当前位置:文档之家› 空冷系统及供应商

空冷系统及供应商

空冷系统及供应商
空冷系统及供应商

国内空冷系统及供应商

美国SPX(斯必克)公司

斯必克冷却技术公司作为空冷系统设计、制造、施工和服务的世界领先者,已有长达100 多年的历史,40 年以上的ACC 系统成功供货经验及全球600 个以上ACC 项目,跻身于世界500强企业之一,是世界上直接空冷系统的主要生产供应商,并在许多工业领域的应用中积累了多年的成功经验。德国巴克-杜尔(Balcke-Durr) BDT和比利时哈蒙(Hamon)两个品牌在电力和其他工业领域享誉世界。在中国境内生产空冷器管束超过2万片,在中国空冷市场上的占有率约35%,在天津、张家口分别设有两个独资管束生产中心,另有空冷管束供货单位中国航天科工集团第六研究院红岗机械厂实业总公司。其中斯必克冷却技术(张家口)有限公司是张家口利税首户,主导产品是多排管和单排管空冷凝气器,2005年公司产值突破4.5亿元人民币,目前已具备年产量6.25万吨、产值10亿元的生产能力,到2010年计划产值达到24亿元。斯必克冷却技术(天津)有限公司于2003年成立,单排管空冷器制管,投资总额已有680万美元追加1920万美元,现有员工220人,天津经济开发区2006年度百强企业之一。600MW空冷机组中标项目:山西兆光发电(霍州二电厂)二期2×60万千瓦机组,达拉特电厂四期(北方联合电力鄂尔多斯发电厂比利时哈蒙)2×60万千瓦机组,龙山电厂一期2×60万千瓦机组,京隆丰镇电厂三期2×60万千瓦机组,岱海电厂二期2×60万千瓦机组,

山西和信武乡一期2×60万千瓦机组(德国巴克杜尔)(三排管),大唐运城电厂2×60万千瓦机组,山西王曲一期2×60万千瓦机组(德国巴克杜尔),陕西府谷庙沟门电厂2×60万千瓦机组,上都电厂一(3.6亿)二期4×60万千瓦机组(德国巴克杜尔)(单排管)等。2006-06-09公司声称,在迄今国家批准建设已开标的54个空冷电厂项目中,斯必克公司中标27个,分别占项目总数和装机总容量的50%和70%。

德国GEA(基伊埃)公司

德国GEA公司系空冷技术的创始人,其技术一直处于世界领先地位,在世界空冷市场上的占有率超过60%,在中国空冷市场上的占有率约35%。GEA公司在中国生产基地中外合资山西捷益热能设备有限公司,廊坊独资公司德国基伊埃电力冷却技术(中国)有限公司和巴蒂尼奥热能技术(常熟)有限公司。巴蒂尼奥热能技术(常熟)2007年正式投产,总投资1200万美元,主要生产用于炼油、天然气、石化和电力领域的空气冷却器、空冷凝水器,年产量1000多台,销售额超过2亿元人民币。廊坊德国基伊埃电力冷却技术(中国)有限公司主要生产空冷器主要部件单排管束,年销售额将达到7500万欧元。山西捷益热能设备有限公司是德国GEA公司和山西省电力公司、香港捷成洋行共同投资组建的合资经营企业,年产1.5套600MW或3套300MW电站配套的直接空冷凝汽器及间接空冷散热器,年产值1.5亿元。山西捷益1994年生产了中国首台2×200MW钢制间接空冷的空冷散热器,2002年为太原第二热电厂1×200MW机组制造了钢制

间接空冷散热器,2003年为大唐云冈热电生产全国首台2×200MW 供热机组钢制直接空冷凝汽器,2004年为山西省交城县义望铁合金矸石发电有限责任公司设计制造1×12MW钢制直接空冷凝汽器。GEA600MW空冷机组中标项目:大同第二发电厂二期(单排管)2台,大唐内蒙托克托电厂三期(双排管)2台,锦界神木电厂一、二期电厂4台,河曲电厂2台,上安电厂2台,灵武电厂2台,韩城二电厂二期2×600MW,塔山坑口电厂2台直接空冷系统及山西阳城电厂二期2台间接空冷系统(匈牙利GEA-EGI公司)等。

首航艾启威冷却技术(北京)有限公司

首航艾启威冷却技术(北京)有限公司是由北京首航波纹管制造有限公司(https://www.doczj.com/doc/bd17738312.html,/)和瑞士IHW联合设计集团共同投资的中外合资企业。2007年1月投资总额1.5亿元人民币,占地86亩的单排管生产基地投产。该公司引进一条先进的钎焊炉和翅片机生产线,采用进口基管,选购进口的钳焊剂和铝带材,从而为生产高质量的翅片管奠定了硬件基础。乌拉山发电厂的空冷岛就是由瑞士IHW(艾启威)和哈尔滨空调有限公司联合设计的。中标项目:南庄煤炭集团煤矸石发电厂2×135MW项目直接空冷系统(ACC)总承包。

北京龙源冷却技术有限公司

北京龙源冷却技术有限公司股东方分别为国电电力(600795)全资子公司科技环保集团有限公司、京能集团北京国际电气工程有限责任公司、北京嘉铭环保工程有限公司。2007年1月空冷单排管散热

器生产基地正式投产,年生产能力6台600MW空冷机组的管束。中标项目:山西襄垣煤矿诚丰电力2×50MW机组空冷系统设计,怀安热电厂2×300兆瓦空冷设备,京能集团漳山发电2×600MW机组空冷系统,大唐云冈热电(二期)2×300MW直接空冷系统。

哈尔滨空调股份有限公司

哈空调是中国唯一能够设计、制造整套高、中、低压空冷设备的专业化公司,石化空冷器在中国市场占有率50%以上;公司还是中国唯一能够对国际上广泛应用的各种电站用空冷器产品进行设计、制造和工程总包的专业公司,近年来已为国内外各大电厂提供了总装机容量近8000MW的电站空冷器产品,在中国空冷市场上的占有率约10%以上,产品性能达国际先进水平;同时,公司还可生产核电站大型成套空气处理机组,产品成功应用于秦山二期核电站、巴基斯坦恰西马核电站等。公司目前已形成480万千瓦双排管直接空冷、120万千瓦单排管直接空冷和360万千瓦间接空冷,石化空冷器2万吨生产能力。现有厂房可增加10条生产线。2006年末公司产值10亿,计划2010年产值达20亿。中标项目:中电投通辽三期(双排管)1×600MW,华能铜川电厂(单排管)2×600MW,中电投霍林河坑口电厂2×600MW,华电蒲城电厂2×600MW设计采购总承包,丰镇一期4×200MW,内蒙古华电卓资发电厂4×200MW,北方联合电力乌拉山发电厂2×300MW ,内蒙古准大发电厂2×300MW,内蒙古锡林第二发电厂2×300MW,内蒙古乌斯太热电厂2×300MW,内蒙古霍林河发电厂2×300MW,内蒙古包头东河热电厂(包铝自备)2×

300MW,山西左权晋能新能源热电厂,大唐多伦煤基烯烃项目2×100MW,腾龙芳烃80万吨/年对二甲苯项目。

山西申华电站设备有限公司(山西省定襄县暖风机厂)

原国家能源部、机电部定点生产冷却器的专业厂家。先后开发高科技产品14项,其中YFS-200型低噪音强迫油循环风冷却器获国家级新产品,DBF-7Q8、8Q8低噪音变压器用轴流风机获国家级新产品、国家专利、1994中国专利新技术博览会优秀发明奖,YSL-120型强迫油循环水冷却器获省优秀新产品二等奖、省优质产品奖,YFS-250型强迫油循环风冷却器获省技术难题攻关奖、优秀新产品二等奖,YFS-315型强迫油循环风冷却器获省优秀新产品二等奖,KGQ矿用牵引整流器获省二轻技术进步三等奖,冷热水机组获山西省优秀新产品一等奖。2006年空冷凝汽器通过山西省经贸委组织的新产品投产鉴定,专家一致认为该产品科技含量高,各项性能指标居国内领先水平。中标项目:神华乌海煤焦化利民煤焦公司煤气发电项目2×6MW 直接空冷凝汽器系统(金额912.668万元)。

