与维氏硬度. 下列硬度指标就是否正确? HBS210-240 180-210HRCHRC29—25 450-480HBS钢得热处理:钢固态下,采用适当方法进行加热、保温与冷却,以改变钢得内部组织与结构,从而获得所需性能得一种工艺方法。 预先热处理:为消除坯料或半成品得某些缺陷或为后续得切削加工与最终热处理做组织准备得热处理。(退火、正火) 最终热处理:为使工件获得所要求得使用性能得热处理。 退火与正火得区别与选用:与退火相比、正火得冷却速度稍快,过冷度较大。 选用:1切削加工性考虑。作为预先热处理,低碳钢退火优于正火,而高碳钢正火后硬度太高,必须采用退火. 2使用性能上考虑.对于亚共析钢,正火处理比退火处理具有更好得力学性能。如果零件得性能要求不就是很高,则可用正火作为最终热处理。对于一些大型、重型零件,当淬火有开裂危险时,则采用正火作为最终热处理;但当零件得形状复杂,正火冷却速度较快开裂危险时,则采用退火为宜。 3 经济上考虑。正火比退火得生产周期短、耗料少、成本低、效率高、操作简便,因此在可能得条件下应采用正火。 钢淬火后为什么一定要回火,说明回火得种类及主要应用范围. 钢件经淬火后,虽然具有很高得硬度与强度,但脆性大,并且具有较大得淬火应力,因此在退火后,必须配以适当得回火. 种类及范围:高温回火:用于重要零件如轴、齿轮等。 中温回火:用于各种弹性元件及热锻模。 低温回火:用于各种工、模具钢及要求硬而耐磨得工件。 调制及特点:淬火后,加热到500-650度,保温后在空气中冷却。获得良好得综合力学性能,在保持高强度得同时,具有良好得塑、韧性,硬度为200—330HBS。

金属材料性能知识大汇总(超全)

金属材料性能知识大汇总 1、关于拉伸力-伸长曲线和应力-应变曲线的问题 低碳钢的应力-应变曲线 a、拉伸过程的变形:弹性变形,屈服变形,加工硬化(均匀塑性变形),不均匀集中塑性变形。 b、相关公式:工程应力σ=F/A0;工程应变ε=ΔL/L0;比例极限σP;弹性极限σ ε;屈服点σS;抗拉强度σb;断裂强度σk。 真应变e=ln(L/L0)=ln(1+ε) ;真应力s=σ(1+ε)= σ*eε指数e为真应变。 c、相关理论:真应变总是小于工程应变,且变形量越大,二者差距越大;真应力大于工程应力。弹性变形阶段,真应力—真应变曲线和应力—应变曲线基本吻合;塑性变形阶段两者出线显著差异。

2、关于弹性变形的问题 a、相关概念 弹性:表征材料弹性变形的能力 刚度:表征材料弹性变形的抗力 弹性模量:反映弹性变形应力和应变关系的常数,E=σ/ε;工程上也称刚度,表征材料对弹性变形的抗力。 弹性比功:称弹性比能或应变比能,是材料在弹性变形过程中吸收变形功的能力,评价材料弹性的好坏。 包申格效应:金属材料经预先加载产生少量塑性变形,再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 滞弹性:(弹性后效)是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。 弹性滞后环:非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线不重合而形成一封闭回线。 金属材料在交变载荷作用下吸收不可逆变形功的能力,称为金属的循环韧性,也叫内耗 b、相关理论: 弹性变形都是可逆的。 理想弹性变形具有单值性、可逆性,瞬时性。但由于实际金属为多晶体并存在各种缺陷,弹性变形时,并不是完整的。 弹性变形本质是构成材料的原子或离子或分子自平衡位置产生可逆变形的反映

