当前位置:文档之家› 微带天线的报告

微带天线的报告

微带天线的报告
微带天线的报告

微带天线的综述

卢宁

摘要:移动通信技术的迅速发展和应用,有力地推动了现代通信天线向小型化、多功能(多频段、多极化和多用途)的方向发展,设计小型化多功能天线已成为当前天线界研究的重点。微带天线以其体积小,重量轻,低剖面,能与载体共形,易于制造,成本低,易于与有源器件和电路集成为单一的模件,便于实现圆极化、双极化和双频段等优点得到日益广泛的关注和应用。本文详细介绍了关于微带天线的基础知识。

1 微带天线的辐射机理

微带天线的辐射是由微带天线导体边沿和地板之间的边缘场产生的。以图1.1所示的矩形微带贴片天线为例,可以简单说明其辐射机理。

图1.1 微带天线辐射机理示意图

矩形微带贴片天线由介质基片、在基片上面的矩形导电贴片(辐射器)和基片下面的接地板构成。假定电场沿微带贴片的宽度与厚度方向没有变化,则辐射贴片上的电场仅沿贴片长度(λ/2)方向变化。辐射基本上是由贴片开路边沿的边缘场引起的。在两端的场相对于地板可以分解为法向分量和切向分量,因为贴片长为λ/2,所以,法向分量反相,由它们产生的远场区在正面方向上互相抵消。平

行于地板的切向分量同相,因此,合成场增强,从而使垂直于结构表面的方向上辐射场最强。所以,贴片可表示为相距λ/2、同相激励并向接地板以上半空间辐射的两个缝隙。

微带天线的辐射场是由各种假定的电流及其沿天线结构的分布得来的。为了求解微带天线辐射场中的远场值(方向图等),必须知道贴片表面精确的电流分布。如果介质材料各向同性、均匀且无损耗,微带导体和地板导体的电导率为无限大,则面电流和面磁流可以分别用切向电场和切向磁场表示为:

式中:?n-----面法向单位矢量

图1.2就是微带天线辐射边沿的场态和电流密度分布(侧面图)。由图中可以清晰地看出,微带天线的向外辐射是由边缘缝隙实现的。实际应用中,为简单起见,可以认为贴片单元上、下表面的面电流和面磁流相同。然后,就可以使用位函数由面电流和面磁流求解辐射场。

图1.2 微带天线辐射边沿场态和电流密度(侧面图) 假定只有电流存在,则微带天线外部任意点(,,)

pγθ?的电场和磁场为:

式中:ε -----介质的介电常数,F/m

μ -----磁导率,H/m

ω -----角频率,rad/s

上标e 表示由电流产生的场,磁矢量位函数:

式中:0k -----自由空间波数,1

cm - ()K r '-----距离原点为日的点上的面电流密度,2/A m

同理,使用电矢量位函数F ,磁流产生的场为:

上标m 表示磁流产生的场,电矢量位函数F 为:

式中:()M r '-----距离原点为r '的点上的面磁流密度,2/H

m 为简单起见,所有场和电流的时间因子j t e ω均略去。总场为:

电矢量位函数F 和磁矢量位函数A 都是下列波动方程的解:

在远场中,有意义的场分量只是相对于传播方向的横向分量。只考虑电流时,式可以写为:

而在自由空间中

只考虑磁流时,式可以写为:

式中:

η-----自由空间波阻抗,Ω

2 微带天线分类

微带天线的特征之一就是相对于普通的微波天线有更多的物理参数,可以有任意的几何形状和尺寸。微带天线可以分为三种基本类型:微带贴片天线、微带行波天线和微带缝隙天线。

2.1微带贴片天线

微带贴片天线 (Microstrip paste Antenna,MPA)由介质基片、在基片一面上形状任意的导电金属贴片和基片另一面的接地板构成。实际上,能计算辐射特性的贴片图形是有限的(仅限于矩形、三角形、圆形和五角形等几种图形)。而另外几种可能的形状如图2.1所示。

图2.1微带贴片天线其它可能几何图形

2.2微带行波天线

微带行波天线 (MicrostriP Traveling-wave Antenna,MTA)由基片、在基片一面上的链形周期结构或普通的长TEM波传输线(也维持一个TE模)和基片另一面上的接地板组成。原则上,任何一个TEM波传输体都可以改造成一个行波天线。对微带线而言,TEM波传输线天线分为两种:微带线终端接匹配负载的行波天线和微带线终端为开路或短路的驻波天线。通常驻波天线为边射,而行波天线的辐射则可设计成从后射直到端射之间的任一方向上。因此,当波瓣指向边射方向时,行波天线就成为驻波天线。微带行波天线一般为周期性结构,可预先计算其辐射特性。同其它行波天线一样,可以用频率来控制主辐射方向。

图2.2 微带行波天线

2.3微带缝隙天线

微带缝隙天线 (Microstrip Slot Antenna,MSA)由微带馈线和开在接地板上的缝隙组成。其概念是由带状线缝隙天线发展而来的,更确切地说,是由三板传输线发展过来的。带状线缝隙天线的研究和应用都已比较成熟,但要注意抑制在“开槽”的接地板和外导体之间产生电位差的那些不希望的模。

图2.3 微带缝隙天线

MSA的优点是能产生双向或者单向方向图。在微带天线的设计中,采用贴片和缝隙的组合结构,可以额外增添一个自由度。沿着微带馈线一边排列的导带和

缝隙的组合可以产生圆极化辐射场。微带缝隙天线能产生所希望获得的极化,且对制造公差的敏感度比微带贴片天线要低。

3微带天线的激励方法

大多数微带天线在介质基片的一面上有辐射贴片,因此多采用微带馈电或同轴线馈电。因为天线输入阻抗通常不等于50传输线阻抗,所以需要匹配。匹配需要恰当选择馈电的位置,同时馈电的位置也会影响辐射特性。

图3.1 馈电模拟

3.1微带馈电

微带馈电分为中心微带馈电和偏心微带馈电。馈电点的位置将决定激励出哪种模式。如果天线的几何图形只维持主模,则微带馈电可偏向一边以得到良好匹配。如果场沿矩形贴片的宽度变化,则当馈线沿宽度移动时,输入阻抗随之改变,进而使馈线和天线之间的藕合发生改变,使天线谐振频率产生一个小的漂移,而辐射方向图仍保持不变,可以稍加改变贴片尺寸或天线尺寸,补偿谐振频率的漂移。

对于微带馈电,如图3.1(a)所示,利用惠更斯原理可以把馈源模拟成贴在磁壁上沿特定方向的电流带。在薄的微带线中,除了馈线的极邻近区域外,在贴片边界上的任何地方,这个电流都很小。在理想情况下,可视馈源是一定电流

的均匀电流带,以此来为天线提供激励。

3.2同轴线馈电

一般情况下,同轴线的外表插座安装在接地板(印刷电路板)的背面,而同轴线内导体接在天线导体上。对指定的天线模式,同轴馈电点的位置可由经验去找,以便产生最好的匹配。如图3.1(b)示,根据惠更斯原理,同轴馈电可以用一个由底面流向顶面的电流圆柱带来模拟。如果忽略磁流的贡献,并假定电流在圆柱上是均匀的,则可进一步简化。简化到最理想的情况是,取出电流圆柱,用一电流带代替,类似微带馈电的情况。该带可认为是圆柱的中心轴,沿宽度方向铺开并具有等效宽度的均匀电流带,对于给定馈电点和场模式,等效宽度可以根据计算与测量所得的阻抗轨迹由经验确定。