兰州石油机械研究所

兰州石油机械研究所在国际上首次研发成功的表面蒸发式空冷器,已创产值4亿元。据不完全统计,他们已有600多台各种规格的表面蒸发式空冷器应用到国内外石油、化工、冶金、电力行业中。

江苏双良空调设备股份有限公司

江苏双良空调设备股份有限公司于2007年9月3日与河北国华定洲发电有限责任公司签署了关于向河北国华定洲发电厂二期工程2

×660MW超临界火电机组提供直接空冷系统翅片管束的供货合同,合同总金额为18951万元,交货日期为2008年4月至9月。其他订单见公司公告。

为了证明公司的能力和水平,双良股份组装制造了10MW电站空冷凝汽器系统工业应用装置。2006年9月鉴定意见认为:10MW 电站空冷凝汽器系统工业应用装置是将自备电厂的抽气蒸汽降温减压后,通过大直径的排汽管道进入空冷平台上的空冷凝汽器,采用机械通风使冷空气流过空冷凝汽器,使蒸汽得到冷凝,以模拟实际工程中电站空冷凝汽器系统的装置。提供鉴定的装置应用了双良公司开发的专利技术,在装置进风口加装进风导流装置、装设导流防风装置、采用多排管空气抽气系统等,在国内外属首次应用,说明双良股份具备大型直接空冷电站空冷凝汽器系统的设计、制造能力。2006年12月8日双良股份与山西省电力勘测设计院签订联合投标的《空冷国产化战略合作协议》,山西院承诺在承接的电站空冷项目中将推荐采用双良股份的空冷系统管束。

首航IHW电站直接空冷技术打破国外垄断

首航IHW生产的我国国产大型电站直接空冷设备,在华润金能噔口项目公开招标中,成功中标,工程总装机容量66万千瓦,标志着我国在电站空冷技术上已达到国际先进水平,并打破了国外公司在此领域近70年的垄断局面,大大降低了国内电厂建设的投资成本。电站直接空冷系统(空冷岛),由于具有环保、节能、节水等主要特点,电站空冷技术特别是直冷技术在国内外火力发电厂的建设中得到

广泛应用。但自这项技术运用以来近70年,一直为GEA(德国基伊埃能源技术有限公司)和SPX(美国斯必克中国投资有限公司)两家所垄断。首航在各大电力公司的大力支持下,通过引进吸收和技术改造、不断自主创新,全面掌握了大型电站空冷系统的核心技术。

此次,由首航IHW设计制造的大型电站直接空冷设备在噔口电厂2×330MW的成功中标,标志着以首航艾启威冷却技术(北京)有限公司为代表的国内企业在此领域进入新的突破,能够独立承担大型电站直冷系统的设计和制造,产品达到国际先进水平,完全能够替代进口产品。我公司首航IHW在2007年11月6日中标兴安科右中热电厂1×330MW空冷供热机组工程。工程总投资16.5亿元,欢迎您到首航艾启威冷却技术北京有限公司考察指导。

双良股份、北京龙源冷却技术有限公司、首航艾启威冷却技术(北京)有限公司等,而国外的主要厂家为行业龙头美国SPX和德国的GEA。从2007年的数据看,随着国有空冷器生产厂家的技术水平的提高,市场占有率在迅速提升。目前美国SPX仍保持着较高的市场占有率,预计在40%左右,而德国GEA的占有率为20%左右,项目数量迅速减少,哈空调的占有率预计在30%左右,已经成为第二大空冷企业,预计市场占有率仍将提升。

空冷行业未来成长空间大

2006年全国新增电力装机容量10097万千瓦,其中火电9028万千瓦,根据发改委规划,2010年底全国装机容量将超过8.4亿千瓦。而中国电力企业联合会预计,到2010年,我国发电装机容量将达到

9亿千瓦左右。另外考虑小机组退役因素,“十一五”期间共新增装机4.2亿千瓦。因此,预计2007-2010年之间,年均新增装机容量8000万千瓦,其中火电占比为70%左右,即5600万千瓦。另外根据规划,新增火电机组有60%左右将在缺水的西部和华北地区,这些地区新增机组有80%的空冷比例计算,预计每年全部新增火电机组中将有50%左右将使用空冷器。因此,每年将有2800万千瓦新增火电机组使用空冷器,对应未来3年年均市场规模将高达80-100亿元。

行业内各竞争对手比较

前几年由于我国没有掌握制造空冷电站空冷器的核心技术,电站空冷器主要市场由美国SPX和德国GEA两家公司垄断。在我国,电站空冷技术在2004年才开始大规模应用于燃煤发电厂。在国家国产化政策的鼓励下,2004年哈空调率先进入电站空冷器市场,双良股份经过多年研发也具备了大型直接空冷电站冷凝器系统的设计、制造能力。目前,在我国电站空冷器市场由GEA、SPX、哈空调和双良股份占据。由于有着较高的技术壁垒,估计两三年之内,国内其它企业难以进入该领域。其中,哈空调的技术以引进为主。90年代初期,公司引进德国GEA的直冷设计技术,同时也引进了国外先进生产设备进行技术改造,经过不断消化,在2000年基本掌握其核心技术。而双良股份以自我研发为主。经过多年的努力,公司形成了自主研发的空冷系统设计技术,拥有先进的制造工艺和良好的装备,产品质量和性能均达到国际先进水平,能够满足国内大型空冷电

站的技术要求。

目前,推动电站空冷器国产化已经纳入国家政府部门的考虑范围。国家发改委《国家重大技术装备研制和重大产业技术开发专项规划》明确要着力抓好包括大型空冷火电机组成套设备研制等10项重大技术装备研制工作。国务院《加快振兴装备制造业的若干意见》将大型空冷电站机组列为未来重点支持和引导的16项重大技术装备;鼓励在立足自主研发的基础上,通过引进消化吸收,努力掌握核心技术和关键技术,实现再创新和自主制造;以重点工程为依托,推进重大技术装备自主制造。因此,在国家国产化政策的大力扶持下,技术先进的民族品牌电站空冷器产品将迎来历史性的发展机遇,对空冷龙头企业哈空调和双良股份提供了一次有利的发展阶段。

风险提示

国家对宏观经济的调控,间接涉及到我国各行业对用电量的增长需求,对空冷行业的增速会产生不确定的因素。空冷器的成本构成中,以钢、单面铝为代表的原材料占有较大比重,大致为80%左右。其中,电站空冷的钢和单面铝的比例大致为40%:60%,石化空冷一般不需要单面铝。目前国际铁矿石的谈判未果,钢铁价格存在不确定性,国际有色金属的价格也存在着一定的波动性,因此对空冷行业的成本因素也产生了不确定的因素。

