当前位置:文档之家› Concentrating Solar Power Clean energy for the electric Grid

Concentrating Solar Power Clean energy for the electric Grid

Concentrating Solar Power Clean energy for the electric Grid
Concentrating Solar Power Clean energy for the electric Grid

Chapter 4 Concentrating Solar Power Clean energy for the electric Grid

by

Gary Gereffi and Kristen Dubay

Contributing CGGC researchers:

Jess Robinson and Yuber Romero

Summary

Concentrating solar power (CSP), also referred to as concentrating solar thermal power, represents a powerful, clean, endless, and reliable source of energy with the capacity to entirely satisfy the present and future electricity needs of the United States. Concentrating solar power plants produce no carbon dioxide (CO2), thus reducing carbon emissions from electricity generation by approximately 600 pounds per megawatt-hour (BrightSource Energy, 2008).4 The evolution of CO2 emissions regulations, the pressure of international fossil fuel prices, and the experience, knowledge, and technological readiness amassed during several decades of CSP research have launched the technology into a new era of commercial reality.

The United States and Spain have integrated CSP into their national electricity supply grids through large-scale commercial plants. Eight of the 13 biggest planned CSP projects in the world will be located in California and Arizona. The Sun Belt region of the United States, particularly the Southwest, is one of the largest areas in the world for CSP exploitation because of its abundant sunshine. In addition to generating a new clean source of energy, expansion of the industry promises to create economic opportunity for many different businesses along multiple stages of the value chain, including thousands of new construction jobs and hundreds of skilled jobs in the operation and maintenance of the new plants.

Introduction

After several decades of research and pilot testing, concentrating solar power (CSP) is now commercially viable. For more than 50 years researchers, universities, laboratories, inventors, and scientists experimented with ways to produce electricity using steam generated from the heat of concentrating solar rays. The U.S. government has been collaborating with private research corporations over the last 20 years to scale up CSP technology for the energy markets. Govern-ment investment in this technology continues to increase. In April 2008, the U.S. Department

of Energy announced $60 million in funding over the next five years to support further develop-ment of low-cost CSP technology (U.S. Department of Energy, 2008).

CSP plants concentrate beams of light from the sun to heat a fluid and produce steam. The steam rotates a turbine connected to a generator, producing electricity to run a traditional power plant. There are four types of CSP technologies: parabolic troughs, power towers, dish/engine systems, and linear Fresnel reflectors. The parabolic trough system was the first CSP technology, thus

it is the most developed and most commonly replicated system. Deployment of the other technologies is relatively new and in some cases, as with the linear Fresnel reflector technology, projects currently being developed are the first to reach utility-scale magnitude. Parabolic trough technology uses parabolic reflectors to concentrate the sun’s rays into a receiver pipe along the reflector’s focal line. The receiver heats a liquid which generates steam for power. This collector system rotates with the sun’s movement to optimize solar energy generation (Solar Energy Technologies Program, 2008a). Power tower systems use flat mirrors to reflect the sun’s rays onto a water-filled boiler atop a central tower. The liquid is heated to a very high temperature and runs the turbine to create electricity (BrightSource Energy, 2007). Dish/engine systems use parabolic reflectors to direct the sun’s rays at a receiver placed at the reflector’s focal point.

The liquid in the receiver is heated and runs a Stirling engine to create power (Solar Energy

4 This compares to CO

emissions of 750 grams per kilowatt hour (g/kWh) from hard coal power plants and 500

2

g/kWh from natural gas (Solar Millennium AG 2008).

Technologies Program, 2008b). Linear Fresnel reflector technology works much like the parabolic trough system, except that it uses flat mirrors that reflect the sun onto water-filled pipes that generate steam. This is a significant cost advantage because flat mirrors are much less expensive to produce than parabolic mirrors (Ausra, 2008b). Current advances in CSP allow these technologies to produce electricity several hours after sunset and on days with low intensity of solar radiation through heat accumulators and hybrid configurations.

Figure 4-1. Concentrating Solar Technologies

Trough System Tower System Dish System Linear Fresnel System Sources: Trough, tower, and dish system images reprinted with permission from the National Renewable Energy Laboratory, https://www.doczj.com/doc/b915800402.html,/data/pix/; Linear Fresnel system reprinted with permission from Ausra, Inc., https://www.doczj.com/doc/b915800402.html,/.

Concentrating Solar Power Value Chain

CSP is a new industry, and the roles and actors in the value chain vary significantly by tech-nology and project. In addition, the value chain structure is still evolving. A general value chain illustration can be viewed in Figure 4-2. A more complete value chain with illustrative company information appears at the end of this chapter. At the basic level, there are five stages in the value chain: materials; components; the finished product including solar technology and plant develop-ment; distribution via ownership and operation of the CSP plant; and end use of power by utility companies. Research and development (R&D) is an integral part of the component, product, and distribution stages of the value chain. Much of the R&D, plant development, manufacturing, plant design and installation, and operation are conducted by a single company or by closely related companies. Therefore, there is significant vertical integration across the five stages of

the value chain.

Materials and Components

The major materials in the CSP value chain are silica, iron and steel, concrete, plastic (or polyvinyl chloride), brass, synthetic oil, copper, aluminum, and molten salt. Figure 4-3 highlights the major country sources for these materials and their corresponding components. Table 4-1 highlights some CSP component manufacturing companies.5 A CSP plant has four major systems: the collector, steam generator, heat storage, and central control. The collector system components vary depending on the type of CSP plant.

5 The majority of the research on component manufacturing focuses on parabolic trough power plants because these are currently the most widely used CSP technologies. Components and component manufacturers of the Stirling engine and tower CSP plants are also included to the extent possible.

Figure 4-2: Simplified Concentrating Solar Power Value Chain Developer and Solar Provider/ Technology Luz ACCIONA/ Solargenix Energy Abengoa Solar Carrizo Energy, LLC/ Ausra Ca II, LLC BrightSource eSolar Florida Power & Light Beacon Solar, LLC Solel Solar Systems Stirling Energy

System

Utility Company Southern

California Edison Nevada Power

Co. Sierra Pacific

Power Co. Arizona Public Service Co. Pacific Gas &

Electric, Co. Florida Power & Light San Diego Gas & Electric

Steel

Synthetic oil

Cooper

Brass

Concrete

Plastic

Silica

Molten salt Owner Operator Sunray Energy Florida Power & Light ACCIONA/ Solargenix Energy Arizona Public

Service Co. Abengoa Solar Ausra BrightSource eSolar Beacon Solar, LLC Solel Solar Systems Stirling Energy Systems Government grants & partnerships Solar technology components

Emerging solar power companies

Infinia Corp (Kennewack, WA)

Sopogy (Honolulu, HI) End Use

Source: CGGC, based on company annual reports, individual interviews, and company websites.

In addition to the components listed in Figure 4-3, concentrating solar power plants have many

other elements not outlined here because they represent standard technology for generating

electricity. These include a natural gas boiler, steam turbine, steam generator, condenser, and

cooling tower. These components would certainly be a part of the production process for any

CSP plant and would contribute to further manufacturing and construction needs.

Source: CGGC, based on company annual reports, individual interviews, and company websites.