金属材料与热处理第六版习题册答案

金属材料与热处理习题册答案 绪论 一、填空题 1、成分、组织、热处理、性能之间。 2、石器时代、青铜器时代、铁器时代、钢铁时代、 人工合成材料时代。3、成分、热处理、性能、性能。 二、选择题: 1、A 2、B 3、C 三、简答题 1、掌握金属材料与热处理的相关知识对机械加工有什么现实意义? 答:机械工人所使用的工具、刀夹、量具以及加工的零件大都是金属材料,所以了解金属材料与热处理后相关知识,对我们工作中正确合理地使用这些工具,根据材料特点正确合理地选择和刃磨刀具几何参数;选择适当的切削用量;正确选择改善零件工艺必能的方法都具有非常的现实意义。 2、如何学好《金属材料与热热处理》这门课程? 答:在学习过程中,只要认真掌握重要的概念和基本理论,按照材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途这一内在关系进行学习和记忆;注意理论联系实际,认真完成作业和实验等教学环节,是完全可以学好这门课程的。 第一章金属的结构和结晶 1-1金属的晶体结构 一、填空题 1、非晶体晶体晶体 2、体心立方面心立方密排立方体心立方面心立方密排立方 3、晶体缺陷点缺陷面缺陷 二、判断题 1、√ 2、√ 3、× 4、√ 三、选择题 1、A 2、C 3、C 四、名词解释 1、晶格与晶胞:P5 答:将原子简化为一个质点,再用假想的线将它们连接起来,这样就形成了一个能反映原子排列规律的空间格架,称为晶格;晶胞是能够完整地反映晶体晶格特征的最小几何单元。 3、单晶体与多晶体 答:只由一个晶粒组成称为单晶格,多晶格是由很多大小,外形和晶格排列方向均不相同的小晶格组成的。 五、简答题书P6 □ 1-2纯金属的结晶 一、填空题

金属塑性变形与断裂

金属塑性变形与断裂集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

金属材料塑性变形与断裂的关系 摘要:金属的断裂是指金属材料在变形超过其塑性极限而呈现完全分开的状态。材料受力时,原子相对位置发生了改变,当局部变形量超过一定限度时,原于间结合力遭受破坏,使其出现了裂纹,裂纹经过扩展而使金属断开。任何断裂都是由裂纹形成和裂纹扩展两个过程组成的,而裂纹形成则是塑性变形的结果。金属塑性的好坏表明了它抑制断裂能力的高低。 关键词:塑性变形解理断裂准解理断裂沿晶断裂冷脆疲劳应力腐蚀 氢脆高温断裂 一、解理断裂与塑变的关系 解理断裂在主应力作用下,材料由于原子键的破断而产生的沿着某一晶面的快速破断过程。解理断裂的的产生条件是位错滑移必须遇到阻力,且位错滑移聚集到一定程度。断裂面沿一定的晶面发生,这个平面叫做解理面。解理台阶是沿两个高度不同的平行解理面上扩展的解理裂纹相交时形成的。形成过程有两种方式:通过解理裂纹与螺型位错相交形成;通过二次解理或撕裂形成。 第一种,当解理裂纹与螺型位错相遇时,便形成一个台阶,裂纹继续向前扩展,与许多螺型位错相交便形成众多台阶,他们沿裂纹前端滑动而相互交汇,同号台阶相互汇合长大,异号台阶相互抵消,当汇合台阶足够大的时候便在电镜下观察为河流状花样。

第二种,二次解理是指在解理裂纹扩展的两个互相平行解理面间距较小时产生的,但若解理裂纹的上下两个面间距远大于一个原子间距时,两解理裂纹之间的金属会产生较大的塑性变形,结果由于塑性撕裂而形成台阶,称为撕裂棱晶界。舌状花样是由于解理裂纹沿孪晶界扩散留下的舌头状凹坑或凸台。 从宏观上看,解理断裂没有塑性变形,但从微观上看解理裂纹是以塑性变形为先导的,尽管变形量很小。解理断裂是塑性变形严重受阻,应力集中非常严重的一种断裂。 二、准解理断裂与塑变的关系 准解理断裂介于解理断裂和韧窝断裂之间,它是两种机制的混合。产生原因: (1)、从材料方面考虑,必为淬火加低温回火的组织,回火温度低,易产生此类断裂。 (2)、构件的工作温度与钢材的脆性转折温度基本相同。 (3)、构件的薄弱环节处处于平面应变状态。 (4)、材料的尺寸比较粗大。 (5)、回火马氏体组织的缺陷,如碳化物在回火时的定向析出。 准解理断裂往往开始是因为碳化物,析出物或者夹杂物在外力作用下产生裂纹,然后沿某一晶面解理扩展,之后以塑性变形方式撕裂,其断裂面上显现有较大的塑性变形,特征是断口上存在由于几个地方的小裂纹分别扩展相遇发生塑性撕裂而形成的撕裂岭。准解理断裂面不是一