直接空冷系统介绍

直接空冷凝器器系统介绍 一、系统简介 直接空冷凝汽器系统(英文Air Cooled Condenser System,缩写为ACC)是指汽轮机的排汽直接用空气来冷凝,空气与蒸汽间进行热交换。所需冷却空气,通常由机械通风方式供应。直接空冷的凝汽设备称为空冷凝汽器,这种空冷系统的优点是设备少,系统简单,基建投资较少,占地少,空气量的调节灵活。该系统一般与高背压汽轮机配套。这种系统的缺点是运行时粗大的排汽管道密封困难,维持排汽管内的真空困难,启动时为造成真空需要的时间较长,机组效率低,一次能源消耗大。 二、系统构成概述 1、概述 通常ACCS一般主要由以下几部分构成: ?排汽管道和配汽管道 ?翅片管换热器 ?支撑结构和平台 ?风扇及其驱动装置 ?抽真空系统 ?排水和凝结水系统 ?控制和仪表系统 2、冷凝过程 空气冷却器一般采用屋顶结构(或称A型框架结构)。 来自汽轮机的尾汽通过排汽管道和配汽管道输送到翅片管换热器。配汽管道连接到汽轮机的排汽管道和位于上部的翅片管换热器。蒸汽被直接送入换热器的翅片管道内。蒸汽携带的热能由经过换热器翅片表面的冷却空气带走,冷却空气是由置于管束下面的轴流风机驱动的。 换热器一般采用KD布置方式,即顺流冷凝-反流冷凝的布置方式。

70%到80%的蒸汽在通过由上部的配汽管道到顺流冷凝的换热器中被冷凝成凝结水,凝结水流到底部的蒸汽/凝结水联箱中。顺流管束称为冷凝管束或称K 管束。 其余的蒸汽在成为D管束的反流管束中被冷凝,蒸汽是由蒸汽/凝结水联箱向上流动的,而凝结水由冷凝的位置向下流到蒸汽/凝结水联箱中并被排出。 这种KD形式的布置方式确保了在任何区域内蒸汽都与凝结水有直接接触,因此将保持凝结水的水温与蒸汽温度相同,从而避免了凝结水的过冷、溶氧和冻害。 从汽轮机到凝结水箱的整个系统都是在真空状态下。由于采用全焊接结构,从而保证整个系统的气密性。由于在与汽轮机连接的法兰处不可避免地会有空气漏进冷凝系统中,为了保持系统地真空,在反流管束的上端未冷凝的蒸汽和空气的混合物将被抽出。通过在上端部位的过冷冷却,使不可冷凝蒸汽的汽量被减小了。 反流(D)部分的设计应保证在任何运行条件下,不会在顺流(K)部分造成完全冷凝,以避免过冷和溶氧以及冻害的危险。 在不同热容量和环境温度下,通过调节空气流量的变化来控制汽轮机尾气的排汽压力。 3、换热器 热浸锌翅片管具有从管子到翅片良好的导热性能。这是由于在翅片根部和管子的间隙被充满锌而具有毛细总用。 由于钢制管子和钢制翅片是同种材质,从而避免热应力的产生,而热应力对热传导不利。 由于翅片管束必须承受极大的阻力,它们必须具有很高的强度。钢制翅片可以抵抗典型的机械冲击,比如冰雹、清洗设备的高压水(200bar),或维护工人的体重。在运输和安装过程中不易损坏。由于钢制翅片管束具有较短的深度,因此更能适宜清洗设备的高压水的冲击。 而且,热浸锌翅片管具有良好的防腐性能和长达超过25年的使用寿命。4、支撑结构和平台 根据实际经验,屋顶型结构的空气冷凝器具有可靠的凝结水排水功能并且减少了占地面积。

空冷器配管设计导则

空冷器配管设计导则 AIR COOLERS PIPING ARRANGMENT NOTES: 1.在空气冷却器(AIR FAN COOLER)中,被冷却流体在管路中应往下流。塔 槽顶部与空气冷却之进口端间,管路不可有POCKET; 2.在空气冷却器之流体为二相流时,入口需为对称配管; 3.空气冷却器之进口NOZZLE多于6小时,须先分二股进入,以使入口分配 均匀,四个以下的NOZZLE可同时由一侧进入; 4.进口端管线和其相接设备间的管线,在挠性允许范围内,愈短愈好; 5.进口管线常为高温,热膨胀量较大,且空气冷却之NOZZLE极为脆弱,故 特别考虑管线之挠性、应力、支撑问题; 6.空气冷却器在配置时,须考虑马达,风扇之维护,吊装空间; 7.空气冷却器之操作平台,在CROSS WALKWAY和CENTER WALKWAY之 宽度为760MM。两翼侧端之宽度MIN.为1,200MM,当空器冷却器之长度超过15M时,须另做一个CROSS WALKWAY; 8.在进出口端之维护平台其宽度为760MM,并须有爬梯和CROSS WALKWAY 相连接; 9.爬梯起点在地面,当操作平台高于3M,或爬梯起点于平台上,平台与平台 之高度超过2.4M时,皆须加GAGE以确保安全; 10.当须装置THERMOWELL CONNECTION和PRESSURE GATE时,尽可能 接近NOZZLE; 11.在空气冷却器进口端须加装一对FL’G以利于拆卸维护空气冷却器时之吊 装; 12.气体在MAIN HEADER中将会产生CONDENSATE,而使管路堵塞,故必须 将MAIN HEADER置于较AIR COOLER之INLET NOZZLE为高之地方,切不可妨碍维护、吊装空间; 13.为了减少压力降,从MANIFOLD至AIR COOLER NOZZLE.之管路可配置 呈直线,并且越短越好,如此才可推动AIR COOLER, 利用AIR COOLER 之CAP来吸收膨胀量; 14.栏杆和AIR COOLER之空间须保持150-200之距离,以利于维护操作; 15.在DOUBLE PASS之AIR COOLER中,OUTLET和INLET在同一侧时,则 须再详细考虑膨胀量之大小和方向,而决定是否可为直线配管(NOZZLE到HEADER), 或作LOOP来降低NOZZLE之受力; 16.利用HEADER BOX间之GAP还无法达到完全吸收其膨胀量时,可同时使 用COOL SPRING之方法来补助; 17.利用HEADER BOX之GAP来吸收管线热膨胀量时,GAP之大小必须依API 661CODE之规定,且须详细核对场上制造图及计算膨胀量。

空冷系统简介

1 空冷系统简介 1.1 空冷技术方案介绍 在火力发电厂中采用的空冷系统形式有:直接空冷系统、混凝式间接空冷系统、表凝式间接空冷系统。直接空冷系统是将汽轮机排汽由管道送入称之为空冷凝汽器的钢制散热器中,直接由空气冷却。混凝式空冷系统由于有水轮机和喷射式凝汽器等系统设备,设备多系统复杂,使得整套系统实行自动控制较难;而表凝式间接空冷系统与常规的湿冷系统比较接近,也是通过两次换热,以循环冷却水作为中间冷却介质,循环冷却水由水泵加压后,进入凝汽器冷却汽轮机排汽,热水进入自然通风冷却塔由空气冷却。表凝式间接空冷系统与湿冷系统不同之处是在冷却塔内(外)布置着钢(铝)制散热器,热水与空气不接触,进行表面对流散热。 1.1.1 直接空冷系统 直接空冷系统主要由排汽装置、大排汽管道(包括大直径膨胀节、大口径蝶阀等)、钢制空冷凝汽器、风机组(包括轴流风机、电动机、减速机、变频器等)、凝结水系统、抽真空系统(包括水环式真空泵)、清洗系统等设备构成。空冷凝汽器布置在汽机房A列外的高架空冷平台上。 直接空冷系统是将汽轮机排出的乏汽,通过排汽管道引入钢制空冷凝汽器中,由环境空气直接将其冷却为凝结水,多采用机械通风方式。其特点是:设备较少,系统简单,调节灵活,占地少,防冻性能好,冷却效率高;直接空冷受环境风的影响较大,运行费用较高,煤耗较大,风机群产生一定噪声污染,厂用电较高。 1.1.2 表凝式间接空冷系统 表凝式间接空冷系统是指汽轮机排汽以水为中间介质,将排汽与空气之间的热交换分两次进行:一次为蒸汽与冷却水之间在表面式凝汽器中换热;一次为冷却水和空气在空冷塔里换热。该系统主要由表面式凝汽器与空冷塔构成,采用自然通风方式。 表凝式间接空冷与直接空冷相比,其特点是: 冬季运行背压较低,所以煤耗较低;由于采用了表面式凝汽器,循环冷却水和凝结水分成两个独立系统,其水质可按各自的水质标准和要求进行处理,使水处理系统简单、便于操作;表凝式间接空冷塔基本无噪声,满足环保要求;空冷塔占地大,冬季运行防冻性能较差。 1.1.3 混凝式间接空冷系统 典型的混凝式间接空冷系统组成:主要由混合式(喷射式)凝汽器、全铝制的福哥型冷却三角散热器(带百叶窗)、(预热/尖峰冷却器)、自然通风冷却塔、循环水泵组、循环水管路、回收水能的水轮发电机组、贮水箱、充水泵组、