Table 4-1. Illustrative Companies Making Concentrating Solar Power Components Component Illustrative

Companies

Location

European Partners Europe

Industrial Solar Technology Golden, CO

Luz/Solel Israel

Solargenix Energy Sanford, NC

Solar Millennium AG Germany

Collectors

Sopogy Honolulu,

HI

Alanod Germany

Ausra Manufacturing Las Vegas, NV

Boeing (formerly McDonald

Douglas)

Chicago, IL

Cristaleria Espanola SA Spain

Flabeg Germany

Glaverbel Belgium

3M Company St. Paul, MN

Naugatuck Glass Naugatuck, CT

Paneltec Corporation Lafayette, CO

Pilkington United

Kingdom Mirrors/Reflectors

SCHOTT North America Elmsford, NY

Alanod Germany

3M Company St. Paul, MN

Mirror/Reflector Film

ReflecTech Arvada, CO

Luz/Solel Israel

Heat Collection Element

SCHOTT North America Elmsford, NY

Steam Generator System Siemens New York, NY

Heat Storage System Radco Industries LaFox, IL

Central Control System Abengoa Solar USA Lakewood, CO

Luz/Solel Solar Systems Israel

Linear Receiver

SCHOTT North America Elmsford, NY

European Partners (Euro Trough) Europe

Concentrator Structure

Solargenix Sanford,

NC

Other Components Other components used in power plant production but not unique to concentrating solar include a natural gas boiler, steam turbine, steam generator, condenser, and cooling tower

Source: CGGC, based on company annual reports, individual interviews, and company websites.

Manufacturing & Development

CSP is appealing to developers because it is a renewable and reliable resource with predictable

costs. CSP developers currently planning major power plant projects in the United States are

large multinational or national companies already involved in the renewable energy field. In

many cases, the developers are international firms that have established U.S. subsidiaries. These

include Abengoa Solar USA, ACCIONA Solar Power, Inc., and Solel, Inc. (see Table 4-2).

Therefore, although there is a significant international corporate presence in the CSP value chain,

foreign-owned subsidiaries and offices are being developed in the United States along with

U.S.-owned plants. Other developers include current or former utility and energy companies

expanding into renewable energy, such as FPL Energy and Solargenix Energy (formerly Duke

Solar Energy).

Table 4-2. Concentrating Solar Power Developer Companies

Illustrative Companies Location

U.S.-based

Abengoa Solar USA/Solucar Power (Subsidiary of

Victorville, CA

Abengoa)

ACCIONA Solar Power Inc. (S ubsidiary of

Henderson, NV

ACCIONA Energia)

Ausra Palo Alto, CA

Bright Source Energy, Inc. Oakland, CA

E-solar (Idealab) Pasadena, CA

FPL Energy Mojave, CA

Industrial Solar Technology Corp Golden, CO

Inland Energy Upland, CA

Sky Fuel Albuquerque, NM

Solel, Inc. (Subsidiary of Solel Solar Systems Ltd) Henderson, NV

Solargenix Energy Sanford, NC

Stirling Energy Systems Phoenix, AZ

International

ACCIONA Energia Spain

Abengoa - Abengoa Solar Spain

Albiasa Solar Spain

Ener-T Global Israel

Epuron Germany

Africa Eskom South

Grupo Enhol Spain

Luz II (BrightSource subsidiary) Israel

Novatec BioSol AG Germany

Samca Spain

Sener Group Spain

Solar Millennium AG Germany

Solar Power Group Germany

Solel Solar Systems Ltd Israel

Source: CGGC, based on company annual reports, individual interviews, and company websites.

The solar thermal industry appears to be significantly integrated across the value chain. Many developers conduct their own R&D to create unique, patented concentrating solar technologies. Concurrently, CSP developers often manufacture the patented components, build the power plant, and operate it. The planned Ivanpah Solar Power Complex is a good example. BrightSource Energy owns Luz II, one of the early CSP technology design and manufacturing companies,

and Luz II will manufacture the CSP technology while BrightSource oversees the development, operation, and management of the plant. BrightSource will then sell the power produced to Pacific Gas & Electric. The U.S. Department of Energy also partners with a number of power plant owners and operators to help improve plant operation and management and develop better plant technology (Blair, 2008).

CSP plant construction requires commodity type materials (steel and concrete), and many companies contract out the manufacturing of non-patented components. Even when the developer of a U.S.-based CSP plant is an international company, the United States can expect significant job growth from plant construction and ongoing operations. There are two assembly sites: the first, which can be anywhere in the world, produces easily transportable components. The second, where larger components are assembled, must be near the plant to minimize transportation costs. This implies U.S. job growth potential in both component manufacturing and plant assembly.

The National Renewable Energy Laboratory (NREL) estimates that approximately 455 construction jobs are created for every 100 megawatts (MW) of installed CSP (Stoddard et al., 2006). The 280 MW Solana Generating Station scheduled for construction this year is expected to have an even greater impact, generating 1,500 to 2,000 construction jobs during the two-year construction period (Abengoa Solar, 2008). According to an analysis by Black & Veatch, a 100 MW CSP plant would produce 4,000 direct and indirect job-years in construction compared to approximately 500 and 330 job-years for combined cycle and simple cycle fossil fuel plants of the same production capacity, respectively (Stoddard et al., 2006).

During the operation phase of the power plant, permanent jobs are created in areas such as administration, operation, maintenance, service contracting, water maintenance, spare parts and equipment, and solar field parts replenishment. CSP plants generate an estimated 94 operation and management jobs per 100 MW, whereas conventional coal and natural gas plants of the same size generate between 10 and 60 permanent jobs. Despite the greater job creation, the total operation and maintenance cost for a CSP plant is approximately 30% lower than for a natural gas plant, even before the cost of natural gas is included (Stoddard et al., 2006).

The NREL estimates that an investment of $13 billion dollars in the installation of 4,000 MW

of CSP, as expected based on the current and planned CSP plant development across the United States, will create 145,000 jobs in construction and 3,000 direct permanent jobs (Stoddard et al., 2006). Although the majority of the construction and operation and management jobs would be located in the Southwest, there will also be significant gains in manufacturing jobs, which would likely be more widely distributed across the country.

Government support also plays a vital role in the development of new solar technologies. The National Renewable Energy Laboratory in Golden, Colorado, receives federal funding to partner

with private companies to improve the quality and cost-competitiveness of many renewable energy products, including CSP, and to perform high-risk research on new fluids, mirrors, and systems for CSP plants (Blair, 2008).

Concentrating Solar Market

Current penetration rates of CSP in the United States are near zero because existing large scale plants account for just 419 MW of power compared to a total U.S. installed electricity generating capacity of 1,758,346 GWh in 2007 (National Renewable Energy Laboratory, 2008 and Edison Electric Institute, 2008). Just 9% of the electricity generated in the United States came from renewable energy sources (6.4% hydroelectric and 2.5% other) and 91% was produced by other sources (50.5% coal, 18.3% natural gas, 3.3% oil, and 19% nuclear) (World Bank, 2008). Therefore just 2.5% of U.S. electricity was produced by a combination of geothermal, wind, photovoltaic, and CSP technologies. In fact, in 2006, only 1% of the nation’s energy supply was generated from solar power (Energy Information Administration, 2008a).

Technological developments, the evolution of the regulatory environment on carbon emissions, and the volatility and accelerated increase in fossil fuel prices have created the perfect environment for commercial delivery of CSP. Between 2002 and 2007 the price of natural gas for electric power use more than doubled (Energy Information Administration, 2008b). Therefore, although current CSP costs are approximately 18 cents per kWh (Pernick & Wilder, 2008) compared to 6 cents per kWh for coal and 9 cents per kWh for natural gas (Rosenbloom, 2008), the volatility of and long-term increases in fossil fuel costs will make CSP costs more competitive (Pernick & Wilder, 2008). Furthermore, research suggests that increasing the CSP electricity production to 4 GW and incorporating new technological improvements could bring the cost of CSP down to 10 cents per kWh, which would be more competitive with natural gas and coal (Western Governors' Associa-tion, 2006). Other research from Clean Edge, Inc. and Co-op America estimates that by 2025, the cost of CSP will decline to 5 cents per kWh (Pernick & Wilder, 2008).

In 2006, total solar collector shipments for all types of solar collectors in the United States increased 29% from the previous year (Energy Information Administration, 2007). The largest market share gain was seen in shipments for high temperature collectors like those used in

utility-scale CSP plants, which accounted for 18.5% of all solar collector shipments in 2006, compared to less than 1% in 2005. The Nevada Solar One solar thermal power plant that began generating power in 2007 is credited for this increase. Shipments of high temperature collectors are expected to further increase as additional U.S. CSP plants are developed.