金属塑性成型原理

第一章 1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点? 塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力; 塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能 的加工方法,也称塑性加工或压力加工; 塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高 2.试述塑性成形的一般分类。 Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类 1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。可分为一次成型和二次加工。一次加工: ①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。分纵轧、横轧、斜轧;用于生产型材、板材和管材。 ②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。 ③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。生产棒材、管材和线材。 二次加工: ①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形 状和尺寸的加工方法。精度低,生产率不高,用于单件小批量或大锻件。 ②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从 而获得与模腔形状、尺寸相同的坯料或零件的加工方法。分开式模锻和闭式模锻。 2)板料成型一般称为冲压。分为分离工序和成形工序。 分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序; 成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。 Ⅱ.按成型时工件的温度可分为热成形、冷成形和温成形。 第二章 3.试分析多晶体塑性变形的特点。 1)各晶粒变形的不同时性。不同时性是由多晶体的各个晶粒位向不同引起的。 2)各晶粒变形的相互协调性。晶粒之间的连续性决定,还要求每个晶粒进行多系滑移;每个晶粒至少要求有5个独立的滑移系启动才能保证。 3)晶粒与晶粒之间和晶粒部与晶界附近区域之间的变形的不均匀性。 Add: 4)滑移的传递,必须激发相邻晶粒的位错源。 5)多晶体的变形抗力比单晶体大,变形更不均匀。 6)塑性变形时,导致一些物理,化学性能的变化。 7)时间性。hcp系的多晶体金属与单晶体比较,前者具有明显的晶界阻滞效应和极高的加工硬化率,而在立方晶系金属中,多晶和单晶试样的应力—应变曲线就没有那么大的差别。 4.试分析晶粒大小对金属塑性和变形抗力的影响。

金属材料与热处理习题答案

第一章金属的结构与结晶 $1-1 金属的晶体结构 一.填空题 1.非晶体晶体晶体 2.体心立方面心立方密排六方体心立方面心立方密排六 方 3.晶体缺陷点缺陷线缺陷面缺陷 二.判断题 1.对 2.对 3.错 4.错 三.选择 1.A 2.C 3.C 四.名词解释 1.答:晶格是假想的反映原子排列规律的空间格架.晶胞是能够完整地反映晶体晶格特征的最小几何单元。 2.答:只由一个晶粒组成的晶体称为单晶体。由很多大小、外形和晶格排列方向均不相同的晶粒所组成的晶体称为多晶体。 五.简答题

体心立方晶格面心立方晶格密排六方晶格$1-2 纯金属的结晶 一、填空题 1.液体状态固体状态 2.过冷度

3.冷却速度冷却速度低 4.形核长大 5.强度硬度塑性 二、判断题 l.X. 2.X 3.X 4.对 5.X 6.对 三、选择题 l.C B A 2.B 3.A 4.A 四、名词解释 答:结晶指金属从高温液体状态冷却凝固为原子有序排列的固体状态的过程。在结晶的过程中放出的热量称为结晶潜热。 2.答:在固态下,金属随温度的改变由一种晶格转变为另一种晶格的现象称为金属的同素异构转变。 五、简答题 1.答:冷却曲线上有一段水平线,是说明在这一时间段中温度是恒定的。结晶实际上是原子由一个高能量级向一个较低能量级转化的过程,所以在结晶时会放出一定的结晶潜热,结晶潜热使正在结晶的金属处于一种动态的热平衡状态,所以纯金属结晶是在恒温下进行的。 2.答:金属结晶后,一般晶粒越细,强度、硬度越高,塑性、韧性也越好,所以控制材料的晶粒大小具

有重要的实际意义。生产中常用的细化晶粒的方法有增加过冷度、采用变质处理和采用振动处理等。 3.答: (1)铸成薄件的晶粒小于铸成厚件的晶粒。 (2)浇铸时采用振动措施的晶粒小于不采用振动措施的晶粒。 (3)金属模浇铸的晶粒小于砂型浇铸的晶粒。 $1-3观察结晶过程(实验) 1.答:由于液态金属的结晶过程难以直接观察,而盐类也是晶体物质,其溶液的结晶过程和金属很相似,区别仅在于盐类是在室温下依靠溶剂蒸发使溶液过饱和而结晶,金属则主要依靠过冷,故完全可通过观察透明盐类溶液的结晶过程来了解金属的结晶过程。 2·答:

金属材料屈服强度的影响因素.