4矩形微带天线的分析方法

毫无疑问,最简单的微带贴片结构是矩形微带天线。其基本天线元是薄介质层上的矩形金属贴片,介质层背面是接地板。由于这种天线结构简单,因而成为大量研究论文的课题,并且多方努力预计和计算矩形微带天线的辐射特性参数(如方向图、方向性系数、效率、输入阻抗、极化和频带宽度等),这样就可以大大提高天线研制的质量和效率,降低研制成本。目前己经出现了许多分析微带天线的方法,如传输线法、腔模理论、格林函数法和数值计算法等。这些方法互相补充、各有长短,不同形状、不同配置的矩形微带天线都可以找到适当的方法进行理论分析,对于微带天线的设计和分析十分有利。

进行微带天线分析,就是对已经由设计指标设计得到的天线模型进行预测,预测它的辐射特性、各项参数是否满足要求,近、远场特性如何,通过分析,改进设计中的不足,减少边做边试的循环次数,因为矩形微带天线的自由度比较多,很多参数互相影响限制,盲目地、毫无根据地“乱试”只会造成时间、精力和财力上的大量耗费。必须弄清各种分析方法的优、缺点和局限性,在研究传统分析方法的基础上,不断了解最新的设计分析方法、改进方法以及各种新的天线机构,方能事半功倍。

4.1矢量位法

考虑矩形微带天线辐射的严格解。可用Sommerfeld提出的波传播模理论来

确定水平电偶极子产生的场,并用数值法求解天线的特性。如图4.1所示的微带

ε,厚度为h,微带上的电偶极子产生的场可用矢天线,基片的相对介电常数是

r

量位A来确定。

图4.1 矢量位法坐标系

为了满足空气介质分界面上的边界条件,A必须有x和z分量,这些分量满足非奇次亥姆霍兹方程:

式中:()r

δ-----狄拉克占函数

由式解出A后,可以求出电磁场:

因此只要找到矢量位A,就可以得到电磁场的解。由于A的严格解是从方程中解出来的严格解,写不出显明的表达式,分析结果并不令人满意,而且也很难对所得结果做出清楚的物理解释。

4.2并矢格林函数法

众所周知,知道并矢格林函数,任意源分布的场可由重积分求出。Alexopoulos 等人研究了印制在带地板的基片赫兹偶极子的并矢格林函数:

式中:

在一定假设下,贴片天线可认为是二维传输线。应用边界条件、麦克斯韦方程和连续性方程可求出电流密度分量X J 和Y J 。但和矢量位法的情况一样,这

种方法在数学上的计算也很麻烦,不易于分析。

4.3导线网模型

Agarwal 和Bailey 将微带辐射结构模拟成细导线构成的导线网,应用Richmond 反作用定理求得导线段上的电流,就可以得到天线的全部特性。虽然当线网够细时,此法可以得到很好的结果,但计算需要相当大的计算机存储量,提高了设计成本。

传输线模型

上述所有模型在预测微带天线辐射特性方面都不够完美,且计算量较大。Munson 和Derneryd 提出的传输线模型可以得出适合大多数工程应用的结果,并且需要的计算量不大。如图4所示此法的物理模型。假设:(1)微带贴片和接地板构成一段微带传输线,传输准TEM 波,波的传输方向决定于馈电点。线段长度/2m L λ≈,m λ为准TEM 波的波长。场在传输方向上是驻波分布,而在其垂直

方向(图中的宽度方向)上是常数。(2)传输线的两个开口端(始端和末端)等效为两个辐射缝,长为L ,宽为W ,缝口径场即为传输线开口端场强。缝平面看作位于微带贴片两端的延伸面上,即将开口面向上折转90

,而开口场强也随之折转。

由上述两条基本假设可以看出,当/2m L λ=时,两个缝隙上的切向电场均为

x 方向,且等幅同相,等效为磁流。由于接地板的作用,相当于有两倍磁流向上半空间辐射,缝上等效磁流密度为:

式中:V-----传输线开口端电压,V

4.2 传输线法物理模型

由于缝已放平,在计算上半空间辐射场时,就可按照自由空间处理,这

正是该法的方便之处。

图4.3微带天线等效电路

Y 图4.3是按照传输线法建立的微带天线等效电路。图(a)为微带馈电方式,

S 为缝隙辐射导纳,

Y为微带贴片特性导纳;图(b)为同轴馈电方式,探针从接地板

穿孔引出(称为“底馈”),该等效电路与图(a)的不同之处在于:(l)它在微带贴

片开口端馈电,激励源离始端距离

X。(2)探针本身要引入感抗,用P Y表示。

1

利用上述等效电路可以求出缝隙的辐射导纳,然后利用传输线公式变换得到输入导纳。当变换后的阻抗为实数时,表明天线发生了谐振,即可求得天线的谐振频率。

对于图4.3(a)的微带馈电方式,输入导纳为:

B 用等效伸长l ?表示:

式中:e ε-----传输线的等效介电常数,F/m

谐振时,2in Y G =,在式中令总电纳等于零,即可得到:

由上式便可求出丸或谐振频率。

传输线法简明、物理直观性强。但仍由于一些缺陷使其应用范围受到很大限制。(1)传输线模型限制它只能用于矩形微带天线及微带振子。(2)除了谐振点外,输入阻抗(导纳)随频率变化的曲线不准确。(3)缝导纳计算不准确,它的电纳部分通常按准静法计算,所得到的等效伸长在高频条件下不够准确。

4.4腔体模型

腔体模型分析是在微带谐振腔分析的基础上发展而来的。实际上,谐振式微带天线的形状和微带谐振腔并无显著区别。分析微带谐振腔的一般方法是:规定腔体的边界条件,找出腔中的一个主模,从而计算出谐振频率、品质因数和输入阻抗等。把这种方法移植到微带天线中来,称为“单模理论”。但是这种简单的方法也如传输线法一样,在一些情况下难以得到满意的结果。作为此法的改进,发展了“多模理论”。它把腔内场用无限正交模表示,因而可以比较准确的代表腔内场。该理论假设微带天线0h λ≤,在贴片的内层区将微带贴片与接地板之间

的空间看作四周是磁壁和上、下两面为电壁的腔体。天线中的场可假定为腔体的场,从而可求出辐射方向图、辐射功率和馈电点在任何位置的输入导纳。

腔体模型是对传输线法的发展,尤其是应用于计算介质厚度不超过介质波长

的百分之几的微带天线。腔体模型分析法可用于多种形状的贴片天线的理论分析,得到比较满意的结果,计算也不很复杂,因而为工程界广泛采用。

4.5积分方程法

传输线法和腔体模型,都没有考虑场在贴片垂直方向上的变化,对于大多数“薄”微带天线来说,这种简化不致引入较大的误差,但是对于“厚”微带天线,即介质层厚度与波长可比拟时,这种简化就不准确了。此外,上述方法对微带贴片的形状有要求,不符合规定形状就得不到解。与之相比,积分方程法除了不受这些限制外,还有如下特性:(l)准确性:积分方程法可以给出阻抗和辐射特性最精确的结果。(2)完整性:积分方程法对大多数效应的分析是完整的,包括介质、导体损耗、空间波辐射、表面波效应和单元间的互祸现象等。(3)通用性:积分方程法可用于分析任意形状的微带天线单元和阵列,各种类型的馈电技术,多层几何图形。(4)计算复杂性:积分方程法需要极大的计算量。因此此法虽然发展较晚,仍以其严格性和灵活性得到了国内外众多研究者的关注。

积分方程法通常先求出在特定边界条件下单位点源所产生的场,即源函数或格林函数,然后应用叠加原理,求得源函数和源分布的乘积,最后在源所在区域进行积分而得出总场。因为源通常未知,因而要先利用边界条件得出源分布后的积分方程,在解出源分布后再由积分算式来求出场。积分方程法的解是严格的解析解,可以借助计算机进行大量复杂繁琐的推导。直接以数值的、程序的形式代替微分或积分方程等解析形式,通常以差分代替微分,用有限求和代替积分,从而将问题化为求解差分方程或代数方程,利用数值结果解决问题。目前此法己经发展成为电磁领域独立的一门新型学科--一计算电磁学。