The Sun Belt region has 5,203 million acres suitable to the implementation of CSP plants (Leitner, 2002) and almost all of the existing and planned CSP plants in the United States will be located in that region. Currently, four parabolic trough plants are operating with a combined capacity

of 419 MW, two in California and one each in Arizona and Nevada. Another three parabolic troughs, two linear Fresnel reflectors, and two tower plants are expected to be in operation by 2011, and two dish engine plants also are planned (see Table 4-3). Once in operation, these will account for more than 3,000 MW combined. Figure 4-4 illustrates the distribution of existing CSP developers and component manufacturers across the United States. As manufacturing

for the nine planned CSP plants gets underway, it is expected that the number of U.S. component manufacturers will increase, as indicated by Abengoa, which expects to open a mirror manu-facturing plant at a later stage of development for the Solana Generating Station (Barron, 2008).

Table 4-3. Existing and Planned U.S. Concentrating Solar Power Plants

Source: CGGC, based on company annual reports, individual interviews, and company websites.

Case Study: Solar Manufacturing Can Replace Lost Auto Jobs

Infinia Corporation recognizes the market potential for CSP and the need for U.S. job growth in manufacturing. With these ideas in mind, the company developed a concentrating solar dish system, called the Infinia Solar System, which is the only CSP technology specifically designed to be mass manufactured by Tier 1 and Tier 2 auto manufacturers in the United States. Infinia included U.S. auto suppliers from the very beginning in product development, design, and manufacturing layout decisions. CEO J.D. Sitton explains that Infinia developed a solar technology product that can be “stamped out like a Chevy and installed like a Maytag.” The product can be manufactured on existing auto production lines and shipped as a kit that can be installed by the most basic construction crew (Sitton, 2008). There appears to be great potential for this approach. U.S. auto production has the capacity to pro-duce over 19 million vehicles, but only about 15 million of the current capacity is being used. Infinia estimates each unit of auto production capacity can be retooled to produce 10 units of the Infinia Solar Power System. Therefore, the idle auto production capacity could produce 40 million units of this new technology per year. This would equate to 120,000 MW of solar capacity and as many as 500,000 manufacturing jobs in Washington, Michigan, and the upper Midwest (Sitton, 2008).

Production of the Infinia Solar System will be launched in January 2009. Infinia initially planned for nearly 100% of manufacturing to be in the United States. However, factors such as Congressional delay in extending the renewable energy investment tax credits and the U.S. government’s lack of an effective renewable energy policy have created uncertainty regarding the near-term viability of the U.S. market. Thus, Infinia is investing some of its manufacturing abroad, where the markets are more economically attractive. The initial manufacturing distribution will be 60% U.S. and 40% international (Sitton, 2008).

Project Name Location Capacity (MW) Operation Year

Antelope Valley plant Southern CA 245 2011

APS Saguaro Saguaro, AZ 1 Operating

Beacon Solar Energy Project Kern County, CA 250 2011

Corrizo Energy Solar Farm San Louis Obispo, CA 177 2010

FPL plant Florida 300 2011

Ivanpah Solar Power Complex Ivanpah, CA & Broadwell, CA

400 2011 Mojave Solar Park 1 Mojave Desert 553 2011

Nevada Solar One Boulder City, NV 64 Operating

SEGS I & II Daggett, CA 44 Operating

SEGS III-IX Kramer Junction, CA 310 Operating

Solana Generating Station Gila Bend, AZ 280 2011

Solar One Victorville, CA 500 TBA

Solar Two Imperial County, CA 300 TBA

Figure 4-4: Geographic Distribution of U.S.-Based Concentrating Solar Power Plant Developers and Component Manufacturing Companies

Source: CGGC, based on company annual reports, individual interviews, and company websites.

In addition to its potential to provide new production capacity for ailing auto manufacturing plants, Infinia believes its solar system is twice as efficient as photovoltaic products and has broader potential than other CSP technologies because it does not need flat ground or cooling water. This means it can be deployed in and around towns, making new transmission lines unnecessary. New business agreements to install this technology will be announced in the fall of this year (Sitton, 2008). Conclusion

The example of Infinia Corporation illustrates the extensive manufacturing and technology inno-vation opportunities for CSP development in the United States. Furthermore, technological developments and the volatility and increase in fossil fuel prices are reducing the disparities in cost between renewable and non-renewable energy sources. Worldwide concern about carbon emissions also is strengthening the market. CSP has the potential to reduce carbon emissions while positively impacting job growth, if it is able to benefit from government tax incentives and more extensive technology deployment.

Figure 4-5. Concentrating Solar Power Value Chain, with Illustrative Companies Developer and Solar Provider/ Technology Luz ACCIONA/ Solargenix Energy Abengoa Solar Carrizo Energy, LLC/ Ausra Ca II, LLC BrightSource

eSolar

Florida Power &

Light

Beacon Solar, LLC Solel Solar

Systems

Stirling Energy

System Utility Company Southern California Edison Nevada Power Co. Sierra Pacific Power Co. Arizona Public

Service Co. Pacific Gas & Electric, Co. Florida Power & Light San Diego Gas & Electric

Steel

Synthetic oil Cooper

Brass

Concrete Plastic Silica Molten salt Owner Operator Sunray Energy Florida Power & Light ACCIONA/ Solargenix Energy Arizona Public Service Co. Abengoa Solar Ausra BrightSource eSolar Beacon Solar, LLC Solel Solar Systems Stirling Energy Systems End Use Government grants & partnerships Solar technology components

Emerging solar power companies

Infinia Corp (Kennewack, WA)

Sopogy (Honolulu, HI)

Source: CGGC, based on company annual reports, individual interviews, and company websites.

References

Abengoa Solar. (2008, June). Solana Generating Station Project. Retrieved August 4, from https://www.doczj.com/doc/b915800402.html,/misc/Solana_6-17-2008_letter-size.pdf

Ausra. (2008b). How Ausra’s Technology Works. Retrieved August 1, 2008, from https://www.doczj.com/doc/b915800402.html,/technology/

Barron, Rachel. (2008, July 14). No Tax Credit, No Solar Power. Greentech Media. Retrieved August 4, 2008, from https://www.doczj.com/doc/b915800402.html,/articles/no-tax-credit-no-solar-

power-1119.html

Blair, Nate. (2008). Senior Analyst, National Renewable Energy Laboratory. Personal communication with CGGC Staff. September 29.

BrightSource Energy. (2007). Technology: Dynamic Power Towers- The Lowest Cost from Photon to Electron. Retrieved July 17, 2008, from

https://www.doczj.com/doc/b915800402.html,/dpt.htm

---. (2008). Ten FAQs About Solar Thermal Power. Retrieved June 27, 2008, from https://www.doczj.com/doc/b915800402.html,/faq.htm

Edison Electric Institute. (2008). Industry Statistics. Retrieved September 29, 2008, from https://www.doczj.com/doc/b915800402.html,/industry_issues/industry_overview_and_statistics/industry_statistics/i ndex.htm#generation

Energy Information Administration. (2007). Solar Thermal and Photovoltaic Collector Manufacturing Activities 2006. Washington, DC: Energy Information Administration.

---. (2008a). How Much Renewable Energy Do We Use? Washington, DC: Energy Information Administration.

---. (2008b, July 29). Natural Gas Prices. Natural Gas Navigator Retrieved August 4, 2008, from https://www.doczj.com/doc/b915800402.html,/dnav/ng/ng_pri_sum_dcu_nus_a.htm

Leitner, Arnold. (2002). Fuel from the Sky: Solar Power’s Potential for Western Energy Supply.

Golden, CO: National Energy Renewable Laboratory.

National Renewable Energy Laboratory. (2008). U.S. Parabolic Trough Power Plant Data.