金属材料屈服强度及其影响因素 屈服强度是指材材料开始产生宏观塑性变形时的应力。对于屈服现象明显的材料,屈服强度就屈服点的应力—屈服值;对于屈服现象不明显的材料,通常将应力-应变曲线上以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 屈服强度通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。 影响屈服强度的因素 影响屈服强度的内在因素有: 1.金属本性及晶格类型——纯金属单晶体的屈服强度由位错运动时所受的阻力决定。这些阻力有晶格阻力和位错间交互作用产生的阻力之分。其中晶格力与位错宽度和柏氏矢量有关,而两者又与晶体结构有关。位错间交互产生的阻力包括平行位错间交互产生的阻力和运动位错与林位错交互产生的阻力。用公式表示:T=αGb/L,式中α为比例系数,又因为密度ρ与1/L2成正比,因此,T=αGb ρ1/2,由此可见,密度增加,屈服强度也随之增加。 2.晶粒大小和亚结构——晶粒大小的影响是晶界影响的反映,减小晶粒尺寸将增加位错运动障碍的数目,减小晶粒内位错塞积群的长度,将使屈服强度提高。许多金属与合金的屈服强度与晶粒大小的关系均符合霍尔佩奇公式σ s =σ j +k y d-1/2,式中,σ j 是位错在基体金属中运动的总阻力,亦称摩擦阻力,它决定于 晶体结构和位错密度;k y 是度量晶界对强化贡献大小的钉扎常数,或表示滑移带端部的应力集中系数;d为晶粒平均尺寸。亚晶界的作用和晶界类似,也阻碍位错的运动。 3.溶质元素——纯金属中融入溶质原子形成间隙型或置换型固溶合金将会显著提高屈服强度,此即为固溶强化。这主要是由于溶质原子和溶剂原子直径不同,在溶质周围形成了晶格畸变应力场,该应力场产生交互作用,使位错运动受阻,从而提高屈服强度。 4.第二相——工程上的金属材料,其显微组织一般是多相的。第二相对屈服强度的影响与质点本身在金属材料屈服变形过程中能否变形有很大关系。据此可将第二相质点分为不可变形和可变形的两类。 根据位错理论,位错线只能绕过不可变形的第二相质点,为此,必须克服弯曲位错的线张力。不可变形第二相质点的金属材料,其屈服强度与流变应力就决定于第二相质点之间的间距。对于可变形的第二相质点,位错可以切过,使之同基体一起变形,由此也能提高屈服强度。 第二相的强化效果还与其尺寸、形状、数量和分布以及第二相与基体的强度、塑性相应硬化特性、两相间的晶体学配合和界面能等因素有关。在第二相体积比相同的情况下,长形质点显著影响位错运动,因而具有此种组织的金属材料,其屈服强度就比球状的高。 综上所述,表征金属微量塑性变形抗力的屈服强度是一个对成分、组织极其敏感的力学性能指标,受许多内在因素的影响,改变合金成分或热处理工艺可使屈服强度产生明显变化。

金属材料弹塑性参数测定(E、U、G等)