当前在计算电磁学中使用较多的方法主要有两大类,一类是以积分方程为基础的数值方法,如矩量法系列;另一类是以微分方程为基础的数值方法,如有限元系列。需要指出,积分方程和微分方程对同一天线问题的描述是可以互相转换的,并且,将两者混合用于同一问题的求解,可以发挥各自优势,效果很好。下面就介绍几种最普及的数值分析法。

4.5.1矩量法

矩量法(MoM)是一种将连续方程离散化为代数方程组的方法,此法对于求解微分方程和积分方程均适用。矩量法就是先将需要求解的微分方程或积分方程写

成带有微分或积分算符的算子方程;再将待求函数表示为某一组选用的基函数的线性组合并代入算子方程;最后用一组选定的权函数对所得的方程取矩量,就可以得到一个矩阵方程或代数方程组。接下来就是利用计算机进行大量的数值计算,包括矩阵的反演和数值积分等。

使用矩量法作为内核的商用电磁软件主要有Zeland的IE3D和Agilent

的ADS Momentum。

4.5.2有限元法

有限元法是以变分原理和剖分插值为基础的一种数值计算方法。它把整个求解区域划分为若干个单元,在每个单元内规定一个基函数。对于二维问题,可选取三角形、矩形等作为单元,其中以三角形适应性最广;对于三维问题,可选取四面体、六面体作为单元,可视具体问题灵活规定。这些基函数在各自的单元内解析,在其它区域内为零。通过规定每个单元中合适的基函数,就可在每个顶点得到一个基函数,分片解析函数通过这些单元间的公共顶点连接起来,拼成一个整体,代替全域解析函数,最后通过相应的代数等价化为代数方程求解。

有限元法具有强大的生命力和广阔的应用前景,主要因为:

(1)有限元法采用物理上离散与分片多项式插值,因此具有对材料、边界、激励的广泛适应性。

(2)有限元法基于变分原理,将数理方程求解变成代数方程组的求解,因此非常简易。

(3)有限元法采用矩阵形式和单元组装方法,其各环节易于标准化,程序通用性强,有较高的计算精度,便于编制程序和维护,适宜制成商业软件。

(4)国际学术界对有限元法的理论、计算技术以及各方面的应用做了大量的工作,许多问题均有现成的程序,可用的商业软件资源相对较多。

在有限元发展初期,其灵活性和通用性的优点及解题能力广受欢迎,取

得了巨大进展,可以说这一方法在包括天线分析在内的电磁领域及其它场科

学中都得到了一定应用与发展。但随着对有限元法的研究,特别是工程上实

际应用的深入,一些问题随之暴露:

(l)所解问题的复杂性和经费、时间以及计算机能力有限之间存在矛盾。有限元深入到诸如三维、组合、复合、瞬态、祸合、波动、无限域、非线性等领域,

所需单元数、内存与计算工作量浩大惊人,造成理论上有限元都能解决,实际上由于经费、计算机条件所限,在工程应用上又难以实现的状态。

(2)此法属于区域性解法,因此分割的元素和节点数较多,导致所需要的初始数据复杂、繁多,使用不便。

(3)有限元法产生的代数矩阵方程的条件数2

O h ,随着网格细分,单元尺

()

寸h变小,条件数变坏,最终导致计算结果很差。

(4)对于无限区域中的求解问题,由于其边界条件难以妥善处理,即使求得结果,其误差也较大。

使用有限元法作为内核的商用电磁仿真软件主要有Ansoft的HFSS和安世亚太的ANSYS。

4.5.3时域有限差分法

时域有限差分法 (FDTD)是求解电磁问题的一种数值技术,是在1966年由K.5.Yee第一次提出的。FDTD法直接将有限差分式代替麦克斯韦(Maxwell)旋度方程中的微分式,得到关于场分量的有限差分式,用具有相同电参量的空间网格去模拟被研究体,选取合适的场初值和计算空间的边界条件,进行求解。具体地讲,该方法在空间和时间上采用间隔半个步长的一种网格,通过跳跃式的步骤用前一时刻的电场或磁场值得到当前时刻的电场或磁场值,在一个时间步上用此过程计算整个空域,然后再进行下一个时间步的所有空域网格计算,进而得到整个空域随时间变化的电磁场值,通过傅立叶变换可得到三维空间的谱域解。

时域有限差分法使电磁领域的理论与计算从处理稳态问题发展到瞬态问题,从处理标量场问题发展到直接处理矢量场问题,这在电磁领域是个极有意义的重大发展。它简单直观,容易掌握,因此正在微带天线的分析和设计领域崭露头角。首先它从麦克斯韦方程出发,不需任何导出方程,避免了使多的数学工具,是电磁场计算方法中最简单的一种;其次它基于概括电磁场普遍规律的麦克斯韦方程,实质上是在计算机所能提供的离散数值时空中仿真再现电磁现象的物理过程,非常直观工。

使用时域有限差分法作为内核的商用电磁仿真软件主要有RECOM的CST。

5微带天线的小型化技术

近年来,移动通信业务发展迅速,手机、蓝牙等终端对天线的小型化和紧凑性都提出了较高的要求工,天线小型化技术得到了较快的发展。

天线的最大带宽和增益都取决于天线的尺寸,尺寸一旦减小,会使天线的效率下降,带宽变窄。通常的做法是使天线与馈线阻抗匹配,满足输入端驻波比的要求。但是这种做法需要匹配电路,不适合手机这种对天线尺寸、重量都有一定限制的设备。因此手机终端天线一般采用自谐振系统,即不需要阻抗匹配电路,使天线在谐振频率上输入阻抗呈纯电阻性,直接与馈线匹配。

天线的小型化是指减小微带天线的尺寸而保持其工作频率不发生变化。随着研究的不断深入和拓展,针对不同的小型天线(如线天线、平面倒F型天线、介质振荡器天线、缝隙天线、螺旋天线以及印刷微带天线等)都提出了多种不同的小型化方法。

5.1天线加载

对于一般的矩形微带天线,天线中的电流在一个开路端和另一个开路端之间形成驻波,因此两个开路端之间存在一条零电位线。如果在零电位线处对地短接,就可以形成开路到短路的驻波结构,形成谐振,这样天线的尺寸就可以减小一半。基于这样的思想,就可以用加载的方法实现这种对地的短接。

微带天线加载方法主要有短路加载和电阻加载两种。

对于短路加载,通常有两种方法:加载短路壁和加载短路销钉。

图 5.1(a)所示是加载短路壁的微带天线。视短路壁的宽度,可以分为加载短路面(长度等于辐射贴片侧面宽度)和加载短路片(长度小于辐射贴片侧面宽

结构的微带天线,度)两种,可根据具体情况予以选择。这种结构的天线是/4

相对于半波结构的矩形微带天线,加载短路壁会使矩形微带天线的长度减少一半,达到了小型化的目的。

图5.1微带天线短路加载示意图

在微带天线上加载短路销钉,通过与馈点接近的短路销钉在谐振空腔中引入

祸合电容以实现小型化,典型结构如图5.1(b )所示。天线的谐振频率主要取决于短路探针的粗细和位置,天线尺寸可缩减50%以上。其主要缺点是:(l)阻抗匹配极大地依赖于短路探针的位置及其与馈电点的距离,往往需要馈电点的精确定位和十分微小的距离,在制造公差上要求极高。(2)带宽较窄,不利于实现宽频。(3)H 面交叉极化电平相对较高。电阻加载就是将短路壁替换为低阻抗的切片电阻,在进一步降低谐振频率的同时还可以增加带宽。随加载电阻增大,天线总品质因数降低,带宽展宽,制造公差降低,但这些性能的提高是以牺牲增益为代价的。一般,加载1Ω切片电阻,增益下降约1.5dB 。加载切片电容也可以有效降低谐振频率,减小天线尺寸。