Retrieved June 12, 2008, from https://www.doczj.com/doc/b915800402.html,/csp/troughnet/power_plant_data.html Pernick, Ron and Wilder, Clint. (2008). Utility Solar Assessment (USA) Study: Reaching Ten Percent Solar by 2025: Clean Edge and Co-op America

Rosenbloom, Stephanie. (2008, August 10). Giant Retailers Look to Sun for Energy Savings. The New York Times. Retrieved August 10, 2008, from

https://www.doczj.com/doc/b915800402.html,/2008/08/11/business/11solar.html?_r=2&th&emc=th&oref=slo gin&oref=slogin

Sitton, J.D. (2008). President & CEO, Infinia Corporation. Personal communication with CGGC Staff. August 1.

Solar Energy Technologies Program. (2008a). Technologies: Linear Concentrator Systems.

Retrieved September 29, 2008, from

https://www.doczj.com/doc/b915800402.html,/solar/linear_concentrators.html

---. (2008b). Technologies: Dish/Engine Systems. Retrieved September 29, 2008, from https://www.doczj.com/doc/b915800402.html,/solar/dish_engines.html

Solar Millennium AG. (2008). Lower Emission Values for Solar Thermal Power Plants. Solar Thermal Power Plants Emission Comparison. Retrieved July 31, 2008, from

http://www.solarmillennium.de/Technology/Solar_Thermal_Power_Plants/Emission_Co mparison/Lower_Emission_Values_for_Solar_Thermal_Power_Plants_,lang2,158.html

Stoddard, Larry, Abiecunas, Jason, and O'Connell, Ric. (2006). Economic, Energy, and Environmental Benefits of Concentrating Solar Power in California. Overland Park, KS: Black & Veatch.

U.S. Department of Energy. (2008, July 17). DOE Seeks to Invest up to $60 Million for Advanced Concentrating Solar Power Technologies. Retrieved July 22, 2008, from

https://www.doczj.com/doc/b915800402.html,/news/6189.htm

Western Governors' Association. (2006). Clean and Diversified Energy Initiative: Solar Task Force Report.

World Bank. (2008). WDI Online: World Development Indicators. Retrieved June 5, 2008, from The World Bank Group:

https://www.doczj.com/doc/b915800402.html,/WBSITE/EXTERNAL/DATASTATISTICS/0,,contentMDK:2 0398986~isCURL:Y~pagePK:64133150~piPK:64133175~theSitePK:239419,00.html

东方财富通可用的指标公式

东方财富通可用的指标公式(一) TBP-STD 趋势平衡点主图 APX:=(H+L+C)/3; TR0:=MAX(H-L,MAX(ABS(H-REF(C,1)),ABS(L-REF(C,1)))); MF0:=C-REF(C,2); MF1:=REF(MF0,1); MF2:=REF(MF0,2); DIRECT1:=BARSLAST(MF0>MF1 AND MF0>MF2); DIRECT2:=BARSLAST(MF050,MIN(MF0,MF1),MAX(MF0,MF1)),1); 多头获利:REF(IF(DIRECT0>50,APX*2-L,DRAWNULL),1),NODRAW; 多头停损:REF(IF(DIRECT0>50,APX-TR0,DRAWNULL),1),NODRAW; 空头回补:REF(IF(DIRECT0<-50,APX*2-H,DRAWNULL),1),NODRAW; 空头停损:REF(IF(DIRECT0<-50,APX+TR0,DRAWNULL),1),NODRAW; 一.开始进场 1.当收盘价高于TBP时,在收盘的那一刻,应该进场买入股票; 2.当收盘价低于TBP时,在收盘的那一刻,应该卖出股票出场或融券放空; 二.市况反转(股价未触及了结点或停损点时) 1.当收盘价高于TBP时,在收盘的那一刻,应该把空头交易改为多头交易; 2.当收盘价低于TBP时,在收盘的那一刻,应该把多头交易改为空头交易; 三.出场 1.当股价抵达了结点时,应获利了结出场,但不能反转; 2.当股价碰触停损点时,应停损出场,但不能反转; 四.重新进场 1.出场后,须依据收盘时的TBP来决定是否重新进场; 五.决定明天的TBP 1.如果市况是多头,则先挑出前两天速量因子中较小者,然后,再与昨天的收盘价相加,即可求出明天的TBP; 2.如果市况是空头,则先挑出前两天速量加子中较大者,然后,再与昨天的收盘价相加,即可求出明天的TBP。 智能中线 N 1,200,30 V AR2:=SUM(IF(CLOSE>OPEN,VOL,0),N)/SUM(VOL,N)*100; V AR3:=100-SUM(IF(CLOSE>OPEN,VOL,0),N)/SUM(VOL,N)*100; 多头力量: V AR2; 空头力量: V AR3; 多空平衡: 50; V AR2赋值:如果收阳线,返回成交量(手),否则返回0的N日累和/成交量(手)的N 日累和*100 V AR3赋值:100-如果收阳线,返回成交量(手),否则返回0的N日累和/成交量(手)的N日累和*100

E-Net2.0审片软件操作手册051028

E-Net2.0 ENE非线性编辑软件操作手册目录 目录 (1) 前言 (2) 审片软件操作指南 (3) 1. 系统登录 (3) 2. 节目管理 (3) 1)打开节目 (4) 2)刷新 (6) 3)退出 (6) 3. 节目审看 (7) 1)播放节目 (7) 2)记录审查意见 (8) 3)节目处理 (8) 4. 退出系统 (9)

前言 感谢您选用成都索贝数码科技股份有限公司(Sobey Digital Technology Co., Ltd)的E-Net 2.0 ENE编辑网络系统。 索贝E-Net是索贝公司全力打造的制播一体化网络新产品,是一个具有 新闻共享、制作、播出、小媒资管理和网络管理的全数字环境的智能化新 闻节目制播网络系统。ENE是索贝E-Net系统中的制作部分,它能支持电 视台新闻业务的运作,并承担电视台大部分新闻节目生产任务。系统实现 收录和自采新闻节目素材的全台共享,充分利用计算机多媒体技术和网络 技术,全面提高电视台新闻节目的制作水平和播出效率。 索贝E-Net非线性编辑网络系统是我公司自主开发的一套全中文的非线 性广播级节目制作系统,它能广泛地适用于广播电视单位,各种电视教育 以及各类广告的制作。E-Net非编系统采用数字视频技术发展方向的MPEG 2压缩方式,将编辑、字幕、节目包装“三位一体”化,并以完善的素材、节 目管理机制全面兼容ENC网络,是索贝公司为新开发的新一代全新的非线 性编辑系统。 本手册适用于系统操作人员、电视台编辑、记者。本手册的主要目的是 对E-Net2.0审片软件的实际操作提供指南。

E-Net2.0 ENE非线性编辑软件操作手册审片软件操作指南 1. 系统登录 在进入E-Net审片系统进行审片之前,用户必须具有审片相应的权限, 权限可以在网管软件中进行设置。具体操作见《网络管理工作站操作手册》。 启动E-Net审片系统,将出现下面登录窗口,如图1-1-1: 图1-1-1 2. 节目管理 本模块主要用于在节目列表中选择需要进行审看的节目。 操作步骤 输入用户名及密码后,点击【确定】,进入节目管理窗口,如图1-2-1, 用户可以看到所有栏目及栏目下所有节目信息,

东方财富通指标说明书

东方财富通指标说明 一、技术指标 (1) 1、ADTM动态买卖气指标: (1) 2、AMOUNT成交金额: (1) 3、ASR浮筹比例: (1) 4、ATR真实波幅: (1) 5、BBI多空指标: (2) 6、BBIBOLL BBIBOLL: (2) 7、BIAS乖离率: (2) 8、BIAS36三六乖离: (3) 9、BIAS_QL乖离率-传统版: (3) 10、BOLL布林线: (3) 11、BOLL副图布林线: (4) 12、BRAR情绪指标: (4) 13、BTX宝塔线(副图): (4) 14、CCI商品路径指标: (5) 15、CHO济坚指数 (5) 16、CR带状能量线 (6) 17、CSI股票选择指标 (6) 18、CYD承接因子 (6) 19、CYF市场能量 (7) 20、CYQKL博弈K线长度 (7) 21、CYR市场强弱 (7) 22、CYS市场盈亏 (8) 23、CYW主力控盘 (8)