330MW机组直接空冷控制系统优化

330MW机组直接空冷控制系统优化 【摘要】火力发电厂采用空冷系统可以大幅度降低电厂耗水量,在节水方面有显著的 效果,尤其北方缺水地区,节水是火力发电厂立项的基本条件之一,因而空冷机组得 到了越夹越多的应用。本文33OMW机组为例介绍了直接空冷系统及其控制系统优化, 对同类机组有一定的借鉴意义。 【关键词】空冷控制完善优化 1概况 采用直接空冷系统,可以大量节约电厂用水。直接空冷系统最大优势是可以大量节水,从而可使电厂选址不受水源限制。在水冷凝汽器发电机组中,耗水量的90%以上是在冷却塔中蒸发掉的。直接空冷凝汽器采用空气冷却管束内的饱和蒸汽,省去了作为中间冷却介质的循环水。因此,采用直接空冷凝汽器系统的机组比同容量水冷凝汽器发电机组节水约75 %。 采用空冷机组大大减少了电厂耗水,为水源的落实和项目的成立提供了便利条件。特别对缺水地区,有着重要的意义。内蒙古地区煤资源丰富,近几年投产的机组,基本都采用了空冷系统,而且大部分为直接空冷系统。 2空冷系统介绍 空冷系统由6列总共300片换热管束(包括Pfc管束即“顺流管束”和Cfc 管束即“逆流管束”)和30台风机组成。其中Pfc管束为264片, Cfc管束为36片。 来自汽轮机的蒸汽经由主排汽管道进入空冷,并由蒸汽分配管箱进入凝汽器管束。凝汽器元件由平行排列的大量翅片管组成。蒸汽在管内表面冷凝,同时冷却空气流过管外表面。蒸汽分配管箱位于屋顶形管束的顶部,并与作为顺流管束的管束焊接在一起。管束下部直接与下联箱连接,下联箱将凝结水送到凝结水疏水管道且将未冷凝的蒸汽送至逆流管束。逆流管束的顶端有连接管,空气等不凝结气体经连接管被抽取。抽气管道与抽真空系统相连接。 抽真空系统由3台水环真空泵组成。所需要的辅助设施,如凝结水泵和抽真空系统设置在ACC 前面的汽机房内。 空冷系统所需要的冷却空气由布置在管束下部的轴流风机提供。30台风机

直接空冷与间接空冷

空冷系统介绍 摘要:电厂采用空冷系统可以大幅度降低电厂耗水量,在节水方面有显著的效果,因而空冷机组得到了越夹越多的应用。本文以2X3OOMW机组为例介绍了直接空冷系统及其控制;以2×2OOMW机组为例介绍了间接空冷系统及其控制。 一、概述 空冷系统主要指汽轮机的排汽通过一定的装置被空气冷却为凝结水的系统,它与常规湿式冷却方式(简称湿冷系统)的主要区别是避免了循环冷却水在湿塔中直接与空气接触所带来的蒸发、风吹损失以及开式循环的排污损失,消除了蒸发热、水雾及排污水等对环境造成的污染。由于空冷方式用空气直接冷却汽轮机排汽或用空气冷却循环水再间接冷却汽轮机排汽构成了密闭的系统,所以在理论上它没有循环冷却水的上述各种损失,从而使电厂的全厂总耗水量降低80%左右。 用于电厂机组末端冷却的空冷系统主要有直接空冷系统和间接空冷系统,间接空冷系统又分为带表面式凝汽器和带混合式凝汽器的两种系统。三种空冷方式在国际上都得到广泛的应用,技术均成熟可靠,在国际上三种空冷方式单机容量均已达到600MW。我国目前己有60OMW直冷机组投运,两种间冷方式在国内运行机组均为200MW。 采用空冷机组大大减少了电厂耗水,为水源的落实和项目的成立提供了便利条件。特别对缺水地区,有着重要的意义。内蒙古地区煤

资源丰富,近几年投产的机组,基本都采用了空冷系统,而且大部分为直接空冷系统。 二、空冷系统 2.1直接空冷系统 电厂直接空冷系统是汽机的排汽直接用空气冷却,汽机排出的饱和蒸汽经排汽管道排至安置在室外的空冷凝汽器中,冷凝后的凝结水,经凝结水泵升压后送至汽机回热系统,最后送至锅炉。电厂直接空冷系统主要包括以下系统:空冷凝汽器(ACC,Aircooledcondenser),空气供给系统、汽轮机排汽管道系统、抽真空系统、空冷凝汽器清洗系统、空冷凝汽器平台及土建支撑。蒸汽从汽轮机出来,经过蒸汽管道流向空冷凝汽器,由蒸汽分配管道间空冷冷凝器分配蒸汽。目前直接空冷凝汽器大多采用矩形翅片椭圆管芯管的双排、三排管和大口径蛇形翅片的单排管。空冷凝汽器由顺流管束和逆流管束两部分组成。顺流管柬是冷凝蒸汽的主要部分,可冷凝75%一80%的蒸汽,在顺流管束中,蒸汽和凝结水是同方向移动的。设置逆流管束主要是为了能够比较顺畅地将系统内的空气和不凝结气体排出,避免运行中在空冷凝汽器内的某些部位形成死区、冬季形成冻结的情况,在逆流管束中,气体和凝结水是反方向移动的。 冷凝所需要的冷空气由轴流冷却风机从大气中吸入,并吹间换热器翅片。风机采用变频控制,系统可通过控制启停风机台数和对风机转速进行调整来控制进风量,能灵活的适应机组变工况运行,并且

空冷器计算过程

空冷器计算过程 空冷器 空冷器换热效果好,结构简单,节约水资源,没有水污染等问题,比水冷更经济,故选用空冷器。 1.计算依据 (1)进出空冷器的流量和组成: 组分 (2)设计温度40℃ (3)进空冷器温度420℃,出空冷器温度80℃ (4)进出口压力0.06MPa(表压) (5)换热量Q=2.37×106KJ/h 2.设计计算(参考资料《化工装置的工艺设计》) 查《化工装置的工艺设计》表9-31得轻有机物的传热系数为10英热单位/英尺2.h. 换算为国际单位制:K=10×0.86×4.18=204.25KJ/m2.h.℃ 假设空气温升15.3℃ 按逆流:△t1=420-55.3=364.7℃ △t2=80-40=40℃ △tm1=146.91℃ 取温差校正系数Φ=0.8 △tm=△tm1.Φ=146.91×0.8=117.53℃ 则所需普通光管的表面积: A0=Q/K.△tm(4—1) =2.37×106/(204.25×117.53 =98.73m2 由(T2-T1)/K=1.86查《化工装置的工艺设计》图9-120得: 最佳管排数为n=6 又由n=6查表9-33得 迎面风速FV=165米/分 表面积/迎风面积=A0/F2=7.60 则:F2=A0/7.60=98.73/7.60=12.99m2 由F1= Q/(t2-t1)FV17.3 (4—2) 式中Q—换热量,Kcal/h