5.2采用高介电常数材料介质层

微带天线是一个半波辐射结构。矩形微带天线通常采用比较薄的介质基 片(h<

可知,天线谐振频率f λ与r ε成反比,因此对于固定的工作频率,可以采用r ε较大的高介电常数基片来降低f λ,从而减小天线尺寸。

图5.2是用于GPS 的接收机的圆极化切角微带天线图。图(a)和(b)采用不同介电常数的基片材料,天线工作频率同样是1575MHz 。图(a)采用的是普通微波介质材料r ε=3,h=1.524mm;图(b)所示天线采用的是陶瓷材料r ε=28.2,h=4.75mm 。

天线(b)采用比天线(a)更厚的介质层是为了保证有足、够的圆极化轴比带宽。

图5.2采用不同介电常数介质层的天线尺寸对比

可见,天线(b)的面积只有天线(a)的10%,这和式(3-l)计算的结果是一致的。因此,采用r ε=28.2的陶瓷材料代替r ε=3的普通微波材料,在固定的工作频

率上,天线的尺寸可以缩小90%。这类高介质天线的主要缺点是:(1)激励出较强的表面波,表面损耗较大,使天线的增益减小,效率降低。(2)天线带宽较窄,为提高增益,常在天线表面覆盖介质。如图5.3所示,天线下层是高介电常数介质,上层覆盖了介质,在实现小型化的同时得到了较高增益。

图5.3表面覆盖介质层图 图5.4表面开槽

5.3表面开槽

微带天线表面开槽技术,又称“曲流技术”,是通过表面开槽改变电流路径从而实现天线小型化的一种行之有效的方法,目前在微带天线小型化及圆极化中的应用最为广泛。微带天线表面开槽分为“辐射贴片开槽”和“接地板开槽”两种形式。贴片开槽技术简单来讲,就是在贴片表面开不同形式的槽或细缝,这些细缝切断了原先的表面电流路径,使电流绕槽边曲折流过而路径变长,在天线等效电路中相当于引入了级联电感。由于槽很窄,它可以模拟为在贴片中插入一无限薄的横向磁壁。选择适当的槽形及开槽位置,就可以降低天线的谐振频率,从而等效减小了天线的尺寸,实现小型化。如图5.4所示,在贴片表面开了四个L 形槽,降低了天线的谐振频率,天线尺寸比开槽之前减小了20%。

以矩形微带贴片天线为例,如图5.5所示为矩形贴片的非辐射边插入一U 形细缝后的贴片表面电流分布。可以看出,天线表面电流被有效的弯曲,固定尺寸的矩形贴片上电流路径的有效长度大大增加,天线谐振频率显著下降,天线尺寸大大减小。

图5.5贴片开槽后表面电流分布

“开槽”后天线的辐射机理可以参考微带缝隙天线来分析。不同的是,贴片天线的缝隙开在贴片上,而缝隙天线的缝隙是开在接地板上。缝隙天线的辐射场可以用电矢量位法计算,当缝宽比真空波长小很多时,可由推导出的公式求出E 面和H面上的方向图。

式中:

接地板开槽技术形式与贴片开槽无异,也是利用细缝改变电流路径,保持贴片形状不变,在接地板上开槽,可以引导贴片中的电流发生弯曲,增加电流路径的有效长度,降低谐振频率。同时,接地板开槽使微带天线的Q值有所降低,相应的带宽也会增加,本文将加载技术与表面开槽技术结合在一起使用,有效地实现了微带天线的小型化。将贴片表面适当开槽,同时加载适当长度的短路壁,得到了比较理想的谐振频率以及带宽,而且天线尺寸较小,满足实际需要。

5.4附加有源网络

缩小无源天线的尺寸,会导致辐射电阻减小,效率降低。可利用有源网给的放大作用及阻抗补偿技术弥补由于天线缩小引起的指标下降。有源天线具有以下良好特性:(l)工作频带宽。利用有源网络的高输出阻抗、低输入阻抗,可以使天

线带宽高低端频比达到20 30。(2)增益高,方向性好。(3)便于实现阻抗匹配。

(4)方便实现天线有关性能参数的电控(包括方向图、主波方向和前后辐射比等)。

(5)有源天线阵具有单元间弱互藕的潜在性能,而且有源天线还无需考虑噪声及非线性失真等问题。

6微带天线的多频技术

目前移动终端手机天线的多频技术的研究热点就是三频或多频手机天线。从实现双频或多频段工作的贴片结构以及基片等物理结构上来分类,实现多频工作可采用单片或双片两种方式。

采用单贴片:(l)利用几种不同的自然模式(矩形贴片如10TM 模和01TM 模)。

(2)通过加载或开槽的方法改变贴片各种自然模的场分布,进而使谐振频率受到干扰。这两种方法都可以实现双频或多频工作。

采用多贴片:(1)单层介质。利用谐振频率不同的贴片形成双谐振,或采用各个辐射单元构成多频点谐振。(2)利用多层重叠贴片结构形成多个谐振器,从而产生多频段工作特性;采用多层贴片重叠、各自馈电的贴片结构,形成双频段工作特性。

多贴片结构比较复杂,近来微带天线的发展方向是小型化,易集成。单贴片方法中,通过销钉加载或开槽改变贴片自然模场分布的方式,具有原理简单、易于实现的特点,应用极广。

实际设计的天线在实现多频的同时,一般都要综合采用其它技术来实现别的性能指标(如极化等),但结构比较复杂。本文从实现双频的角度,介绍两种常见的多频天线的实现方法。

6.1开槽加载

通过在贴片表面加载细而小的裂缝来改变电流分布,从而改变天线谐振的自然模,实现双频的目的。不同的贴片形状、不同的槽的形状(L 形,U 形,十字形,T 形等等)使得多频技术具有极大的发展空间。

如图6.1是一矩形微带天线结构图。主要参数如下(单位:mm ):介质层相对介电常数:r ε=2.65,高度h=1.6;方形贴片边长a=50;外围槽m n l l ?=10?3.4,

宽度1W =1;中间槽x y l l ?=10?3.4,宽度2W =0.5。

图6.1开槽加载结构图图 图6.2 谐振时回波损耗

在贴片上开了五个十字槽,其中外围的四个实现双频谐振,中间的十字槽用来实现圆极化,采取同轴馈电。图6.2给出谐振时的回波损耗,通过改变外围四个十字槽的长度,可以对频率和带宽进行调节。

6.2销钉加载

销钉加载也是比较常见的一种实现双频的方法。它占用面积小,实现方便,还能在一定程度上改善频带的宽度。

如图6.3是一结构比较简单的平面倒F 天线。主要参数如下(单位:mm):辐射贴片L ?W=48?25,高度h=10;细槽x y l l ?=1?20;短路壁宽度w=2;同轴探针及短路销钉位置分别为(1X 1Y ,)=(-20,10.5),(2X ,2Y )=(20,10.5);接地板80?60。

销钉和馈电圆柱对称分布,为了得到足够的频率衰减和拓宽频带,在天线的一边上加载了短路壁,并且在表面加载了一条细槽来降低谐振频率。如图6.4可见,由于销钉的作用,天线实现了双频工作。

图6.3销钉加载结构图 图6.4 谐振时回波损耗

基于HFSS矩形微带贴片天线的仿真设计报告

.. .. .. 矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验容:矩形微带天线仿真:工作频率7.55GHz 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pec Patch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pec Port -3.1125,-16,-0.05 2.49 ,0, 0.894 Rectangle Air -40,-40,-20 80,80,40 Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入0841,点击保存。 (2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。 二、建立微带天线模型 (1)、插入模型设计 (2)、重命名

输入0841 (3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05 修改名称为GND, 修改材料属性为 pec, (4)介质基片:点击,:x:-14.05,y:-16,z:0。dx: 28.1,dy: 32,dz: 0.794, 修 改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