25、DMA平均差 (9) 26、DMI趋向指标(标准) (9) 27、DMI_QL趋向指标(钱龙) (10) 28、DPO区间震荡线 (10) 29、DPTB大盘同步 (11) 30、EMV简易波动指标 (11) 31、ENE轨道线 (11) 32、EXPMA指数平均线 (11) 33、FSL分水岭 (12) 34、HSL换手率 (12) 35、KD随机指标 (12) 36、KDJ经典版KDJ (12) 37、LON钱龙长线 (13) 38、LWR威廉指标 (13) 39、MA均线 (13) 40、MACD平滑异同平均 (14) 41、MASS梅斯线 (14) 42、MFI资金流量指标 (14) 43、MIKE麦克支撑压力 (15) 44、MTM动量线 (15) 45、NDB脑电波 (16) 46、NVI负成交量 (16) 47、OBV累积能量线 (16) 48、OSC变动速率线 (17) 49、PB市净率 (17) 50、PBX瀑布线 (17)

家庭用燃料电池 ENE·FARM

R-6 关键词 X1 生活相关 Y2 机器 Z2 石油类 F18 petroleum NIPPON OIL CORPORATION 家庭用燃料电池 ENE?FARM ◆ 家庭用燃料电池 ENE?FARM是能够同时产生电气和热水的同时供给(Co-Generation)系统。 ◆ 发电所产生的电量最多可以提供一个标准家庭用电量的约60%。※  ◆ ENE?FARM所产生的热水可以供浴室、厨房、盥洗室等各种场所使用。  ※因不同家庭的使用状况、不同季节而异。 家庭用燃料电池 ENE?FARM通过从LPG、煤油或者城市煤气中提取的氢与空气中的氧发生电化学反应来发电。同时还回收发电时产生的热来制造热水。

R-6 由于家庭用燃料电池 ENE ?FARM 通过氢与氧的电化学反应来发电,因此几乎不产生会造成酸雨的氮氧化物(NOx )以及硫氧化物(SOx )。另外,由于其能效较高,占温室效应气体大半部分的二氧化碳(CO2)的排放量也比传统系统减少最多可达30%。 (※因不同家庭的使用状况、不同季节而异) 另外,由于是在家中发电,因此不存在输电时的电力损耗。并且,由于可以有效利用发电时产生的热量用于热水供给,能效约为80%,比传统系统更高。联系方式: NIPPON OIL CORPORATION Fuel Cell & Solar Cell Planning Group Fuel Cell & Solar Cell Business Dept. Energy System Business Division TEL +81-3-3502-9243 FAX +81-3-3502-4749 HP http://www.eneos.co.jp/lande/product/fuelcell/日本国内在(财)新能源财团实施的固定场所设置用燃料电池大规模实践事业中,本公司预定于2008年度 设置总计507台ENE·FARM ,其中LPG 设备413台、煤油设备83台、城市煤气设备11台。 2005~ 2008年度的设置数量(累计)合计为1,368台,其中LPG 设备1,053台、煤油设备304台、 城市煤气设备11台。占到了大规模实践事业总的预定设置数量(累计3,307台)的41%,是事业参与者中所占比例最多的。 海外2009年度开始首次在日本国内市场销售。预定将在适当时机开展海外市场。 Fiscal year 2005 2006 2007 2008 Total (units) Nippon Oil Co. 142 311 408 507 1,368 (Company Share) (30%) (40%) (44%) (45%) (41%) Grand total 480 777 930 1,120 3,307 *

ENE指标应用详说讲解

ENE指标_第一集ENE指标:颠覆你传统操作的秘技-1 ENE指标_第二集ENE指标:颠覆你传统操作的秘技-2 ENE指标_第三集ENE指标:颠覆你传统操作的秘技-3 ENE指标_第四集ENE指标:颠覆你传统操作的秘技-4 (以上见2013年股市聊聊吧) 再聊ene指标见(2014年股市聊聊吧) ENE轨道线参数设定(2014) 以招商证券为例,先打开招商证券的软件(应该跟英强说的通达信是一样的,因为招商证券的键盘输入显示就是通达信键盘精灵),随便点击一只股票,会进入如下界面: 键盘输入ene三个字母,会出现如下界面:

右键点击左上角ene指标,会弹出如下界面:

选择调整指标参数,按照下图调整指标参数: 廖英强的博客指标的(ENE)(2014)

这几天来信问这个指标的(ENE)的很多,我在这里讲解一下,如何操作。进到任何一个证券公司都可以。下载通达信软件,免费的。如果需要账号和密码,的请点击独立行情就可以进入。 在技术分析画面,直接敲ENE回车就可以看到该指标。在画面上方有UPPER:***字母和数字。将鼠标点在数字时按鼠标右键,可以看到调整指标参数,或按ALT+T。也可以看到画面会出现25 6 6.将第一个数值换成10第二个数值换成11第三个换成9就可以了。希望在家里利用休息时间看看自己为什么被套,最好找些原因。本指标很简单,明白高抛低吸的精髓。很多人以前都不知道,在股市里他是我常用的指标之一。跟了我15年了,今天传授给你,望大家好好使用。另外还有其他技术我会在节目里慢慢讲解的。让大家了解什么是技术派。 我们正好在这个时间段讲解ENE技术目的是让大家在震荡市里也可以有钱赚。开始时希望您模拟操作,或是少量跟进,切不可满仓进出,因为下轨的位置都是主力买货的时候,当他发现有很多人和他抢,他会洗盘的,所以权重股到下轨那可是真的给大家送钱那,小盘股操作一定要小心。看博客的观众慢慢体会我在前几期博客里为什么和大家说,银行地产保险券商调整已经到位会有5-7%以上的涨幅了原因了吧。我体会了十五年也希望你们好好地利用它,为你自己创造财富,当然还有其他更神奇的指标在以后的节目里再讲。 这几天很多人因为ENE这个指标感觉看到了希望,我只是

ENE轨道线实战技巧

ENE轨道线实战技巧 转载了天赐钱缘的博文 ENE轨道线跟布林带指标类似,由3条线组成;轨道的宽度不会像布林带出现放大或缩小的变化。 在实战中,ENE不仅可以敏锐的发现股价运行方向的变化,还可以给我们提供有效的操作信号提示,下面是操作的5条法则。 一、ENE走平,股价突破中轨,放量站上12天均量线,为买入信号 如易联众(300096),2015年1月7日股价上穿ENE中轨,持续三天维持站稳中轨,这就是一个很好的买入时机,后再次放量,迎来一波翻倍大涨。 二、ENE向上运行,股价跌至下轨附近,没有跌穿下轨,重新上涨可以买入

如宜华地产(000150)2014年10月23日,24日及27日这三天股价都在下轨附近运行,但是却没有跌穿下轨,所以说是一个在低位建仓的好时机,后期这一个波段做下来,拿得住的差不多会得到一倍的利润。 三、ENE向上运行,股价穿越上轨买入;掉头向下跌穿上轨,可以卖出

如滨江集团(002244),在2015年3月3日放量涨停突破上轨,第二天上轨附近低吸买入;再看3月17日这天,已经跌至上轨之下了。如此快速的冲高回落也预示着短期走势破坏,这时可以先离场,等待低位再次入场。 四、ENE向下运行,股价涨至上轨附近,出现下跌没碰到上轨,也可以卖出