(t2-t1)—空气温升 FV—迎面风速,米/分 代入数据F1=2.37×106/(15.3×165×17.3=12.98m2 取ξ=0.01 F2-F1=12.99-12.98=0.01≤ξ 即空气出口温度假设合理 以光管外表面为基准的空冷器的换热面积为98.73m2 参考鸿化厂选φ377×12的换热管 管长L=98.73×4/π×0.3532=1010米 管内流速u=143.07×22.4×4/π×0.3532=2762.5m/h=9.2m/s u=9.2m/s符合换热管内流速范围15—30米/秒,故换热管选择合理空冷器规格及型号:φ377×1010 F=98.73m2 评价,未作翅片面积核算。。。

空冷控制系统

空冷控制系统 1.直接空冷系统构成 电厂直接空冷系统汽机的排汽直接用空气冷却,汽机排出的饱和蒸汽各蒸汽经排汽管道排至安置在室外的空冷凝汽器中,冷凝后的凝结水,经凝结水泵升压后送至汽机回热系统,最后送至锅炉。直接空冷系统主要包括以下系统:空冷凝汽器(ACC,Air cooled condenser)、空气供给系统、汽轮机排汽管道系统、抽真空系统、空冷凝汽器清洗系统、空冷凝汽器平台及土建支撑。 蒸汽从汽轮机出来,经过蒸汽管道流向空冷凝汽器,由蒸汽分配管道向空冷冷凝器分配蒸汽。目前直接空冷凝汽器大多采用矩形翅片椭圆管芯管的双排、三排管各大口径蛇形翅片的单排管。空冷凝汽器由顺流管束各逆流管束两部分组成。顺流管束是冷凝蒸汽的主要部分,可冷凝75%~80%的蒸汽,在顺流管束中,蒸汽和凝结水是同方向移动的。设置逆流管束主要是为了能够比较顺畅地将系统内的空气和不凝结气体排出,避免运行中在空冷凝汽器内的某些部位形成死区、冬季形成冻结的情况,在逆流管束中,气体和凝结水是反方向移动的。 冷凝所需要的冷空所由轴流冷却风机从大所中吸入,并吹抽换热器翅片。风机采用变频控制,系统可通过控制启停风机台数和对风机转速进行调整来控制进风量,能灵活地适应机组变工况运行,产且起很好的防冻作用。 抽真空系统由3X100%水环真空泵组成。泵连接逆注管束的顶部和主排汽管道。在启动的时候,不凝气体在抽真空系统中被压缩,并排到大气中。在部分排派汽支管道上设置蒸汽隔离阀(启动排不设蒸汽隔离阀)当冬季汽轮机低负荷运行或启动时,切断某几个散热端的阀门,将热量集中在剩余的散热端中,增加热负荷达到防冻目的。为防止灰尘附着凝汽器翅片影响系统散热效果,设立冲洗系统,冲洗系统由冲洗水泵以及管道阀门组成。 为减少系统容积,大型机组的空冷凝汽器一般布置在紧靠汽机房A列柱外的平台上。为适应机组变工况运行各维护,空冷凝汽器被分为几组,每组由相同冷却单元组成,每个冷却单元由“人”型的冷却器排架构成,每个冷却单元下面设一台轴流风机。直接空冷机组原则性汽水系统如图1所示。

直接、间接空冷区别

简介 间接空冷系统,间接空冷系统指混合式凝汽器的间接空冷系统(海勒式间接空冷系统)和具有表面式凝汽器间接空冷系统(哈蒙式间接空冷系统)及其它。 (a)直接空冷系统——系利用机械通风使汽轮机排汽直接在翅片管式空冷凝汽器中凝结,一般由大管径排汽管道、空冷凝汽器、轴流冷却风机和凝结水泵等组成; (b)带表面式凝汽器的间接空冷系统——亦称哈蒙系统,由表面式凝汽器、空冷散热器、循环水泵以及充氮保护系统、循环水补充水系统、散热器清洗等系统与空冷塔构成。该系统与常规的湿冷系统基本相仿,不同之处是用空冷塔代替湿冷塔,用密闭式循环冷却水系统代替敞开式循环冷却水系统,循环水采用除盐水。 2资料 一、机械通风直接空冷系统(ACC) 该系统亦称为ACC系统,它是指汽轮机的排汽直接用空气来冷凝,空气与蒸汽间进行热交换,其工艺流程为汽轮机排汽通过粗大的排气管道至室外的空冷凝汽器内,轴流冷却风机使空气流过冷却器外表面,将排汽冷凝成水,凝结水再经泵送回锅炉。 其优点有: ⑴不需要冷却水等中间介质,初始温差大。 a* |& a ⑵设备少,系统简单,占地面积少,系统的调节较灵活。 其缺点有: ⑴真空系统庞大在系统出现泄漏不易查找漏点,易造成除氧器、凝结水溶氧超标。 ⑵采取强制通风,厂用电量增加。 ⑶采用大直径轴流风机噪声在85分贝左右,噪声大。

⑷受环境风影响大。 二、表面式间接空冷系统 表面式凝汽器间接空冷系统的工艺流程为:循环水进入表面式凝汽器的水侧通过表面换热,冷却凝汽器汽侧的汽轮机排汽,受热后的循环水由循环水泵送至空冷塔,通过空冷散热器与空气进行表面换热,循环水被空气冷却后再返回凝汽器去冷却汽轮机排汽,构成了密闭循环。 带表面式凝汽器的间接空冷系统,与海勒式间接空冷系统所不同的是冷却水与汽轮机排汽不相混合,进行表面换热,这样可以满足大容量机组对锅炉给水水质较高的要求。该系统与常规的湿冷系统基本相同,不同之处是用空冷塔代替湿冷塔,用不锈钢凝汽器代替铜管凝汽器,用除盐水代替循环水,用密闭式循环冷却水系统代替敞开式循环冷却水系统。 其优点有: ⑴设备较少,系统较简单。 ⑵冷却水系统与凝结水系统分开,水质按各自标准处理,冷却系统采用除盐水,且闭式运行,基本杜绝凝汽器管束内结垢堵塞情况,大大提高换热效率。 ⑶循环水系统处于密闭状态,循环水泵扬程低,消耗功率少,厂用电率低。 ⑷冷却水在循环过程中完全为密闭循环运行,基本不产生水的损耗,理论上该系统耗水为零。 其缺点有:. ⑴冷却水必须进行两次热交换,传热效果差。 ⑵占地面积大。 ⑶初投资较直接空冷大。. 三、直接空冷机组与间接空冷机组环境气象条件包括气温,风速及风向性能、厂址海拔标高及厂址处的大气压力、辐射热的对比: 直接空冷与间接空冷在气温、风速及风向性能、厂址海拔标高及厂址处的大气压力、辐射热对比表 气温 风速及风向性能(安全性分析)

直接空冷系统技术要求规范书

直接空冷系统技术规书 项目名称:。。。。。能源1×75t/h中温中压尾气锅炉+1×12MW汽轮发电机项目 需方:。。。。。热电厂 设计单位: 。。。。。设计工程有限责任公司 使用方: 。。。。。热电厂 投标方: 2017年2月16日

目录 一.总则 二.设备的运行条件 三.设备规 四.技术要求 五.供货围 六.设计、制造、验收标准 七. 监造 八. 技术资料要求 九.技术服务联络方式

一. 总则 1.1 本规书的使用围,仅限于。。。。。能源1×75t/h中温中压尾气锅炉+1× 12MW汽轮发电机项目,本期工程共安装1台中温中压75t/h的炭黑尾气锅炉及1台12MW空冷抽凝式汽轮发电机组,汽轮机排汽冷凝系统采用直接空冷系统。它包括本体、附属部件的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本规书提出的是最低限度的技术要求,并没有对所有技术细节作出规定, 也未具体引述有关标准和规的条文。投标方应保证提供符合本规书和工业标准的优质产品。 1.3 如果需方有除本规书以外的特殊要求,应以书面形式提出,并对每一点 都作详细说明,载于本规书之后。 1.4 如投标方没有以书面对本规书的条文提出异议。那么需方可以认为投标 方提出的产品完全满足本规书的要求。 1.5 本规书为订货合同的附件,与合同正文具有同等法律效力。 二. 设备的运行条件 2.1直接空冷系统的安装位置:主厂房汽机间尾部,架空于道路上,单排室外布置。 2.2设备运行环境条件 大气压力:年平均气压904.8 mbar 相对湿度:年平均52 %