实验名称:金属材料弹塑性参数测定(E、U、G等) 传感器是一种测量装置,用来把有关的物理量转变成具有确定对应关系的电量输出,以满足对于信息的记录、显示、传输、存储、处理以及控制的要求。传感器是实现自动测量与控制的第一个环节,在生产实践和科学研究的各个领域中发挥着十分重要的作用。本实验要进行分析、设计、制作电阻应变式传感器,并利用电桥作为基本的测量电路,利用静态电阻应变仪作为放大与输出仪器。标定制作好的电阻应变式传感器。 一、实验目的 1.学习并掌握电阻应变式传感器的结构、原理和设计方法。 2.理解并掌握电阻应变式传感器的标定方法,建立标定的概念,学会相关仪器的使用方法。 3.复习掌握电阻应变片的筛选、粘贴、焊接、检验等操作方法。 4.测定材料的弹性模量E和泊松比u 二、实验设备与仪器等 1.静态电阻应变仪。 2.标定器、计算器、数字式万用表、游标卡尺、电烙铁、剥线钳等。 3.弹性元件等传感器母体。 4.电阻应变片、接线端子、导线、502胶、丙酮、焊锡、砂纸等。 5. 金属筒(R=48mm,r=40mm) 三.原理与方法 电阻应变测量法是实验应力分析中应用最广的一种方法。电阻应变测量方法测出的是构件上某一点处的应变,还需通过换算才能得到应力。根据不同的应力状态确定应变片贴片方位,有不同的换算公式。 测量电桥的基本特性和温度补偿 构件表面的应变测量主要是使用应变电测法,即将电阻应变片粘贴在构件表面,由电阻应变片将构件应变转换成电阻应变片的电阻变化,而应变片所产生的电阻变化是很微小的,通常用惠斯顿电桥方法来测量,惠斯顿电桥是由应变片作为桥臂而组成的桥路,作用是将应变片的电阻变化转化为电压或电流信号,从而得到构件表面的应变。在测量时,将应变片粘贴在各种弹性元件上,组成电桥,并利用电桥的特性提高读数应变的数值,或从复杂的受力构件中测出某一内力分量(如轴力、弯矩等)。利用电桥的基本特性正确地组成测量电桥。 测量电桥的基本特性 A B C D R1R 2 R4R3 U BD U

金属材料基本知识

金属材料基本知识 1、什么是变形?变形有几种形式? 构件在外力作用下,发生尺寸和形状改变的现象。变形的基本形式:有弹性变形、永久变形(塑性变形)和断裂变形三种。构件在外力作用下发生变形,外力去除后能恢复原来形状和尺寸,材料的这一特性称为弹性。这种在外力去除后能消失的变形称为弹性变形。若外力去除后,只能部分的恢复原状,还残留一部分不能消失的变形,材料的这一特性称为塑性。外力去除后不能消失而永远残留的变形,称为塑性变形或残余变形,也称永久变形。工程上,一般要求构件在正常工作时,只能发生少量弹性变形,而不能出现永久变形。但对材料进行某种加工(如弯曲、压延、锻打)时,则希望它产生永久变形。 3、什么是强度?什么是刚度?什么是韧性? 材料或构件承受外力时,抵抗塑性变形或破坏的能力称强度。钢材在较大外力作用下可能不被破坏,木材在较小外力作用下而可能会断裂,我们说钢材的强度比木材高。材料或构件承受外力时抵抗变形的能力称为刚度。刚度不仅与材料种类有关,还与构件的结构形式、尺寸等有关。比如管式空气预热器管箱与钢管省煤器组件相比,前者抗变形能力要比后者好,我们称前者的刚度强(好),后者的刚度弱(差)。刚度好的构件,在外力作用下的稳定性也好。材料抵抗冲击载荷的能力称为韧性或冲击韧性,即材料承受冲击载荷时迅速产生塑性变形的性能。锅炉承压部件所使用的材料应具有较好的韧性。 4、什么是塑性材料?什么是脆性材料? 在外力作用下,虽然产生较显著变形而不被破坏的材料,称为塑性材料。在外力作用下,发生微小变形即被破坏的材料,称为脆性材料。材料的塑性和韧性的重要性并不亚于强度。塑性和韧性差的材料,工艺性能往往很差,难以满足各种加工及安装的要求,运行中还可能发生突然的脆性破坏。这种破坏往往滑事故前兆,其危险性也就更大。脆性材料抵抗冲击载荷的能力更差。 5、什么是应力、应变和弹性模量? 材料或构件在单位截面上所承受的垂直作用力称为应力。外力为拉力时,所产生的应力为拉应力;外力为压缩力时,产生的应力为压应力。在外力作用下,单位长度材料的伸长量或缩短量,称为应变量。在一定的应力范围(弹性形变)内,材料的应力与应变量成正比,它们的比例常数称为弹性模量或弹性系数。对于一定的材料,弹性模量是常数,弹性模量越大,在一定应力下,产生的弹性变形量越小。弹性模量随温度升高而降低。转动机械的轴与叶轮,要求在转动过程中产生较小的变形,就需要选用弹性模量较大的材料。 6、什么叫应力集中? 应力集中:由于构件截面尺寸突然变化而引起应力局部增大的现象,称为应力集中。在等截面构件中,应力是均匀分布的。若构件上有孔、沟槽、凸肩、阶梯等,使截面尺寸发生突然变化时,在截面发生变化的部位,应力不再是均匀分布,在附近小范围内,应力将局部增大。应力集中的程度,可用应力集中系数来表示。应力集中系数的大小,只与构件形状和尺寸有关,与材料无关。工程上常用典型构件的应力集中系数,已通过试验确定。应力集中处的局部应力值,有时可能很大,会影响部件使用奉命,是部件损坏的重要原因之一。为防止和减小这种不利影响,应尽可能避免截面尺寸发生突然变化,构件的外形轮廓应平缓光滑,必要的孔、槽最好配置在低应力区。另外,金属材料内部或焊缝有气孔、夹渣、裂纹以及“焊不透”、“咬边”等缺陷,也会引起应力集中。 7、什么是强度极限(抗拉强度)与屈服极限? 强度极限与屈服极限是通过试验确定的。在拉伸试验过程中,应力达到某一数值后,虽然不再增加甚至略有下降,试件的应变还在继续增加,并产生明显的塑性变形,好像材料暂