如林州重机(002535)ENE处在下行状态,股价反弹至上轨附近,这时要注意了,如果股价又掉头向下运行,建议不要抱有侥幸心理,卖出是个理智客观的选择。 五、单边上涨或下跌,急速上涨,突破上轨买入;急速下跌,跌破下轨卖出 这个比较简单,股价急速上涨,一旦突破上轨,代表进入强势状态,可以买入;股价急速下跌,并跌破下轨,还继续往下跌的,此时趋势已经破坏,就要顺应趋势,及时止损。 重要提醒:1、ENE轨道线只适合日线,不适合其他周期的分析。 2、一种是默认的参数(25,6,6)灵敏,另一种(10,11,9)宽松,找适合自己的。 3、上穿下穿都看实体,上下影线不算。 附ENE指标源代码: n(2,250,10); m1(2,100,11); m2(2,100,9); UPPER:(1 M1/100)*MA(CLOSE,N); LOWER:(1-M2/100)*MA(CLOSE,N); ENE:(UPPER LOWER)/2;

股票K线主图指标说明

主图指标说明 注:查找请按CTRL+F键,输入关键词查询。 [MA]均线 1.股价高于平均线,视为强势;股价低于平均线,视为弱势 2.平均线向上涨升,具有助涨力道;平均线向下跌降,具有助跌力道; 3.二条以上平均线向上交叉时,买进; 4.二条以上平均线向下交叉时,卖出; 5.移动平均线的信号经常落后股价,若以EXPMA 、VMA 辅助,可以改善。[MA2]均线 在MA均线的基础上增加120日均线和250日均线。

[BBI]多空指标 1.股价位于BBI 上方,视为多头市场; 2.股价位于BBI 下方,视为空头市场。[EXPMA]指数平均线 1.EXPMA 一般以观察12日和50日二条均线为主; 2.12日指数平均线向上交叉50日指数平均线时,买进; 3.12日指数平均线向下交叉50日指数平均线时,卖出; 4.EXPMA 是多种平均线计算方法的一; 5.EXPMA 配合MTM 指标使用,效果更佳。

一般移动平均线以收盘价为计算基础,高价平均线是以每日最高价为计算基础。目前市场上许多投资人将其运用在空头市场,认为它的压力效应比传统平均线更具参考价值。 [LMA]低价平均线 一般移动平均线以收盘价为计算基础,低价平均线是以每日最低价为计算基础。目前市场上许多投资人将其运用在多头市场,认为它的支撑效应比传统平均线更具参考价值。

1.股价高于平均线,视为强势;股价低于平均线,视为弱势; 2.平均线向上涨升,具有助涨力道;平均线向下跌降,具有助跌力道; 3.二条以上平均线向上交叉时,买进; 4.二条以上平均线向下交叉时,卖出; 5.VMA 比一般平均线的敏感度更高,消除了部份平均线落后的缺陷。[BOLL-M]布林线-主图叠加 1.股价上升穿越布林线上限时,回档机率大; 2.股价下跌穿越布林线下限时,反弹机率大; 3.布林线震动波带变窄时,表示变盘在即; 4.BOLL须配合BB 、WIDTH 使用。

在趋势行情中利用周ENE不会破

在趋势行情中利用周ENE不会破上轨原则捂股趋势行情的一大共性就是股价不会跌破周ENE上轨,可以此作为中、长线持股的依据,坚持在周ENE上轨之上放足利润。 ㈡、在股市震荡筑底期间,利用ENE波段操作,暴跌时要敢于逢低吸纳,反弹上冲时要坚决逢高减磅。 1、底部扭转ENE,若上轨之上接连出现两到三根一阳包数线的光头阳线,是黑马飚涨的重要信号。 2、底部扭转ENE,强势冲出上轨后回跌至中轨时不破,在出现有效上分形时是应该买进。 3、底部的上行ENE,如果股价跌至下轨线附近后重新恢复上涨行情时,即使股价没有击穿下轨线也可以买入。 4、底部的上行ENE,如果股价上涨穿越上轨线后,很快掉头下跌并跌穿上轨线时可以卖出。 5、底部横盘ENE,股价第一次穿越上轨后必然回到轨道内,此时若在中轨止跌形成上分形,则可以买进,当由中轨向上再次放量穿越上轨时要加码买进。此后ENE扭转上行,股价在上轨之上的每一个上分形都是有效买点。但一跌破上轨就要立马出逃。 6、底部的下行ENE,如果股价跌穿下轨线后,很快重新上涨并带量穿越下轨线时可以买入,量能不济出。 7、底部的下行ENE,如果股价涨至上轨线附近后,出现掉头下跌时,即使股价没有触及上轨线要卖出。 ㈢、利用ENE轨道线狙击强势股当股价有效突破日通道线,说明股价已打破原来平衡态势,有可能是股价开始大幅拉升的启动点。如果一只个股经过较长时间持续整理后,突然某一天股价开始放量有效突破轨道线的上轨,那么说明这只个股经过前期的吸筹、洗盘、震仓后,就有可能形成最后的主升行情,在这里,轨道线的上轨就起到很好的主升浪行情的监测作用。所谓有效突破轨道线的上轨,一般要求涨幅在3%以上,并且最好能连续三天在轨道线之上。 五、利用轨道线狙击强势股应该注意以下几点 第一,要求突破轨道线的有效性,即离突破后的上轨要有3%的升幅,最好当日要以光头阳线报收,并且要求连续二三天在轨道线之外放量上冲。 第二,一般要求在股市非常活跃时期,该股短期内未被充分炒作过,在突破上轨前股价处于循环低点,MACD指标在O轴附近交叉向上形成黄金交叉。 第三,要注意当大势持续了3-5个月的牛市行情后,大盘指标有顶背离,量背离的情况时,注意多头陷阱。一些主力资金控盘的个股为拉高出货,先扬后抑,一旦放量突破上轨后,成交量不跟,又回到上轨之下时,应注意止损离场 三线粘合: AA:=MA(C,5); BB:=MA(C,10); DD:=MA(C,30); A1:=ABS((AA-C)/C); A2:=ABS((BB-C)/C); A3:=ABS((DD-C)/C); B:=A1<0.05 AND A2<0.05 AND A3<0.05; FILTER(B,10)=1 ; 多条均线粘合: a13:=ma(c,13); a21:=ma(c,21); a34:=ma(c,34);

经济技术指标复核标准

重庆市规划局建筑工程经济技术指标 复核标准 一、建筑工程建筑面积计算规范(GB/T 50353-2005) (一)、总则 1.0.1 为规范工业与民用建筑工程的面积计算,统一计算方法。制定本规范。 1.0.2 本规范适用于新建、扩建、改建的工业与民用建筑工程的面积计算。 1.0.3 建筑面积计算应遵循科学、合理的原则。 1.0.4 建筑面积计算除应遵循本规范,尚应符合国家现行的有关标准规范的规定。 (二)、术语 2.0.1 层高 story height 上下两层楼面或楼面与地面之间的垂直距离。 2.0.2自然层高 floor 按楼板、地板结构分层的楼层。 2.0.3架空层 empty space 建筑物深基地或坡地建筑吊脚架空部位不回填土石方形成的建筑空间。 2.0.4走廊 corridor gallery 建筑物的水平交通空间。 2.0.5挑廊 overhanging corridor

挑出在建筑物外墙的水平交通空间 2.0.6檐廊 eaves gallery 设置在建筑物底层出檐下的水平交通空间。 2.0.7回廊 cloister 在建筑物门厅、大厅内设置在二层或二层以上的回形走廊。 2.0.8门斗 foyer 在建筑物出入口设置的起分隔、挡风、御寒等作用的建筑过渡空间。 2.0.9建筑物通道 passage 为道路穿过建筑物而设置的建筑空间。 2.0.10架空走廊 bridge way 建筑物与建筑物之间,在二层或二层以上专门为水平交通设置的走廊。 2.0.11勒脚 plinth 建筑物的外墙与室外地面或散水接触部位墙休的加厚部分。 2.0.12围护结构 enevlop enclosure 围合建筑空间四周的墙体、门、窗等。 2.0.13围护性幕墙 enclosing curtain wall 直接作为外墙起围护作用的幕墙。 2.0.14装饰性幕墙 decorative faced curtain wall 设置在建筑物墙体外起装饰作用的幕墙。 2.0.15落地橱窗 french window