年平均气温:19℃ 绝对最高温度45.5 ℃ 绝对最低温度-19.9 ℃ 风速及风向:年平均风速 2.3 m/s, 主导风向: 年平均降雨量501.6 mm 最大积雪深度150mm 最大冻土深度610 mm 地震烈度:7度 三. 设备规 3.1 设备名称:直接空冷系统岛 3.2数量:1套, 3.3设计和运行条件 汽轮发电机组参数:(由买方提供) 汽轮机排汽背压:15kPa 汽轮发电机组额定功率:12MW 汽轮机排汽量:68t/h 排汽焓:2598kJ/kg 额定排汽温度:54℃ 四、技术要求

空冷凝汽器工作原理

凝汽器冷却方式: 湿式冷却方式湿式冷却方式分直流冷却和冷却塔种. 湿式直流冷却一般是从江、河、湖、海等天然水体中汲取一定量地水作为冷却水,冷却工艺设备吸取废热使水温升高,再排入江、河、湖、海.文档收集自网络,仅用于个人学习 当不具备直流冷却条件时,则需要用冷却塔来冷却.冷却塔地作用是将挟带废热地冷却水在塔内与空气进行热交换,使废热传输给空气并散入大气.文档收集自网络,仅用于个人学习干式冷却方式在缺水地区,补充因在冷却过程中损失地水非常困难,采用空气冷却地方式能很好地解决这一问题.空气冷却过程中,空气与水(或排汽)地热交换,是通过由金属管组成地散热器表面传热,将管内地水(或排汽)地热量传输给散热器外流动地空气.文档收集自网络,仅用于个人学习 当前,用于发电厂地空冷系统主要有种,即直接空冷系统、带表面式凝汽器地间接空冷系统(哈蒙式空冷系统)和带喷射式(混合式)凝汽器地间接空冷系统(海勒式空冷系统).文档收集自网络,仅用于个人学习 直接空冷就是利用空气直接冷凝从汽轮机地排气,空气与排气通过散热器进行热交换. 海勒式间接空冷系统主要由喷射式凝汽器和装有福哥型散热器地空冷塔构成,系统中地高纯度中性水进入凝汽器直接与凝汽器排汽混合并将加热后地冷凝水绝大部分送至空冷散热器,经过换热后地冷却水再送至喷射式凝汽器进行下一个循环.极少一部分中性水经过精处理后送回锅炉与汽机地水循环系统.文档收集自网络,仅用于个人学习 哈蒙式间接空冷系统又称带表面式凝汽器地间接空冷系统,在该系统中冷却水与锅炉给水是分开,这样就保证了锅炉给水水质.哈蒙式空冷系统由表面式凝汽器与空冷塔组成,系统与常规地湿冷系统非常相似.文档收集自网络,仅用于个人学习 据统计目前世界上空冷系统地装机容量中,直接空冷系统约占,表面式凝汽器间接空冷系统约占,混合式凝汽器间接空冷系统约占.文档收集自网络,仅用于个人学习 直接空冷系统地工作原理 汽轮机排汽在空冷凝汽器中被空气冷却而凝结成水,排汽与空气之间地热交换是在表面式空冷凝汽器内完成.在直接空冷换热过程中,利用散热器翅片管外侧流过地冷空气,将凝汽器中从处于真空状态下地汽轮机排出地热介质饱和蒸汽冷凝,最后冷凝后地凝结水经处理后送回锅炉.文档收集自网络,仅用于个人学习 直接空冷凝汽器地发展现状 直接空冷凝汽器地作用直接空冷技术地发展主要是围绕直接空冷凝汽器管束进行地.空冷凝汽器是空冷机组冷端地主要部分,汽轮机排汽将几乎全部在凝汽器中冷凝成冷凝水.汽轮机排出地蒸汽在凝汽器翅片管束内流动,空气在凝汽器翅片管外流动对蒸汽直接冷却.从提高冷却效率角度出发,一般在管束下面装有风扇机组进行强制通风或将管束建在自然通风塔内,在现有运行地机组中,强制通风方式由于其可调控性能较好等优点而广泛应用.直接空冷凝汽器由于特点突出,已经逐渐在世界各国进行技术研究并逐步推广应用.由于间接空冷凝汽器系统相对于直接空冷凝汽器系统设备多、造价高、维修量大、运行难度大且可靠性较差,所以它将只是水冷凝汽器系统和直接空冷凝汽器系统之间地一个过渡,直接空冷凝汽器将是今后电厂冷却系统发展地重要方向.文档收集自网络,仅用于个人学习 直接空冷凝汽器地发展现状电厂空冷凝汽器技术地开发应用已有几十年地历史.德国早在年就建成了采用空气冷却地发电机组.年匈牙利地海勒教授首次提出电站间接空冷技术,电站空冷技术发展到现在已经经历了由不成熟到成熟地发展过程.空冷系统地翅片管散热器按材料分有:铝管铝翅、钢管铝翅以及钢管钢翅种.按结构分,现在空冷系统普遍采用地有种:圆形铝管镶铝翅片、热浸锌椭圆钢管套矩形翅片、大直径热浸锌椭圆钢管套矩形翅片、大直径扁管焊接蛇型铝翅片.直接空冷技术地发展主要是围绕直接空冷凝汽器管束进行地,目前