浅谈金属材料的塑性

浅谈金属材料的塑性 什么是金属材料的塑性? 塑性是材料在某种给定载荷下产生永久变形而不破坏的能力。对大多数的工程材料,当其应力低于弹性极限时, 产生的变形在外力去除后全部消除,材料恢复原状。这种情况下,应力的应变关系是线性的,表现为弹性行为。而应力超过弹性极限后,发生的变形包括弹性变形和塑性变形两部分,塑性变形不可逆。 而金属材料的塑性是指金属在载荷外力的作用下,产生塑性变形而不被破坏的能力。金属材料在受到拉伸时,长度和横截面积都要发生变化,因此,金属的塑性可以用延伸率(δ)和断面收缩率(ψ)两个指标来衡量。延伸率计算公式为δ=[(L1-L0)/L0]x100%;断面收缩率计算公式为ψ=[(F0-F1)/F0]x100%。金属材料在锻压、轧制、拔制等加工过程中,产生的弹性变形比塑性变形要小得多,通常忽略不计。这类利用塑性变形而使材料成形的加工方法,统称为塑性加工。金属材料的塑性有什么用? 在前面两个公式中不难看出δ与ψ值越大,金属材料的延伸率和断面收缩率愈大,则该材料的塑性愈好,即材料能承受较大的塑性变形而不破坏。一般把延伸率大于百分之五的金属材料称为塑性材料(如低碳钢等),而把延伸率小于百分之五的金属材料称为脆性材料(如灰口铸铁等)。同时起始塑性变形抗力和继续塑性变形抗力决定了金属材料硬度值,塑性变形抗力越高,材料的强度越高,硬度值也就越高。塑性好的材料,它能在较大的宏观范围内产生塑性变形,并在塑性变形的同时使金属材料因塑性变形而强化,从而提高材料的强度,保证了零件的安全使用。此外,塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。因此,选择金属材料作机械零件时,必须满足一定的塑性指标。