ENE指标

3月9日廖英强的博客指标的(ENE) (2013-03-09 06:49:18) 这几天来信问这个指标的(ENE)的很多,我在这里讲解一下,如何操作。进到任何一个证券公司都可以。下载通达信软件,免费的。如果需要账号和密码,的请点击独立行情就可以进入。 在技术分析画面,直接敲ENE回车就可以看到该指标。在画面上方有UPPER:***字母和数字。将鼠标点在数字时按鼠标右键,可以看到调整指标参数,或按ALT+T。也可以看到画面会出现25 6 6.将第一个数值换成10第二个数值换成11第三个换成9就可以了。希望在家里利用休息时间看看自己为什么被套,最好找些原因。本指标很简单,明白高抛低吸的精髓。很多人以前都不知道,在股市里他是我常用的指标之一。跟了我15年了,今天传授给你,望大家好好使用。另外还有其他技术我会在节目里慢慢讲解的。让大家了解什么是技术派。 我们正好在这个时间段讲解ENE技术目的是让大家 在震荡市里也可以有钱赚。开始时希望您模拟操作,或是少量跟进,切不可满仓进出,因为下轨的位置都是主

力买货的时候,当他发现有很多人和他抢,他会洗盘的,所以权重股到下轨那可是真的给大家送钱那,小盘股操作一定要小心。看博客的观众慢慢体会我在前几期博客里为什么和大家说,银行地产保险券商调整已经到位会有5-7%以上的涨幅了原因了吧。我体会了十五年也希望你们好好地利用它,为你自己创造财富,当然还有其他更神奇的指标在以后的节目里再讲。 这几天很多人因为ENE这个指标感觉看到了希望,我只是让大家了解做股票还有另一种挣钱的方法,在这再讲一下应该怎样使用,第一步,下载软件,可以到所有的证券公司下载通达信软件,免费的,下载后您会看到登录画面请选择独立行情按登录就可以进入。进到软件分析画面,请选择输入ENE回车就可以看到3条线,原参数是25,6,6.必须改成10,11,9.参数是按照我国股市的涨跌幅限制设定。有的朋友问如何调回均线,请输入MA2回车就可以回到均线画面,在使用过程中你会发现和以前大家学习的知识完全相反,放量上涨到上轨该指标提示的意思是卖出,到下轨不可杀跌而是买入。该指标符合2500只股票里90%以上的股票,包括大盘也符合,基本是围绕在轨道中运行。有的朋友那出10%的个别股问我应该如何操作,我觉得很好有自己的想法,我在节目里讲解的是到上轨时不用马上卖出,(但90%都应该卖)

ENE指标运用和设置

ENE指标运用和设置 轨道线(ENE)由上轨线(UPWER)和下轨线(LOWER)及中轨线(ENE)组成,轨道线的优势在于其不仅具有趋势轨道的研判分析作用,也可以敏锐的觉察股价运行过程中方向的改变。 一、运用原理及方法: 1.通达信公式: UPPER:(1+M1/100)*MA(CLOSE,N); LOWER:(1-M2/100)*MA(CLOSE,N); ENE:(UPPER+LOWER)/2; 2.当轨道线ENE向下缓慢运行时,如果股价跌穿下轨LOWER后,很快重新 上涨穿越LOWER时,可以买入。 3.当轨道线ENE向上缓慢运行时,如果股价跌至下轨LOWER附近后重新恢 复上涨行情,这时即使没有击穿LOWER也可以买入。 4.当轨道线ENE向上缓慢运行时,如果股价上涨穿越上轨UPWER后,很快 掉头乡下并跌穿上轨UPWER时可以卖出。 5.当轨道线向下缓慢运行时,如果股价涨至上轨UPWER附近后,出现掉头 下跌行情,这时即使股价没有触及上轨UPWER,也可以卖出。 轨道线在平稳震荡的波段行情中能够准确提示出买卖信号,但在股价处于单边上涨或者单边下跌中技巧就完全不一样了。甚至相反。当股市处于急速上涨的过程中,需要在股价向上突破上轨UPWER时买入时机;当股市处于熊市中,在股价处于急速下跌过程中,需要以股价向下跌穿下轨线LOWER时为卖出时机。

二、指标设置: 1、在通达信页面输入英文字母ENE, 按回车键,即会在主图上出现ENE指标线,可以看到ENE 指标由上中下三条线组成。(如下图)

2、将鼠标箭头指向ENE指标线中的任一点,点击鼠标右键,即会出现下图。

瀑布线薛斯通道轨道线支撑

底部区域波段操作技法1:瀑布线交易系统 股市投资中常常会出现惯性思维,涨时看涨,跌时看跌的现象比较普遍。大盘暴跌时认为后市下跌空间巨大,慌慌张张的止损割肉。大盘稍有起色时又以为大行情来临,忙着追涨,往往几次追涨杀跌之后,不仅资金严重缩水,心态也遭受沉重打击而一蹶不振。所以,在股市震荡筑底期间,获利的最佳方法就是: 暴跌时要敢于逢低吸纳,反弹上冲时要坚决逢高减磅,也就是要采用波段操作策略瀑布线是波段操作中的一种主要操作方法。 瀑布线是欧美国家九十年代初,广泛应用于金融领域中的判断股价运行趋势的主要分析方法,因此经由汇聚向下发散时呈瀑布状而得名。"瀑布线"属于传统大纯价格趋势线,它的真正名称叫做非线性加权移动平均线,是由六条非线性加权移动平均线组合而成,每条平均线分别代表着不同时间周期的股价成本状况,方便进行对比分析。 瀑布线是一种中线指标,一般用来研究股价的中期走势,与普通均线系统相比较,它具有反应速度快,给出的买卖点明确的特点,并能过滤掉盘中主力震仓洗盘或下跌行情中的小幅反弹,可直观有效地把握住大盘和个股的运动趋势,是目前判断大势和个股股价运行趋势颇为有效的均线系统。 瀑布线的优点还在于其不会类似其它指标那样频繁发出信号,瀑布线的买入或卖出信号出现的不多,如果瀑布线给出了买入或卖出信号,只要按照其应用原则去做,就会取得较好的投资收益。 在趋势明朗的上涨或下跌趋势中,瀑布线能给出明确的买卖点和持仓信号,是把握波段行情的利器,它不仅适用于平衡市的操作,更适用于上涨趋势明显中应用。 瀑布线在平衡市中波段操作的应用技巧: 一、瀑布线买入信号研判: 1、当前股价低于全部的6条瀑布线;

ENE指标怎么用

ENE指标用法 (2014-03-28 20:19:56) 转载▼ 分类:经典指标、交易系统 标签: 股票 当轨道线ENE向下缓慢运行时,如果股价跌穿下轨线LOWER后,很快重新上涨并穿越下轨线LOWER时可以买入。当轨道线ENE向上缓慢运行时,如果股价上涨穿越上轨线UPPER后,很快掉头下跌并跌穿上轨线UPPER时可以卖出。 一、指标概述 轨道线(ENE)由上轨线(UPWER)和下轨线(LOWER)及中轨线(ENE)组成,轨道线的优势在于其不仅具有趋势轨道的研判分析作用,也可以敏锐的觉察股价运行过程中方向的改变。 二、计算公式 1.UPPER=(1+M1/100)*收盘价的N日简单移动平均 2.LOWER=(1-M2/100)*收盘价的N日简单移动平均 3.ENE=(UPPER+LOWER)/2 例: N(2,120,25); M1(2,120,6); M2(2,120,6); M3(2,120,12); M4(2,120,12); UPPER:(1+M1/100)*MA(CLOSE,N); LOWER:(1-M2/100)*MA(CLOSE,N); UPPER1:(1+M3/100)*MA(CLOSE,N); LOWER1:(1-M4/100)*MA(CLOSE,N); ENE:(UPPER+LOWER)/2; 同花顺ENE主图指标公式 N:=11;M1:=10;M2:=9; UPPER:(1+M1/100)*MA(CLOSE,N); LOWER:(1-M2/100)*MA(CLOSE,N); ENE:(UPPER+LOWER)/2; 三、应用法则 1.当轨道线ENE向下缓慢运行时,如果股价跌穿下轨LOWER后,很快重新上涨穿越LOWER时,可以买入。(图1)