浅谈火力发电厂间接空冷系统控制技术

浅谈火力发电厂间接空冷系统控制技术 发表时间:2018-10-18T15:07:29.690Z 来源:《电力设备》2018年第17期作者:袁龙[导读] 摘要:在火力电厂中,锅炉将水加热成为高压高温的蒸汽,然后推动汽轮机工作促使发电机发电。 (华电重工股份有限公司北京市 100070) 摘要:在火力电厂中,锅炉将水加热成为高压高温的蒸汽,然后推动汽轮机工作促使发电机发电。将汽轮机做工之后的废汽排入到冷凝器中,和冷却水进行热交换之后凝结成水,再利用给水泵进入到锅炉中循环使用。而间接空冷系统的主要作用就是将废热冷却水在间冷塔中和空气进行热交换,以此来将废热传输至空气中。本文主要分析了火力发电厂间接冷却系统的工作原理,然后对其各种工况进行了详细的说明。 关键词:火力发电厂;间接空冷系统;控制技术 0.引言 本文主要就是以某一个火力发电厂的间接空冷系统为例来进行分析,该火力发电厂主要就是采用表凝式间接空冷系统。启动给水泵小汽机和主机气轮机排气都是会进入到主机表面式凝汽器,而在表面式凝汽器中循环冷却水也是能够进行完热交换,之后再经由循环水泵将循环冷却水送到间接空冷系统中,然后借助于间接空冷系统进行统一的冷却,而循环水泵则是应该布置在空冷塔附近。在空冷塔进风口处的圆周上三角垂直布置空冷散热器,每一个冷却三角进风口处都有布置能够调开度的百叶窗。 1.火力发电厂循环水泵系统分析 本工程在1号机组和2号机组这两者之间设置一座间接空冷塔,循环水泵的位置在塔热水入口侧。两台机组共用一个循环水泵房,其位置就在冷却塔的附近。每一台机组都配备三台循环水泵,循环水泵主要就是利用定速电机来进行工作[1]。两台机组间冷系统主要就是通过单元制的模式进行运行,每一台机组在任何的情况下都是必须得投入最少两台循环水泵,这主要就是因为本项目的循环水泵是使用定速电机。单台泵在实际的运行过程中系统总水阻比较低,泵运行点和设计点也是偏离较大,进而循环水泵电机则是存在着较大的过载风险。如果在冬季的时候单台循环水泵运行,那当运行泵出现故障的时候将会使得管束出现冰冻的情况,如下图1: 当两台机组在夏季并且不同负荷情况下运行的时候,空冷塔内的热空气气流将会产生相互作用,这样也就会使得高负荷机组的空冷散热器冷却能力下降。而在冬季运行的时候,管束冻结风险将会加大。在冬季低负荷运行的时候采用全扇区全流量的运行方式比较合适。机组在4℃环境下运行的时候就是处于冬季运行工况。首先就是为了更好的避免冷水出水的温度太低,应该让循环水系统处于全流量的运行状态。然后就是在低负荷的防冻工况中,使用扇区退出运行的方式就不合适。当扇区退出运行的时候,那塔内的气流将会不均匀,而这也就加大了管束冻结的风险。同时旁路阀会自动的打开,以此来有效的控制住系统水阻以及管束内的水流速。如果进入管束中的水流量减少,那管束冻结风险也会加大。除此之外,在扇区退出运行的时候,如果局部未排净水出现冻结的情况,那将会使得阀门故障,进而加速管束以及管道的腐蚀。所以扇区退出运行也是被视作一种事故工况。而合理的调节百叶扇开度则能够很好的控制水温,实现防冻的目的。因此所有的百叶窗应该时刻保持着统一开度,以此来有效的保证塔内流场均匀。 2.火力发电厂间接空冷塔系统控制技术分析 冷却塔系统的可控设备主要包括扇区排水电动蝶阀、紧急放水阀、输水泵、地下储水箱水位以及排水电动蝶阀和充水电动蝶阀等等。冷却塔系统的仪表主要分为用于监视的仪表以及参与控制仪表。参与控制的仪表主要包括膨胀水箱温度、膨胀水箱液位、扇区冷水出口温度、塔外环境温度、地下水箱液位以及循环水热水总管温度。其他的仪表都是被用来监视的。 2.1膨胀水箱系统和水位平衡 每一台机组都应该设置一台独立的高位膨胀水箱,而水箱的顶部则是应该和大气联通。膨胀水箱的位置应该设置在塔内膨胀水箱的平台上,而其容积能够满足充满一个扇区容积的要求,并且其属于常压系统。间接空冷系统的基本压力主要就是通过膨胀水箱中的水位来控制,其中的水位还控制着冷却三角顶部水位。 在膨胀水箱液位太低的时候,管束不能够满水运行,进而使得大量的空气进入到循环水系统中,导致管系震动,同时还会损伤到循环水泵。而在冬季运行的时候将会使得管束出现冻结的情况。整个间接空冷循环水系统都是时刻处于封闭的状态,其中的水平衡主要就是由膨胀水箱中的水位来进行控制[2]。这主要的目的就是为了更好的满足系统正常运行时的水位以及启动时扇区充水水位的要求,其在正常运行的时候能够有效的保证冷却三角顶部的排空气立管中水位足够,进而水循环运行也是十分的稳定。 2.2旁路电动蝶阀与流量平衡 每一台机组都会设计两个旁门路,以此来保证两个机组各自循环水系统中的流量平衡,而保持流量平衡的主要目的就是以下几点:(1)在扇区还未投运的时候建立循环水回路;(2)保证系统总水阻一直处于合理的范围,确保凝汽器、空冷管束以及循环水泵不会出现超压的情况;(3)控制空冷管束中的水流速,以免管束磨损快速;(4)科学的匹配投运扇区流量以及旁路流量,提升管束的防冻性能以及散热性能。 当机组扇区还未投运的时候,两个旁路阀门都是处于开启的状态,而循环水主要就是通过旁路来进行循环的建立。而在短时停机的时候,扇区退水的同时还会开启两个旁路阀门,这样也就会使得循环冷却水系统一直处于热备用的状态。而在非全部扇区投运的时候,旁路电动蝶阀的开启数量与扇区投运数量相匹配,以此来有效的保证系统流量的平衡。

空冷器使用说明及注意事项参考

空冷器管束操作时应注意的事项 1.管内介质、温度、压力均应符合设计条件,严禁超压,超温操作. 2.管内升压、升温时,应缓慢逐级递升,以免因冲击驟热而损坏设备. 3.空冷器正常操作时,应先开启风机,再向管束内通入介质.停止操作时,应先停止向管束内通入介质,后停风机. 4.易凝介质于冬季操作时,其程序与3条相反. 5.负压操作的空冷器开机时,应先开启抽气器,管内达到规定的真空度时再启动风机,然后通入管内介质,停机时,按相反程序操作.冬季操作时,开启抽气器达到规定真空度后,先通入管内介质,再启动风机,以免管内冻结无法运行. 6.停车时,应用低压蒸汽吹扫并排净凝液,以免冻结和腐蚀. 7.开车前应将浮动管箱两端的紧定螺钉卸掉,保证浮动管箱在运行过程中可自由移动,以补偿翅片管热胀冷说的变形量. 空冷风机系统的维护保养及使用注意事项 1、日常巡检 运行中有无异常性声音和振动. 回转部件有无过热、松动. 2、定期维护保养 每三个月通过注油嘴加注锂基润滑油. 定期调整三角带的松紧度,并检查三角带胶带的磨损程度,磨损严重的应及时予以更换. 全面检查各零、部件的紧固状态一年一次.

风筒与叶轮的径向间隙检查一年一次. 叶片角度及叶片沿风机轴向跳动应每年检查、调整一次. 清除风机叶片表面油污,检查叶片损坏,半年一次. 3、使用注意事项 风机使用角度不得超过规定的调角范围以防电机过载. 加注黄油不应超过油腔的2/3,以免轴承过热. 每次检修和更换电机时,必须注意接线相应,应保证风机叶轮俯视顺时针方向旋转. 皮带传动机构的皮带应保持一定的张紧力。如过于松弛,则电机的动力无法有效的传递至风机,风机效率下降,甚至造成皮带飞出的事故。 如皮带过紧,摩擦阻力增大,容易造成电机超负荷,长时间运行还会造成电机,风机轴弯曲,轴承松动,致使振动,噪音增大,影响设备运行。 定期检查更换风机的皮带,确保风机使用正常。 兰州长征机械有限公司 2015年1月

