当前位置:文档之家› Sn掺杂ZnO纳米阵列的水热合成(DOC)

Sn掺杂ZnO纳米阵列的水热合成(DOC)

Sn掺杂ZnO纳米阵列的水热合成(DOC)
Sn掺杂ZnO纳米阵列的水热合成(DOC)

Sn掺杂ZnO纳米阵列的水热合成摘要:以ZnCl2和NaOH为原料,用SnCl4·4H2O作掺杂剂,通过水热

法合成了Sn掺杂ZnO纳米颗粒。利用X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、紫外-可见吸收光谱(UV-Vis)及光致发光(PL)光谱等测试技术对样品的物相、形貌及光学性能进行了表征。结果表明:制得的Sn掺杂ZnO纳米粒子具有六角纤锌矿结构。随着锡掺杂浓度的增大,纳米晶的平均粒度增加,晶体形貌由短棒状向单锥和双锥状变;提高前驱液的pH值,所得样品的形貌由长柱状向短柱状转变。室温下,观测到三个光致发光带,一个峰值在433 nm处的强紫光发射峰,一个约在401 nm处的近紫外发光峰及一个在466nm处的弱蓝光发光峰。在实验掺杂浓度范围内,Sn的掺杂致使改变纳米ZnO的发光强度,对发光峰位置影响不大。

关键词:ZnO纳米晶;水热合成; Sn掺杂;光学性能

Hydrothermal synthesis of Sn doped

ZnO nano array

Abstract:Sn-doped ZnO nanocrystals were synthesized by the hydrothermal method using ZnCl2 and NaOH as rawmaterials at 200e for 5 h. The dopant source of tin was SnCl4·4H2O and the atomic percent age of dopant in the solution were n(Sn):n(Zn) = 1% and 2% respectively. The phase composition, morphology,size as well as optica lproperties of the sampls have been characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy

(FE-SEM), UV-Visible absorption and photo lum in escence (PL) spectra. The effects of the Sn doping concentration and the pH value of the precursor solution on the surface morphology and optical properties of the samples have also been studied. The experimental results indicate that the obtained Sn-doped ZnO nanocrystals are of hexagonalw urtzite structure. The average grain size of the samples increases and the surface morphology goes from short rod-like to single cone-like and double cone-like with the increase ofSn concentration. In addition, the surfacemorphology of the samples can also be affected by the basicity of the precursor solution. Since it changes from long rod-like (for pH 7. 0) to short rod-like (forpH 12.

0). There was aUV absorption peak from theUV-visible absorption spectra which have a red-shift with the increase of Sn concentration. Three photoluminescence bands, including a strong purple emission at 433 nm, a lef-t shoulder nearUV band emission around 401 nm aswell as a weak blue emission at 466 nm were observed at room temperature. The intensities of the emission peaks increased with the increase of Sn concentration. Compared with that of undoped ZnO nanocrysta,l only the intensities of emission peaks are changed, but the peak positions are almost not changed in the Sn doping concentration rang of our experiments.

Key words:ZnO nanocrysta;l hydrothermal synthesis; Sn-doping; optical properties

目录

一.引言 (1)

二. 实验 (2)

2.1样品的制备 (2)

2.1样品的表征 (2)

三. 结果与讨论 (3)

3. 1 X射线衍射(XRD)分析 (3)

3.2 形貌分析 (5)

3.3 紫外可见吸收光谱和光致发光分析 (6)

四. 结论 (9)

参考文献 (10)

致谢 (13)

一.引言

ZnO是一种II-VI族直接带隙宽禁带半导体材料,具有六角纤锌矿型晶体结构,在室温下的禁带宽度为3.37eV,激子束缚能为60 meV,有望制备出蓝光及紫外光电器件[1~4]。另外它还具有很好的导电、导热和化学稳定性及良好的紫外吸收性能,在传感器[5]、声表面波和太阳能电池[6]等方面有较好的应用前景。为进一步研究和开发ZnO材料的功能,人们在制备ZnO材料的过程中,开始掺杂一些其它元素,掺杂后的ZnO不仅形貌会发生一定的改变,而且其磁学、电学和光学等方面的性质也会产生较大变化[7]。目前关于ZnO掺杂的研究主要集中在透明导电薄膜的制备上,通过掺杂Al、In、Sn、N等元素[7~11]来提高ZnO薄膜的性能,以获得高质量的ZnO薄膜,而对Sn掺杂ZnO纳米晶制备及性能方面的研究较少。本文通过水热法成功制备出Sn掺杂ZnO纳米晶,探讨了不同Sn掺杂浓度及前驱液pH值对ZnO纳米晶形貌和光学性能的影响