实验七 微带贴片天线的设计与仿真

实验七微带贴片天线的设计与仿真 一、实验目的 1.设计一个微带贴片天线 2..查看并分析该微带贴片天线的 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 传输线模分析法求微带贴片天线的辐射原理如下图所示: 设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。 在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。 四、实验内容 利用HFSS软件设计一个右手圆极化天线,此天线通过微带结构实现。中心频率为2.45GHz,选用介质基片R04003,其介电常数为εr=2.38,厚度为h =5mm。最后得到反射系数和三维方向图的仿真结果。 五、实验步骤 1.建立新工程 了方便建立模型,在Tool>Options>HFSS Options中讲Duplicate Boundaries with geometry 复选框选中。 2.将求解类型设置为激励求解类型: (1)在菜单栏中点击HFSS>Solution Type。

实验一:微带天线的设计与仿真

实验一:微带天线的设计与仿真 一、实验步骤、仿真结果分析及优化 1、原理分析: 本微带天线采用矩形微带贴片来进行设计。 假设要设计一个在2.5GHz 附近工作的微带天线。我采用的介质基片, εr= 9.8, h=1.27mm 。理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。并且带宽相对较高。 由公式:2 /1212-?? ? ??+= r r f c W ε=25.82mm 贴片宽度经计算为25.82mm 。 2 /1121212 1-?? ? ?? +-+ += w h r r e εεε=8.889; ()()()()8.0/258.0264.0/3.0412.0+-++=?h w h w h l e e εε ?l=0.543mm ; 可以得到矩形贴片长度为: l f c L e r ?-= 22ε=18.08mm 馈电点距上边角的距离z 计算如下: ) 2( cos 2 ) (cos 2)(5010 22z R z G z Y e r in ?===λεπβ 2 20 90W R r λ= (0λ<

计算结果:在这类介质板上,2.5GHz 时候50Ω传输线的宽度为1.212mm 。 2、计算 基于ADS 系统的一个比较大的弱点:计算仿真速度慢。特别是在layout 下的速度令人 无法承受,所以先在sonnet 下来进行初步快速仿真。判断计算值是否能符合事实。 sonnet 中的仿真电路图如下: S11图象如下: 可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。主要的近似是下面公式引起 2 20 90W R r λ= (0λ<

矩形微带天线设计与分析

矩形微带天线设计与分析 万聪,沈诚诚, 王一平 2011级通信2、4班 沈诚诚:主要负责资料准备与整理 王一平:主要负责论文的格式与后期资料扩充 万聪:主要负责设计模型 三人共同学习hfss软件设计模型,共同参与讨论编写论文,发扬团结合作的精神,克服所遇到问题,完成好老师布置的作业。 摘要:微带天线以其体积小、重量轻、低剖面等独特的优点引起了相关领域的广泛重视,已经被广泛应用在1OOMHz—1OOGHz的宽广频域上的大量的无线电设备中。本文介绍了一种谐振频率为2.45GHz,天线输入阻抗为50Ω的使用同轴线馈电的矩形微带天线。本论文给出了详细的设计流程:根据理论经验公式初步计算出矩形微带天线的尺寸,然后在HFSS里建模仿真,根据仿真结果反复调整天线的尺寸,直到仿真结果中天线的中心频率不再偏离2.44GHz为止。微带天线固有的缺陷是窄带性,它的窄带性主要是受尺寸的影响,在不改变天线中心频率的前提下,通过理论经验公式与仿真软件的结合,给出了微带天线比较合理的尺寸。通过HFSS 13.0软件对该天线进行仿真、优化,最终得到最佳性能。 关键词:微带天线、谐振频率、HFSS

Abstract: the microstrip antenna has attracted wide attention from related fields with the advantages of small volume, light weight, low profile, unique, a lot of radio equipment has been widely applied in broad frequency range 1OOMHz - 1OOGHz of the. This paper introduces a 2.45GHz resonant frequency, input impedance of the antenna for the rectangular microstrip antenna using a 50 ohm coaxial feed. This paper gives a detailed design process: according to the theory of empirical formula calculated the size of rectangular microstrip antenna, then modeling and Simulation in HFSS, repeated adjustment according to the simulation results of the antenna size, until the simulation results in the center frequency antenna can not depart from the 2.44GHz to stop. The inherent defects of microstrip antenna is narrow, narrow band it is mainly affected by the size, in the premise of not changing the antenna center frequency, through a combination of theoretical formula and simulation software, the reasonable size of microstrip antenna. The antenna is simulated by HFSS 13 software, optimization, and ultimately get the best performance. Keywords: microstrip antenna, resonant frequency, HFSS

微带天线设计

08通信 陆静晔0828401034

微带天线设计 一、实验目的: ● 利用电磁软件Ansoft HFSS 设计一款微带天线 ? 微带天线的要求:工作频率为2.5GHz ,带宽(S11<-10dB )大于5%。 ● 在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、实验原理: 微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1-1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数包括辐射源的长度L 、辐射源的宽度W 、介质层的厚度h 、介质的相 对介电常数εr 和损耗正切tan δ、介质层的长度LG 和宽度WG 。图1-1 所示的微带贴片天线是采用微带线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线接头的内芯线穿过参考地和介质层 与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能。矩形贴片微带天线的工作主模式是TM 10模,意味着电场在长度L 方向上有λg /2的改变,而在宽度W 方向上保持不变,如图1-2(a )所示,在长度L 方向上可以看作成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘由于终端开路,所以电压值最大电流值最小。从图1-2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直分量大小相等、方向相反,平行电场分量大小相等、方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。 图1-1

微带天线仿真设计(5)讲解

太原理工大学现代科技学院 微波技术与天线课程设计 设计题目:微带天线仿真设计(5) 专业班级 学号 姓名 指导老师

专业班级 学号 姓名 成绩 设计题目:微带天线仿真设计(5) 一、设计目的: 通过仿真了解微带天线设计 二、设计原理: 1、微带天线的结构 微带天线是由一块厚度远小于波长的介质板(成为介质基片)和(用印刷电路或微波集成技术)覆盖在他的两面上的金属片构成的,其中完全覆盖介质板一片称为接触板,而尺寸可以和波长想比拟的另一片称为辐射元。 微带天线的馈电方式分为两种,如图所示。一种是侧面馈电,也就是馈电网络与辐射元刻制在同一表面;另一种是底馈,就是以同轴线的外导体直接与接地板相连,内导体穿过接地板和介质基片与辐射元相接。 微带天线的馈电 (a )侧馈 (b )底馈 2、微带天线的辐射原理 用传输线模分析法介绍矩形微带天线的辐射原理。矩形贴片天线如图: … …………… …… …… …… … …装 …… …… …… …… … …… …… …… 订… …… … …… …… …… …… …… … …线 …… …… …… …… … …… …… ……

设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。 经过查阅资料,可以知道微带天线的波瓣较宽,方向系数较低,这正是微带天线的缺点,除此之外,微带天线的缺点还有频带窄、损耗大、交叉极化大、单个微带天线的功率容量小等.在这个课设中,借助EDA仿真软件Ansoft HFSS进行设计和仿真。Ansoft公司推出的基于电磁场有限元方法(FEM)的分析微波工程问题的三维电磁仿真软件,Ansoft HFSS 以其无与伦比的仿真精度和可靠性,快捷的仿真速度,方便易用的操作界面,稳定成熟的自适应网格剖分技术,使其成为高频结构设计的首选工具和行业标准,并已广泛应用于航