金属的塑性变形

二、金属的塑性变形 材料受力后要发生变形,变形可分为三个阶段:弹性变形;弹-塑性变形;断裂。外力较小时产生弹性变形,外力较大时产生塑性变形,而当外力过大时就会发生断裂。在整个变形过程中,对材料组织、性能影响最大的是弹-塑性阶段的塑性变形部分。如:锻造、轧制、拉拔、挤压、冲压等生产上的许多加工方法,都要求使金属产生变形,一方面获得所要求的形状及尺寸,另一方面可引起金属内部组织和结构的变化,从而获得所要求的性能。因此研究塑性变形特征与组织结构之间相互关系的规律性,具有重要的理论和实际意义。 弹性变形(Elastic Deformation) 1.1 弹性变形特征(Character of Elastic Deformation) 1.变形是可逆的; 2.应力与应变保持单值线性函数关系,符合Hooke定律:σ=Eε,τ=Gγ,G=E/2(1-ν) 3.弹性变形量随材料的不同而异。 1.2 弹性的不完整性(Imperfection of Elastane) 工程上应用的材料为多晶体,内部存在各种类型的缺陷,弹性变形时,可能出现加载线与卸载线不重合、应变的发展跟不上应力的变化等现象,称为弹性的不完整性,包括包申格效应、弹性后效、弹性滞后等。 1.包申格效应(Bauschinger effect) 现象:下图为退火轧制黄铜在不同载荷条件下弹性极限的变化情况。 曲线A:初次拉伸曲线,σe=240Pa 曲线B:初次压缩曲线,σe=178Pa 曲线C:B再压缩曲线,σe↑,σe=278Pa 曲线D:第二次拉伸曲线,σe↓,σe=85Pa 可见:B、C为同向加载,σe↑;C、D为反向加载,σe↓。 定义:材料经预先加载产生少量塑性变形,然后同向加载则σe升高,反向加载则σe降低的现象,称为包申格效应。对承受应变疲劳的工件是很重要的。 2.弹性后效(Anelasticity) 理想晶体(Perfect crystals):

金属材料的性能

金属材料的性能 学习目的: ★理解金属材料性能(工艺性能、使用性能)的概念、分类。 ★掌握强度的概念及其种类、应力的概念及符号。 ★掌握拉伸试验的测定方法;力——伸长曲线的几个阶段;屈服点的概念。 教学重点与难点 1、理解力——伸长曲线是教学重点; 2、强度、塑性是教学难点。 §2-1 金属材料的损坏与塑性变形 弯曲 零件常见损坏形式断裂 (不利)磨损 有利面:(塑性变形):成型强化(改善组织性能) 一、与变形相关的几个概念 1、载荷(金属材料所受外力) 载荷可分为:静载荷、冲击载荷、交变载荷。 2、内力 材料受外力时,为使其不变形,材料内部产生一种与外力相抗的力。 3、应力的概念。 横截面上的内力

二、金属的变形 外力作用下:弹性变形弹-塑性变形断裂 塑性变形的影响因素:1、晶粒位相的影响 2、晶界的作用 3、晶粒大小的影响 三、金属材料的冷塑性变形与加工硬化 加工硬化:有利面:强化金属 不利面:再加工(切屑,进一步加工)困难 §2-2金属的力学性能 学习目的:★了解疲劳强度的概念。 ★掌握布氏硬度、洛氏硬度、维氏硬度的概念、硬度测试及表示的方法。 ★掌握冲击韧性的测定方法。 教学重点与难点 ★布氏硬度、洛氏硬度、维氏硬度的概念、硬度测试及表示的方法。 教学过程: 力学性能的概念: 力学性能是指金属在外力作用下所表现出来的性能。 力学性能包括:强度、硬度、塑性、硬度、冲击韧性。

一、强度: ① 概念:金属在静载荷作用下,抵抗塑性变形或断裂的能力称为强度。强度的大小用应力来表示。 ② 根据载荷作用方式不同,强度可分为:抗拉强度、抗压强度、抗弯强度、抗剪强度和抗扭强度等。 一般情况下多以抗拉强度作为判别金属强度高低的指标。 1、拉伸试样:拉伸试样的形状一般有圆形和矩形。 Do :直径 Lo :标距长度 长试样:Lo=10do 短试样:Lo=5do 力-伸长曲线: 如下图,以低碳钢为例 纵坐标表示力F ,单位N ;横坐标表示伸长量△L ,单位为mm 。 (1)oe :弹性变形阶段: 试样变形完全是弹性的,这种随载荷的存在而产生,随载荷的去除而消失的变形称为弹性变形。Fe 为试样能恢复到原始形状和尺寸