二.实验

2.1样品的制备

所用试剂均为分析纯且在使用时未作进一步提纯,实验用水为自制去离子水。固定每次所配混合溶液的Zn2+浓度为0. 5 mol/L。称取计算量的ZnCl2和SnCl4·5H2O与去离子水配成n(Sn4+)Bn(Zn2+)=1:100, 2:100的混合溶液,在溶解过程中,滴入几滴盐酸。取10 mL配制的上述溶液于烧杯中,加入35 mL去离子水,在50℃恒温水浴和磁力搅拌条件下缓慢滴加2 mol/L氢氧化钠至溶液pH值约为9. 0(前驱液),继续搅拌陈化0. 5 h,然后超声分散10 min后立即移入聚四氟乙烯衬里的反应釜,填充度为80%。把反应釜放入预先升温至200℃的烘箱中保温5h,之后将反应釜取出让其自然冷却到室温。将得到的沉淀物离心分离,用去离子水洗涤数次,无水乙醇洗涤2次,洗去氯离子等杂质,在60℃下恒温干燥12 h得到试样粉末。用氢氧化钠调节前驱液的pH值分别为7.0和12.0按上述步骤重复实验。

2.1样品的表征

样品的XRD物相分析在BRUKER D8 AD-V ANCE X射线衍射仪上进行(Cu靶KAK=0. 154 06 nm)。用JEOL JSM-6700F场发射扫描电镜观察样品的形貌和大小。采用760 CRT双光束紫外分光光度计测试产物的紫外-可见吸收性能。样品的室温光致发光(PL)光谱在970CRT荧光光谱仪(激发光源为Xe灯)上以337 nm作为激发波长进行测定。

三.结果与讨论

3. 1 X射线衍射(XRD)分析

图1为水热法制备的所有样品的粉末XRD图谱,图1(a)的样品是在保持前驱液的pH值均为9.0,改变Sn的掺杂浓度制得的,图1(b)的样品是在保持Sn的掺杂浓度均为1%,改变前驱液的pH值制得的。由图1可见,所有样品的XRD图谱的衍射峰均与体相ZnO的XRD标准图谱(JCPDS cardNo. 36-1451)一致,说明所有样品均具有六角纤锌矿结构,另外,除ZnO的衍射峰外,没有其它物质的衍射峰出现,即在实验掺杂浓度范围内, Sn的掺杂没有带来新的物相结构,表明掺杂的Sn固溶到ZnO晶格中。由图1(a)可以看出, Sn掺杂浓度为1%时所得样品衍射峰的强度比Sn掺杂浓度为2%时的高,说明前者比后者的晶体结构更完整,这是因为掺杂剂Sn以Sn4+的形式扩散到ZnO晶格形成固溶体的过程中,会产生晶格缺陷,掺杂浓度越高,缺陷越多,导致结晶度降低,晶格结构越不完整。同样由图1(b)可以看出,前驱液的pH值为7.0时,所得样品的衍射峰的强度最高,晶体结构最完整,这可能是因为pH值越大,实际进入ZnO晶格Sn4+浓度越高,造成的晶格缺陷越多所致。

图1 ZnO样品的XRD图谱(a)不同Sn掺杂浓度(b)不同pH值

3.2 形貌分析

图2是不同Sn掺杂浓度和不同前驱液pH值条件下制备的ZnO 样品的场发射扫描电镜照片[12]。图2(a)、(b)、(c)分别对应在固定Sn掺杂浓度为1%,改变前驱液的pH值分别为7. 0、9. 0和12. 0所制备的样品,图2(d)是前驱液pH值为9.0, Sn掺杂浓度为2%时制备的ZnO样品的FE-SEM照片。由图2(a)可以看出在前驱液pH值为7.0制得的ZnO样品为棒状,粒径分布比较均匀,棒的边界清晰、光滑。纳米棒直径约为30~60 nm,长约100~150 nm,长径比可达到5,其形貌多为六棱柱状。随着前驱液pH值增大,所得样品的形貌变为短柱状,长度在50~100 nm,并且生成了许多不规则粒状产品,如图2(b)、(c)所示。比较图2(b)与图2(d)可以看出,当Sn掺杂浓度由1%增加到2%时,样品的平均粒度增大,开始出现了部分粒径约为100 nm的单锥和双锥状ZnO微晶。ZnO属于六方晶系, Zn按照六方紧密堆积,每个Zn2+周围有四个氧原子,构成[ZnO4]6-负离子配位四面体,四面体之间以顶角相互连结构成ZnO 极性晶体,正极面富锌,负极面富氧。水热法制备的ZnO晶粒,结晶形貌通常呈六方柱,晶粒的形状与生长溶液的碱度密切相关,随着前驱液pH值增大,晶粒形貌由长柱状变为短柱状,显示了极性晶体生长习性[13, 14]