900MHz同轴馈电矩形微带天线设计与HFSS仿真

900MHz 同轴馈电矩形微带天线设计与HFSS 仿真 微带天线它是在一块厚度远小于工作波长的介质基片的一面敷以金属辐射片、一面敷以金属薄层做接地板而成。辐射片可以根据不同的要求设计成各种形状。 微带天线馈电有多种馈电方式,如微带线馈电、同轴线馈电、耦合馈电和缝隙馈电等。其中,最常用的是微带线馈电和同轴线馈电两种馈电方式。 同轴线馈电又称背馈,它是将同轴插座安装在接地板上,同轴线内的导体穿过介质基片接在辐射贴片上。若寻取正确的馈电点位置,就可以获得良好的匹配。 1 矩形微带天线的特性参数 1.1 微带辐射贴片尺寸估算 设计微带天线的第一步是选择合适的介质基片,假设介质的介电常数为r ε,对于工作频率f 的矩形微带天线,可以用下式设计出高效率辐射贴片的宽度ω,即为: 2 1 )2 1(2-+=r f c εω(1) 式中,c 是光速,8 10*3=c 。 辐射贴片的长度一般取为 2 e λ,e λ是介质内的导波波长,即为: e e f c ελ= (2) 式中,e ε是有效介电常数,即为: 2 1 )121(2 1 2 1 -+-+ += ω εεεh r r e (3) 考虑到边缘缩短效应后,实际上的辐射单元长度L 应为: L f c L e ?-= 22ε(4) 式中,L ?是等效辐射缝隙长度,即为: ) 8.0)(258.0() 264.0)(3.0(412.0+-++=?h h h L e e ωεωε(5)

2. 同轴馈电矩形微带天线设计 在使用同轴馈电时,在阻抗匹配方面,在主模10TM 工作模式下,馈电点在矩形辐射贴片长度L 方向边缘处(x=±L/2)的输入阻抗最高,约为100Ω-400Ω。馈电点在宽度ω方向的位移对输入阻抗的影响很小。但在宽度方向上偏离中心位置时,会激发n TM 1模式,增加天线的交叉极化辐射。因此,宽度方向上馈电点的位置一般取在中心点。 由下式可以近似计算出输入阻抗为50Ω时的馈电点的位置: )1 1(2 1re L L ξ- = (6) 式中, 2 1 )121(21 2 1 )(-+-+ += L h L r r re εεξ(7) 3. 设计要求 使用HFSS 设计中心频率为915MHz 的矩形微带天线,并给出天线参数。介质基片采用厚度为1.6mm 的RF4环氧树脂板,天线馈电方式采用50Ω同轴线馈电。 x 图1 同轴馈电俯视图 天线初始尺寸的计算: 辐射贴片宽度:mm 77.99=ω 辐射贴片长度:mm L 89.77= 50Ω匹配点初始位置1L ,计算出初始位置后,然后再使用HFSS 的参数扫描分析和优化设计功能,分析给出50Ω匹配点的实际位置即可,mm L 91.191=。

(完整版)基于HFSS的微带天线设计毕业设计论文

烟台大学 毕业论文(设计) 基于HFSS的微带天线设计 Microstrip antenna design based on HFSS 申请学位:工学学士学位 院系:光电科学技术与信息学院

烟台大学毕业论文(设计)任务书院(系):光电信息科学技术学院

[摘要]天线作为无线收发系统的一部分,其性能对一个系统的整体性能有着重要影响。近年来内置天线在移动终端数量日益庞大的同时功能也日益强大,对天线的网络覆盖及小型化也有了更高的要求。由于不同的通信网络间的频段差异较大,所以怎样使天线能够覆盖多波段并且同时拥有足够小的尺寸是设计内置天线的主要问题。微带天线具有体积小,重量轻,剖面薄,易于加工等诸多优点,得到广泛的研究与应用。微带天线的带宽通常小于3%,在无线通信技术中,对天线的带宽有了更高的要求;而电路集成度提高,系统对天线的体积有了更高的要求。 随着技术的进步,在不同领域对于天线的各个要求越来越高,所以对微带天线的尺寸与性能的分析有着重要的作用。对此,本文使用HFSS 软件研究了微带天线的设计方法,论文介绍及分析了天线的基本概念和相关性能参数,重点对微带天线进行了研究。 本文介绍了微带天线的分析方法,并使用HFSS 软件的天线仿真功能,对简单的微带天线进行了仿真和分析。 [关键词] 微带天线设计分析HFSS [Abstract]Antenna as part of the wireless transceiver system, its performance important impact on the overall performance of a system. Internal antenna in recent years an increasingly large number of mobile terminals while also increasingly powerful, and also network coverage and miniaturization of the antenna Band differences between the different communication networks, cover band and also problem of the design built-in antenna. Microstrip antenna with small size, light weight, thin profile, easy to process many advantages, extensive research and application. Microstrip antenna bandwidth is typically less than 3% the bandwidth of the antenna in wireless communication technology; improve the integration of the circuit the size of the antenna. As technology advances in different areas for various requirements of the antenna important role. Article uses HFSS microstrip antenna design, the paper introduces and analyzes the basic concepts and performance parameters of the antenna, with emphasis on the microstrip antenna. This article describes the analysis of the microstrip antenna and antenna simulation in HFSS simulation and analysis functions, simple microstrip antenna. [Key Words]Microstrip antenna design analysis HFSS

天线CAD大作业微带天线设计

天线CAD大作业 学院:电子工程学院 专业:电子信息工程

微带天线设计 一、设计要求: (1)工作频带1.1-1.2GHz ,带内增益≥4.0dBi ,VSWR ≤2:1。微波基板介电常数为r ε = 6,厚度H ≤5mm ,线极化。总结设计思路和过程,给出具体的天线结构参数和仿真结果,如VSWR 、方向图等。 (2)拓展要求:检索文献,学习并理解微带天线实现圆极化的方法,尝试将上述天线设计成左旋圆极化天线,并给出轴比计算结果。 二、设计步骤 计算天线几何尺寸 微带天线的基板介电常数为r ε= 6,厚度为 h=5mm,中心频率为 f=1.15GHz,s m /103c 8?=天线使用50Ω同轴线馈电,线极化,则 (1)辐射切片的宽度2 1 )2 1(2-+=r f c w ε=69.72mm (2)有效介电常数2 1)12 1(2 1 2 1 r e - +-+ += w h r εεε=5.33 (3)辐射缝隙的长度) 8.0/)(258.0() 264.0/)(3.0(h 412.0+-++=?h w e h w e L εε=2.20 (4)辐射切片的长度L e f c L ?-=22ε=52.10mm (5)同轴线馈电的位置L1 21 )121(21 2 1)(re - +-++= L h r r L εεξ=5.20 )1 1(21re L L ξ-= =14.63mm 三、HFSS 设计 (1)微带天线建模概述 为了方便建模和后续的性能分析,在设计中定义一系列变量来表示微带天线的结构尺寸,变量的定义及天线的结构尺寸总结如下:

微带天线的HFSS设计模型如下: 立体图俯视图 模型的中心位于坐标原点,辐射切片的长度方向沿着x轴,宽度方向沿着y 轴。介质基片的大小是辐射切片的2倍,参考地和辐射切片使用理想导体来代替。对于馈电所用的50Ω同轴线,这用圆柱体模型来模拟。使用半径为0.6mm、坐标为(L1,0,0);圆柱体顶部与辐射切片相接,底部与参考地相接,及其高度使用变量H表示;在与圆柱体相接的参考地面上需要挖一个半径为1.5mm的圆孔,作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口归一化阻抗为50Ω。模型建立好后,设置辐射边界条件。辐射边界表面距离辐射源通常需要大于1/4波长,1.15GHz时自由空间中1/4个波长约为65.22mm,用变量length 表示。 (2) HFSS设计环境概述 *求解类型:模式驱动求解。 *建模操作 ①模型原型:长方体、圆柱体、矩形面、圆面。 ②模型操作:相减操作 *边界条件和激励 ①边界条件:理想导体边界、辐射边界。 ②端口激励:集总端口激励。 *求解设置:

矩形微带天线设计

班级: 姓名: 学号: 指导教师:徐维 成绩: 电子与信息工程学院 信息与通信工程系

1微带天线简介 微带天线的概念首先是有Deschaps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期造出了实际的微带天线。微带天线由于具有质量轻、体积小,易于制造等优点,现今已经广泛应用于个人无线通信中。 假设矩形贴片的有效长度设为L e ,则有 L e =λg /2 式中,λg 表示导波波长,有 λg =λ0/ε 式中,λ0表示自由空间波长;εe 表示有效介电常数,且 εe =21)121(2121-+-++w h εε 式中,εr 表示介质的相对介电常数;h 表示介质厚度;w 表示微带贴片的宽度。 因此,可计算出矩形贴片的实际长度L ,有 L=L e -2ΔL=λ0/e ε-2ΔL=2102-e f c εΔL 式中,c 表示真空中的光速;f 0表示天线的工作频率;ΔL 表示等效的辐射缝隙的长度,且有 ΔL=0.412h ()()()() 8.0264.0258.03.0++-+h W h W εε 矩形贴片的宽度W 可以由下式计算, W=21 2102-??? ??+εf c 对于同轴线馈电的微带贴片天线,在确定了贴片长度L 和宽度W 之后,还需要确定同轴线馈点的位置,馈点的位置会影响天线的输入阻抗。在微波应用中通常是使用50Ω的标准阻抗,因此需要确定馈点的位置使天线的输入阻抗等于50Ω.对于如图所示的同轴线馈电的微带贴片天线,坐标原点位于贴片的中心以(x f ,y f )表示馈点的位置坐标。

对于TM 10模式,在W 方向上的电场强度不变,因此理论上的W 方向上的任一点都可以作为馈点,为了避免激发TM 1n 模式,在W 方向上的馈点的位置一般取在中心点,即 y f =0 在L 方向上电场有λg /2的改变,因此在长度L 方向上,从中心点到两侧,阻抗逐渐变大;输入阻抗等于50Ω时的馈点可以由下式计算, x f =) (2L L ξ 式中, )121(2121 21)(l h L +--++=εεξ 上述分析都是基于参考地平面是无限大的基础上的,然而实际设计中,参考地都是有限面积的,理论分析证明来了当参考地平面比微带贴片大出6h 的距离时,计算结果就可以达到足够的准确,因此设计中参考地的长度L GND 和宽度W GND 只需要满足以下条件即可, L GND ≥L+6h W GND ≥W+6h 2设计指标和天线结构参数计算 我这次设计的矩形微带天线工作于ISM 频段,其中心频率为 2.45GHz ;无线局域网(WLAN )、蓝牙、ZigBee 的无线网络均可以工作在该频段上。选用的介质板材为Rogers R04003,其相对介电常数εr =3.38,厚度h=5mm ;天线使用同轴线馈电。微带天线的三个关键参数如下:工作频率f 0=2.45GHz ;介质板材的相对介电常数εr =3.38;介质厚到h=5mm 。 1.矩形贴片的宽度W 把c=3.0×108 m/s ,f0=2.45GHz ,εr =3.38带入,可以计算出微带天线矩形贴片的宽度,即 W=0.0414m=41.4mm

HFSS矩形微带贴片天线的仿真设计报告

基于HFSS矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验内容:矩形微带天线仿真:工作频率 天线结构尺寸如表所示: 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File?save as,输入Antenna,点击保存。 (2).设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK (3)、设置模型单位:3D Modeler>Units 选择mm,点击OK (4)、菜单栏Tools>>Options>>Modeler Options, 勾选” Edit properties of new pri ” ,点击OK 二、建立微带天线模型 (1)点击三仓U 建GND,起始点:x:0 ,y:0 ,z: ,dx:,dy:32,dz:

(2) 介质基片:点击 :比,:x:0, y:0 , z:0。dx: , dy: 32 , dz:-, 修改名称为Sub,修改 材料属性为 Rogers RT/Duriod 5880,修改颜色为绿色 点击OK (3) 建立天线模型patch , 点击^已,x:,y: 8, z:0 ,dx: ,dy: 16 ,dz: 命名为patch ,点击OK (4) 建立天线模型微带线 MSLine 点击’硏,x:,y: 0, ,z: 0 , dx: ,dy: 8 ,dz:, 命名为MSLine,材料pec,透明度 选中 Patch 和 MSLine,点击 Modeler>Boolean>Unite (5) 、建立端口。创建供设置端口用的矩形,该矩形连接馈线与地 Modeler>Grid Plane>XZ ,或者设置回厂刁冈 习 点击 e ,创建Port 。命名为port 双击 Port 下方 CreatRectangle 输入:起始点:x: ,y: 0,z:-,尺寸:dx: ,dy: 0 ,dz: (6) 、创建 Air 。 点击1 ,x:-5 ,y:-5 ,z:, dx:, dy:42, dz: 修改名字为Air ,透明度. 三、设置边界条件和端口激励。 (1)设置理想金属边界:选择 GND 右击Assign Boundaries>>Pefect E 将理想边界命名为:PerfE_GND ,点击OK (2)、设置边界条件:选择 Port ,点击 Assign Boundaries>>Pefect E 在对话框中将其命名为 PerfE_Patch ,点击0K ,透明度。 修改名称为GND,修改材料属性为pec ,

用ADS设计微带天线

用ADS 设计微带天线 一、原理 本微带天线采用矩形微带贴片来进行设计。 假设要设计一个在2.5GHz 附近工作的微带天线。我采用的介质基片, εr= 9.8, h=1.27mm 。理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。并且带宽相对较高。 由公式:2 /1212-? ? ? ??+=r r f c W ε=25.82mm 贴片宽度经计算为25.82mm 。 2 /1121212 1-?? ? ?? +-+ += w h r r e εεε=8.889; ()()()()8.0/258.0264.0/3.0412.0+-++=?h w h w h l e e εε ?l=0.543mm ; 可以得到矩形贴片长度为: l f c L e r ?-= 22ε=18.08mm 馈电点距上边角的距离z 计算如下: ) 2( cos 2 ) (cos 2)(5010 2 2z R z G z Y e r in ?===λεπβ 2 20 90W R r λ= (0λ<

计算结果:在这类介质板上,2.5GHz时候50Ω传输线的宽度为1.212mm。 二、计算 基于ADS系统的一个比较大的弱点:计算仿真速度慢。特别是在layout下的速度令人无法承受,所以先在sonnet下来进行初步快速仿真。判断计算值是否能符合事实。 sonnet中的仿真电路图如下:

S11图象如下: 可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。主要的近似是下面公式引起 2 20 90W R r λ= (0λ<

矩形微带天线

一.微带天线简介 微带天线的概念首先是有Deschaps于1953年提出来的,经过20年左右的发展,Munson和Howell于20世纪70年代初期造出了实际的微带天线。微带天线由于具有质量轻、体积小,易于制造等优点,现今已经广泛应用于个人无线通信中。 上图是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介点常数ε和损耗正切tanδ、介质的长度LG和宽度WG。图中所示的天线是采用微带线来馈电的,本次我要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线接头的内芯线穿过参考地和介质层与辐射元相连接。 对于矩形贴片微带天线,理论分析时采用传输线模型来分析其性能。矩形贴片微