1-23 战法讲解(一)——ENE

战法讲解(一)——ENE 已经有越来越多的朋友加到我微信当中,当然其中也有不少的朋友根据战法操作成功有了获利,还有些朋友可能对战法的掌握还不是很熟练。所以从今天开始我会把我的战法还有指标做成一个系列,给大家做个梳理,熟悉的朋友可以巩固复习下,新来的朋友可以系统的做个学习。 昨天已经把指标分享在金融平台软件上了,大家注意下,需要先把自己的软件升级到最新的3.5版本才会有这个指标平台分享的功能。 今天我们开始第一篇内容,来说说ENE。ENE是我一直在课中跟大家提到的指标,跟布林带指标类似,由3条轨道线组成,但轨道的宽度不会像布林带指标出现放大或缩小的变化。 这个指标在实战中,不仅可以敏锐的发现股价运行方向的变化,还可以给我们提供有效的操作信号提示,下面是操作的5条法则。 一、ENE向下运行,股价跌穿下轨,很快重新上涨穿越下轨,视为买入信号。

如易联众(300096),2015年1月15日跌穿ENE下轨,然而在第二天就又上穿上轨,这就是一个很好的买入时机,连续两个涨停板顺利到手也是很不错的。 二、ENE向上运行,股价跌至下轨附近,重新上涨没有跌穿下 轨也可以买入。

宜华地产(000150),2014年10月23日,10月24日以及10月27日这三天股价都在下轨附近运行,但是却没有跌穿下轨,所以说是一个在低位建仓的好时机,后期这一个波段做下来,拿得住的差不多会得到一倍的利润。 三、ENE向上运行,股价穿越上轨,很快掉头向下跌穿上轨, 可以卖出。

如万润科技(002654),在2014年10月9日的时候收盘价站上上轨,第二天高开低走又跌至上轨附近,再看10月13日这天,已经跌至上轨之下了。如此快速的冲高回落也预示着短期走势破坏,这时可以先离场,等待低位再次入场。 四、ENE向下运行,股价涨至上轨附近,出现下跌没碰到上轨, 也可以卖出。

ENE轨道操盘秘籍——实战解析

ENE轨道操盘秘籍 ——实战大揭秘 一、指标说明: 轨道线(ENE)由上轨线(UPWER)和下轨线(LOWER)及中轨线(ENE)组成,轨道线的优势在于其不仅具有趋势轨道的研判分析作用,也可以敏锐的觉察股价运行过程中方向的改变。 二、应用法则: 1.当轨道线ENE向下缓慢运行时,如果股价跌穿下轨LOWER后,很快重新上涨穿越LOWER时,可以买入。 2.当轨道线ENE向上缓慢运行时,如果股价跌至下轨LOWER附近后重新恢复上涨行情,这时即使没有击穿LOWER也可以买入。 3.当轨道线ENE向上缓慢运行时,如果股价上涨穿越上轨UPWER后,很快掉头向下并跌穿上轨UPWER时可以卖出。 4.当轨道线向下缓慢运行时,如果股价涨至上轨UPWER附近后,出现掉头下跌行情,这时即使股价没有触及上轨UPWER,也可以卖出。 5.轨道线在平稳震荡的波段行情中能够准确提示出买卖信号,但在股价处于单边上涨或者单边下跌中技巧就完全不一样了。甚至相反。当股市处于急速上涨的过程中,需要在股价向上突破上轨UPWER时买入时机;当股市处于熊市中,在股价处于急速下跌过程中,需要以股价向下跌穿下轨线LOWER时为卖出时机。 三、实战运用 通过以上的描述,投资者大约可以知晓,ENE指标与BOLL(布林线)指标相当的类似,都是属于通道类型的指标。两张的研判法则也十分的类似。那么这个ENE指标究竟好在什么地方呢?根据下面的截图,投资者可以发现,相比BOLL指标而言,ENE指标更加的平滑,

但是平滑的指标并不一定迟钝。 我们都知道,BOLL和ENE的研判法则都有这样一条,在平衡市场中,当K线击穿下轨后迅速回到轨道内,可以视为一个短线的买点。ENE指标在黄色圆圈标示出来的部分,连续的击穿下轨,而BOLL指标只是无限接近于下轨。同样的位置,同样的研判法则。相比较之下,ENE指标在几乎是绝对低点已经发出了短线买入信号,而BOLL指标则必须在轨道转为向上趋势之后,才能按照追涨的法则进行操作,根据益盟操盘手的统计,在相差的15个交易日内,两个指标有9.54%的差距。这仅仅是在指数上,倘若换成个股的话,差距会更被放的更大。 四、超强劲升级 通过上述简单的案例回顾,我们已经发现ENE和BOLL指标都是属于路径型的指标,不仅可以帮助投资者寻找买卖点,同时也可以辅助投资者观察当下所处的趋势。作为一个简单的看盘指标,ENE已经隐隐超越了BOLL指标了。但是,这里存在一个问题,对于投资者原本就熟悉的个股而言,只要再交易时间内盯盘就可以了,但是如何以ENE指标作为选股方式,来进行全市场“无差别”的覆盖式选股呢? 我们益盟操盘手的研究所根据ENE指标的特性,根据ENE指标最有操作价值的背离功能,对指标进行了独家改造。让投资者可以通过条件选股或者系统预警功能第一时间找到处于背离位置的反弹个股。首先,我们来看一个案例。

fluent中如何设置监测点

1?在FLUENT 里,我们往往想对某一个面或是 点进行观察,来获得其随时间或是距离变化 的情况。下面是步骤: 1,在flue nt 菜单surface 里面定义你所要的点或者面; surface--poi nt--打开网格图,用鼠 标右键选取 reversed k □-Surf ace... ls.T'£lip... Jrandorm... iter timc/iter solution is canu&rged 设置监测点 2,在solve/monitor/里面选择第一步定义的点或者面, 并在横轴选择为时间 t 或者iterations, 纵轴选择为你关心点或者面的参数(如压力、温度、速度或者湍流强度等) 。3,选择Plot + write J FLUEhT [2d. pbns, sice] ' _____________ ? — _____________________________ : _____________________ - |?|_曲 3d _Qgfine [jdve]刖叫七 砸rfae .0善口la* 上皿 Report 内口阳 Help iter tint Conlros * reversed Flow Ijj+iialijp niters residual,.. reversed Hou ArimatB StstiEtic-. reversed Oou M?sh Moticn.th Force^ Parlkle History Surface 1.,, reuErseil Fluu Execute 匚ornrnands — '/olume… reuerstti Hou C SSF Checks. reuerstrl Flou ltEr3fte…u iter tirit Acotst< $ign 謝s”” —nJ lrer tine/iter f 1SS3 ^Dlution is conuerged 口 FLUENT [2d. pb 昭 ike : iter reversed flow reversed flow jadric... flow iter * 要观测的点设置完成后,设置监视器,选中 surface hie C^rid Define Solve Adapt ] Display Pict Report Parallel Help time/iter flow in 1 Faces ■ £ene... Partition... Points Li n e/ k 巳”

相关主题
文本预览
相关文档 最新文档