空冷机组简介

概述 此节简单描述了GEA 公司的机械通风空气冷凝器即通常所称的空气冷凝器或ACC 。 GEA 公司的空气冷凝器由下列部件构成: ? 排气管道 (1) 和 配汽管道 (2) ? 翅片管换热器 (3) ? 支撑结构和平台 (4) ? 风扇及其驱动装置 ? 抽真空系统 (5) ? 排水和凝结水系统 (6) ? 控制系统和仪表 2 3 1 4 4 6 6 6 5 5 冷凝过程 GEA 公司的空气冷凝器将采用屋顶结构(或称A 型框架结构)。 来自汽轮机的尾气通过排汽管道和配汽管道输送到翅片管换热器。配汽管道连接到汽轮机的排汽管道和位于上部的翅片管换热器。蒸汽被直接送入换热器的翅片管道内。蒸汽携带的热能由经过换热器翅片表面的冷却空气带走,冷却空气是由置于管束下面的轴流风机驱动的。 换热器采用GEA 公司发明的KD 布置方式,即顺流冷凝-反流冷凝的布置方式。 70%到80%的蒸汽在通过由上部的配汽管道到顺流冷凝的换热器中被冷凝成凝结水,凝结水流到底部的蒸汽/凝结水联箱中。顺流管束称为冷凝管束或称K 管束。 其余的蒸汽在称为D 管束的反流管束中被冷凝,蒸汽是由蒸汽/凝结水联箱向上流动的,而凝结水由冷凝的位置向下流到蒸汽/凝结水联箱中并被排出。 这种KD 形式的布置方式确保了在任何区域内蒸汽都与凝结水有直接的接触,因此将保持凝结水的水温与蒸汽温度相同,从而避免了凝结水的过冷、溶氧和冻害。 从汽轮机到凝结水箱的整个系统都是在真空状态下。由于采用全焊接结构,从而保证整个系统的气密性。由于在与汽轮机连接的法兰处不可避免地会有空气漏进冷凝系统中,为了保持系统的真空,在反流管束的上端未冷凝的蒸汽和空气的混合物将被抽出。通过在上端部位的过冷冷却,使不可冷凝蒸汽的汽量被减小了。 反流(D )部分的设计应保证在任何运行条件下,不会在顺流(K )部分造成完全冷凝,以避免过冷和溶氧以及冻害的危险。 在不同热容量和环境温度下,通过调节空气流量的变化来控制汽轮机尾气的排汽压力。

直接空冷系统技术规范书

直接空冷系统技术规范书 项目名称:。。。。。能源有限公司1×75t/h中温中压尾气锅炉+1 ×12MW汽轮发电机项目 需方:。。。。。热电厂 设计单位: 。。。。。西安设计工程有限责任公司 使用方: 。。。。。热电厂 投标方: 2017年2月16日 目录 一.总则 二.设备的运行条件 三.设备规范 四.技术要求 五.供货范围 六.设计、制造、验收标准 七. 监造 八. 技术资料要求 九.技术服务联络方式 一. 总则

1.1 本规范书的使用范围,仅限于。。。。。能源有限公司1×75t/h中温中 压尾气锅炉+1×12MW汽轮发电机项目,本期工程共安装1台中温中压75t/h的炭黑尾气锅炉及1台12MW空冷抽凝式汽轮发电机组,汽轮机排汽冷凝系统采用直接空冷系统。它包括本体、附属部件的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本规范书提出的是最低限度的技术要求,并没有对所有技术细节作出规 定,也未具体引述有关标准和规范的条文。投标方应保证提供符合本规范书和工业标准的优质产品。 1.3 如果需方有除本规范书以外的特殊要求,应以书面形式提出,并对每一 点都作详细说明,载于本规范书之后。 1.4 如投标方没有以书面对本规范书的条文提出异议。那么需方可以认为投 标方提出的产品完全满足本规范书的要求。 1.5 本规范书为订货合同的附件,与合同正文具有同等法律效力。 二. 设备的运行条件 2.1直接空冷系统的安装位置:主厂房汽机间尾部,架空于道路上,单排室外布置。 2.2设备运行环境条件 大气压力:年平均气压904.8 mbar 相对湿度:年平均52 % 年平均气温:19℃

空冷冷凝器计算说明书

课设题目:空冷冷凝器 一、设计条件: 某空调制冷机组采用空气冷却式冷凝器,要求制冷剂冷凝液过冷度5℃,压缩机在蒸发温度5℃,冷凝温度45℃时的排气温度为80℃,压缩机实际排气量为160kg/h;冷凝器空气进口温度为35℃。 二、其他参数 1、制冷剂采用R134A 2、采用肋片管式空冷冷凝器 3、传热管采用紫铜套铝片,参数自定,正三角形排列(错排) 三、完成内容 1.确定冷凝器热负荷,并进行冷凝器设计计算 2.提交计算程序以及计算说明书 3.相关工程图纸 一、计算冷凝器热负荷 由所给条件画出压焓图 1.根据tk=50℃和排气温度tdis=80℃,以及过冷度dt=5℃在 R134A压焓图上可以查出hdis=460kj/kg以及过冷液体要求hc=250kj/kg.所以冷凝器热负荷为qmr*(hdis-hc)/3600=9.333kw 2.取进出口空气温差为8℃,则定性温度为39℃,可求出空气流量 qv2=1.029 m3/s 4.单位管长肋片面积Af2=0.5294 肋间基管表面积 Ab2=0.03 肋管外总表面积 A2=Af2+Ab2=0.5594

二、冷凝器的初步规划及有关参数选择 管排方式采用错排,正三角形排列。管间距s1=25.4mm 排间距s2=22mm 紫铜管选用10*0.7,翅片厚度df=0,12mm,肋片间距sf=1.8mm,沿气流方向管排数n=2排。 三,设计计算流程图

四、计算程序 #include #include #define qmr 160 #define pi 3.14

void main() { double _tk=45, _tdis=80, _tc=5,_t2=35,_t3=43,tm; double _hdis=460,_hc=250,Pk; double _p2=1.128,_cp2=1.005,_v2=0.00001687,_r2=0.02751,qv2; double _d0=0.01,_df=0.00012,_df1=0.0007,_s1=0.0254,_s2=0.022,_sf=0.0018,_di=0.0086,_n= 2,_nb=18,db,Af2,Ab2,A2,A1,bt,bt1,ib,de; //3.结构设计 double _r14=19.9238,_Bm=74.8481,_r0=0.0001; tm=(_t2+_t3)/2; Pk=qmr*(_hdis-_hc)/3600; cout<<"冷凝器热负荷为:"<

空冷型发电机组简介

空冷型发电机组简介 更新日期:2011-09-13 14:19:34 点击:105 1.发电机组空冷系统 1.1 空冷系统的单机容量 目前国内外电站空冷是二大类:一是间接空气冷却系统,二是直接空气冷却系统。其中间接空气冷却系统又分为混合式空气冷却系统和表面式空气冷却系统。世界上第一台1500KW直接空冷发电机组,于1938年在德国一个坑口电站投运,已有60多年的历史,几个典型空冷机组是:1958年意大利空冷电站2X36MW 机组投运、1968年西班牙160MW电站空冷机组投运、1978年美国怀俄明州Wodok 电站365MW空冷机组投运、1987年南非Matimba电站6X665MW直接空冷机组投运。当今采用表面式冷凝器间接空冷系统的最大单机容量为南非肯达尔电站 6X686MW;采用混合式凝汽器间接空冷系统的最大单机容量为300MW级,目前在伊朗投运的325MW(哈尔滨空调股份有限公司供货)运行良好。全世界空冷机组的装机容量中,直接空冷机组的装机容量占60%,间接空冷机组约占40%。 1.2 直接空冷系统的特点 无论是直接空冷,还是间接空冷电厂,经过几十年的运行实践,证明均是可*的。但不排除空冷系统在运行中,存在种种原因引发的问题,如严寒、酷暑、大风、系统设计不够合理、运行管理不当等。 这些问题有的已得到解决,从国内已投运的200MW空冷机组运行实践证明了这一点。 从运行电站空冷系统比较,直接空冷系统具有主要特点: (1)背压高; (2)由于强制通风的风机,使电耗大; (3)强制通风的风机产生噪声大; (4)钢平台占地,要比钢筋混凝土塔为小; (5)效益要比间接冷却系统大30%左右,散热面积要比间冷少30%左右; (6)造价相比经济。||| 2.直接空冷系统的组成和范围 2.1 直接空冷系统的热力系统 直接空冷系统,即汽轮机排汽直接进入空冷凝汽器,其冷凝水由凝结水泵排入汽轮机组的回热系统。 2.2 直接空冷系统的组成和范围 自汽轮机低压缸排汽口至凝结水泵入口范围内的设备和管道,主要包括: (1)汽轮机低压缸排汽管道; (2)空冷凝汽器管束; (3)凝结水系统;

相关主题
文本预览
相关文档 最新文档