带天线的工作模式是TM 10模,意味着电场在长度L 方向上有λg /2的改变,而在 宽度W 方向上保持不变,如图所示,在长度方向上可以看成有两个终端开路的缝隙辐射出电磁能量,在宽度方向的边缘由于终端开路,所以电压值最大电流值最小。从图中可以看出微带线边缘的电场可以分解成垂直参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等、方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。 假设矩形贴片的有效长度设为L e ,则有 L e =λg /2 式中,λg 表示导波波长,有 λg =λ0/ε 式中,λ0表示自由空间波长;εe 表示有效介电常数,且 εe =21)121(2121-+-++w h εε 式中,εr 表示介质的相对介电常数;h 表示介质厚度;w 表示微带贴片的宽度。 因此,可计算出矩形贴片的实际长度L ,有 L=L e -2ΔL=λ0/e ε-2ΔL= 2102-e f c εΔL 式中,c 表示真空中的光速;f 0表示 ΔL 表示等效的辐射缝隙的长度,且有 ΔL=0.412h ()()()() 8.0264.0258.03.0++-+h W h W εε 矩形贴片的宽度W 可以由下式计算, W=21 2102-??? ??+εf c 对于同轴线馈电的微带贴片天线,在确定了贴片长度L 和宽度W 之后,还需要确定同轴线馈点的位置,馈点的位置会影响天线的输入阻抗。在微波应用中通常是使用50Ω的标准阻抗,因此需要确定馈点的位置使天线的输入阻抗等于50Ω. 对于如图所示的同轴线馈电的微带贴片天线,坐标原点位于贴片的中心以 (x f ,y f )表示馈点的位置坐标。

微带天线课程设计报告

课程设计报告 课设名称:微波技术与天线课设题目:微带天线仿真设计课设地点:跨越机房 专业班级:学号: 学生姓名: 指导教师: 2012年 6 月23 日

一、设计要求: 矩形贴片是微带贴片天线最基本的模型,本设计就是基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上,设计一个右手圆极化矩形贴片天线,其工作频率为2.45GHz,分析其远区辐射场特性以及S曲线。 矩形贴片天线示意图 二、设计目的: 1.理解和掌握微带天线的设计原理 2.选定微带天线的参数:工作频率、介质基片厚度、贴片模型及馈电点位置 3.创建工程并根据设计尺寸参数指标绘制微带天线HFSS模型 4.保存工程后设定边界条件、求解扫描频率,生成S参数曲线和方向图 5.观察对比不同尺寸参数的微带天线的仿真结果,并分析它们对性能的影响 三、实验原理: 用传输线模分析法介绍它的辐射原理。。 设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。 在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L

矩形微带贴片天线设计及仿真

《现代电子电路》课程设计题目矩形微带天线的设计与仿真 单位(院、系):信息工程学院 学科专业: 电子与通信工程 学号:416114410159 姓名:曾永安 时间:2011.4.25

矩形微带天线的设计与仿真 学科专业:电子与通信工程学号:416114410159 姓名:曾永安指导老师:吴毅强 摘要:本文介绍了一种谢振频率为2.45GHz,天线输入阻抗为50Ω的使用同轴线馈电的矩形微带天线。通过HFSS V10软件对该天线进行仿真、优化,最终得到最佳性能。 关键词:HFSS,微带线,天线

Design and Simulation of Rectangular Microstrip Antenna Abstract:This paper introduces a rectangular microstrip antenna which works at resonance frequency of 2.45GHz and antenna input impedance of 50Ω and is fed by coaxial cable. The model of the antenna is set up a nd simulated by ANSOFT HFSS V10 ,and the optimal parameters of the microstrip antenna are obtained as well. Key words:HFSS,Microstrip,Antenna

1.引言 微带天线的概念首先是由Deschamps于1953年提出来的,经过20多年的发展,Munson和Howell于20世纪70年代初期制造了实际的微带天线。微带天线结构简单,体积小,能与载体共形, 能和有源器件、电路等集成为统一的整体,已被大量应用于100MHz~100GHz宽频域上的无线电设备中, 特别是在飞行器和地面便携式设备中得到了广泛应用。微带天线的特征是: 比通常的微波天线有更多的物理参数, 可以有任意的几何形状和尺寸;能够提供50Ω输入阻抗,不需要匹配电路或变换器;比较容易精确制造, 可重复性较好;可通过耦合馈电, 天线和RF电路不需要物理连接;较易将发射和接收信号频段分开;辐射方向图具有各向同性。本文设计的矩形微带天线工作于ISM频段,其中心频率为2.45GHz;无线局域网、蓝牙、ZigBee等无线网络均可工作在该频段上。选用的介质板材为Rogers R04003,其相对介电常数εr=3.38,厚度h=5mm;天线使用同轴线馈电。 2.微带贴片天线理论分析 图1是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介电常数 r和损耗角正切tanδ、介质层的长度LG和宽度WG。图1所示的微带贴片天线采用微带线馈电,本文将要设计的矩形微带天线采用的是同轴线馈电,也就是将同轴线街头的内芯线穿过参考点和介质层与辐射元相连接。 图1 微带天线的结构

基于ADS的微带缝隙天线的仿真设计

课程设计说明书 题目:基于ADS的微带缝隙天线的仿真设计 学院(系): 年级专业: 学号: 学生姓名: 指导教师: 教师职称:

基于ADS的微带缝隙天线的仿真设计 摘要:通信系统的发展带来了天线行业的勃勃生机,在众多的天线类型中微带天线已成为当前研究的前沿之一,具有广阔的前景与实用意义。特别是微带缝隙天线,以其重量轻、剖面薄、平面结构且易与载体共形,馈电网络可与天线结构一起制成等优点已经引起天线工作者的广泛关注。本文就设计一个中心频率工作为880MHz,相对带宽为B=5%,介质板厚度h=1.6mm,损耗角正切tanδ=0.0018,介电常数为Er=2.3的微带缝隙天线展开研究以及仿真和优化。 关键词:ADS;微带缝隙天线;仿真设计; Design of microstrip slot antenna based on ADS simulation Abstract: Communication system development has brought the antenna the vitality of the industry, in many types of antenna microstrip antenna has become one of the forefront of current research, has broad prospects and practical significance. Microstrip slot antenna, in particular, with its light weight, thin section, flat structure and easy with conformal carrier, feeding the advantages of network can be made with the antenna structure has caused extensive concern of antenna workers. In this paper, the design of a work center frequency is 880 MHZ, relative bandwidth is B = 5%, medium plate thickness h = 1.6 mm, loss tangent tan delta = 0.0018, the dielectric constant of Er = 2.3 microstrip slot antenna study and simulation and optimization. Key words: ADS; Microstrip slot antenna. The simulation design; 学习目的 1. 学习射频电路的理论知识;

微带天线仿真设计

… 设计一、微带天线仿真设计 三角形贴片是微带贴片天线最基本的模型,本设计就是基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上,设计一个三角形贴片天线,其工作频率为,分析其远区辐射场特性以及S曲线。 一.设计目的与要求 1.理解和掌握微带天线的设计原理 2.选定微带天线的参数:工作频率、介质基片厚度、贴片模型及馈电点位置 3.创建工程并根据设计尺寸参数指标绘制微带天线HFSS模型 4.保存工程后设定边界条件、求解扫描频率,生成S参数曲线和方向图 5.观察对比不同尺寸参数的微带天线的仿真结果,并分析它们对性能的影响— 二.实验原理 如下图所示,用传输线模分析法介绍它的辐射原理。。 设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。 在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。

矩形贴片天线示意图 三.贴片天线仿真步骤 1、建立新的工程 】 运行HFSS,点击菜单栏中的Project>Insert HFSS Dessign,建立一个新的工程。 2、设置求解类型 (1)在菜单栏中点击HFSS>Solution Type。 (2)在弹出的Solution Type窗口中 (a)选择Driven Modal。 (b)点击OK按钮。 3. 设置模型单位 将创建模型中的单位设置为毫米。 《 (1)在菜单栏中点击3D Modeler>Units。 (2)设置模型单位: (a)在设置单位窗口中选择:mm。 (b)点击OK按钮。 4、创建微带天线模型 (1)创建地板GroundPlane。坐标:X:-45,Y:-45,Z:0按回车键。在坐标输入栏中输入长、宽:dX:90,dY:90,dZ:0。 (2)为GroundPlane设置理想金属边界。在3D模型窗口中将3D模型以合适的大小显示(可以用Ctrl+D来操作)。

相关主题
文本预览
相关文档 最新文档