金属塑性

1、什么是金属塑性?什么是塑性成型?塑性成型有何特点? 塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力称为塑性。利用金属在一定的外力作用下产生塑性变形,并获得具有一定形状、尺寸和机械性能的材料、毛坯或零件的加工方法,称为金属的塑性成形(也称压力加工)。塑性成型特点:1组织、性能好2材料利用率高3尺寸精度高4生产率高,易实现连续化、自动化、高速、大批量生产 不足:设备较庞大,相对能耗较高,成本较高2试述塑性成型的一般分类? 一、板料成型:1、一次加工:1)轧制2)挤压3)拉拔2、二次加工:1)自由锻2)模锻二、块料成型:1、分离工序:1)冲裁2)落料2、成型工序:1)弯曲2)拉深三、按温度分:热成型、冷成型、温成型3、试简述滑移和孪生两种变形机理的主要区别?滑移与孪生的比较相同点:通过位错运动实现;两者都不改变晶体结构类型区别:1)晶体中的位向滑移:晶体中已滑移部分与未滑移部分的位向相同孪生:已孪生部分(孪晶)和未孪生部分(基体)的位向不同,两部分之间具有特定的位向关系(镜面对称)2)变形机制:滑移是全位错运动的结果;孪生是部分位错3)对塑性变形的贡献:总变形量大;孪生(小)4)变形应力:近似临界分切应力;高于临界分切应力5)变形条件:一般情况下,先发生滑移变形;滑移变形难以进行时,或晶体对称度很低、变形温度较低、加载速率较高,发生孪生变形4、试分析多晶体塑性变形的特点?(1)各晶粒变形的不同时性首先在位向有利、滑移系上切应力分量已优先达到临界值的晶粒内发生2)各晶粒变形的相互协调性晶粒的变形需要相互协调配合,才能保持晶粒之间的连续性,即变形不是孤立和任意的。(3)变形的不均匀性软位向的晶粒先变形,硬位向的晶粒后变形,其结果必然是各晶粒变形量的差异,这是由多晶体的结构特点所决定的。5、什么是加工硬化?加工硬化产生的原因?加工硬化对塑性加工有何利弊?1)加工硬化:塑性变形时,随着内部组织结构变化,金属金属强度、硬度增加,而塑性、韧性降低的现象。2)加工硬化是位错与交互作用有关,随着塑性变形的进行,位错密度不断增加,位错反应和相互交割加剧,结果产生固定割阶、位错纠缠等障碍。以致形成细胞亚状结构,是位错难以越过这些障碍而被限制在一定的范围内运动。金属要继续变形,就要不断外力,才能克服强大的交互作用。3)有利的方面:1、是金属强化的重要途径2、对不能用热处理方法强化的材料,借助冷塑性变形来提高其力学性能。3、对改善板料成型性能有积极的意义。不利的一面:金属塑性下降、变形抗力升高、继续变形越来越困难;对高硬化速率的多道次成形,需增加中间退火来消除加工硬化,降低了生产效率、提高成本6、什么是动态再结晶?影响动态再结晶的因素有哪些?1)动态在结晶:是在热塑性变形过程发生的再结晶。2)影响因素:位错能的高低,晶界迁移的难易程度、应变速率、变形温度等有关。7、什么是动态回复?为什么说动态回复是热塑变形的主要软化机制?动态回复:在热塑性变形过程中发生的回复。原因: 层错能高,变形时扩展位错的宽度窄、集束容易,位错的交滑移和攀移容易进行,位错容易在滑移面间转移,而使异号位错互相抵消,结果使位错密度下降,畸变能降低,不足以达到动态再结晶所需的能量水平8、与常规塑性变形相比,超塑性变形具有哪些主要特征?1、大伸长率,高达百分之几千2、无缩颈,拉伸时变现均匀的截面缩小,断面收缩率甚至可接近100%3、低流动应力,仅(几个—几十个)N/mm,对应变速率非常敏感4、具有极好的流动性和充填性,加工复杂精确的零件。9、什么是细晶超塑性?什么是相变超塑性?细晶超塑性:一定恒温,应变速率和晶粒度都满足要求,呈现的超塑性相变超塑性:要求具有相变或同素异构转变,一定的外力下,金属或合金在相变温度附近反复加热和冷却,经过一定的循环次数后,获得很大的伸长率。10、超塑性变形的力学方程中的m的物理意义是什么?m值指的是应变速率敏感指数:反应材料抗局部收缩或产生均匀拉深变形的能力。 11、什么是塑性?什么是塑性指标?为什么说塑性指标只具有相对意义?1)塑性:是金属在外力作用下产生永久变形而不破坏其完整性的能力。2)塑性指标:金属在破坏前产生的

相关主题
文本预览
相关文档 最新文档