由于Sn4+和Zn2+的离子半径相近

(r

Sn4+=0.071nm,r

Zn2+

=0nm), Sn4+易进入ZnO的晶格取代Zn2+,其反应

机理为[15]:

SnO

2(s)→Sn

Zn

+2O

+V

Zn

(1)

在上述反应中一个Sn4+进入到ZnO的晶格,取代一个Zn2+并产生一个Zn空位。按照生长基元理论,在水热条件下,ZnO晶体的生

]2-,带负电。长基元是由一个Zn2+和四个OH-构成的四面体[Zn(OH)

4

当Sn4+取代了正极面的Zn2+后,正极面的正电性进一步增强,对生长基元的吸引力加大,正极面生长速度加快更容易消失,负极面的生长速度慢容易显露,在结晶形貌上表现为六棱锥状晶体。

图2不同前驱液pH值及不同Sn掺杂浓度所生长ZnO样

品的SEM 图

3.3 紫外可见吸收光谱和光致发光分析

室温下,将一定量所制备的Sn掺杂ZnO纳米粉末超声分散在无水乙醇中,用紫外分光光度计测得样品的紫外-可见吸收光谱如图3所示。

图中曲线a、曲线b对应的Sn掺杂浓度分别为1%和2%的样品。由图3可知,两种掺杂浓度下的ZnO样品分别在365, 373 nm 处产生最大紫外吸收,与体相纯ZnO材料的吸收峰(373 nm)相比, 1% Sn掺杂浓度样品的最大吸收峰位置产生图3 不同Sn掺杂浓度ZnO纳米晶的紫外-可见吸收光谱了一定蓝移,这是因为Sn掺杂浓度为1%使所得样品的粒径较小,量子尺寸效应明显,导致带隙变宽,能量增大。另外,由图3可以看出随着Sn掺杂浓度的增加样品的吸光强度降低。我们认为这可能是随着掺杂浓度的增加一方面使ZnO表面缺陷增多,另一方面使晶体粒径分布不均匀,出现部分粒度较大锥状晶体,样品比表面积减小、分散性变差,因而导致吸光强度降低。

图3不同Sn掺杂浓度ZnO纳米晶的紫外-可见吸收光谱

Sn掺杂ZnO纳米粉的光致发光谱是在室温下,用激发波长为

337 nm的Xe灯作激发光源测得的[16]。如图4所示,其中谱线(a)是同样条件下制得的未掺杂ZnO纳米粉的光致发光谱线,谱线(b)对应1% Sn掺杂浓度的样品,谱线(c)是2%Sn掺杂浓度样品的光致发光谱[17]。由谱线(a)清楚可见,未掺杂ZnO纳米粉的光致发光谱中有三个发光峰,一个很强的位于401 nm的近紫外发射峰,另外在433 nm附近有一个右肩部紫光发射峰,在466 nm处还有一个较弱的蓝光发射峰,这些发光峰的位置与文献[18 ]、[19]得到的结果很相近。由谱线(b)、(c)可以看出,经Sn掺杂后的ZnO样品,发光峰的位置没有大的变化,只是在433 nm右肩部的紫光发射峰的强度增加, 401 nm附近的发射峰强度降低而成为左肩部, 466 nm附近的蓝光发射峰依然存在[20],而且这些发光峰的强度随着掺杂浓度的增大而增加。目前,人们对紫外发光机理的认识已非常清楚,它是由ZnO 的近带边跃迁产生的,即激子复合发光[21],对在433nm附近的紫光发射峰和在466 nm处蓝光发射峰发光机理目前还没有统一认识,尚需进一步研究。

图4 不同Sn掺杂浓度ZnO纳米晶的光致发光谱

四.结论

以ZnCl2和SnCl4·4H2O为原料,采用水热法,在200e的水热条件下,反应5 h,制得了具有六角纤锌矿结构的Sn掺杂ZnO纳米晶。随着掺杂浓度的增大,纳米晶的平均粒度增加,晶体形貌由短棒状向单锥和双锥状转变,提高前驱液的pH值,所得样品的形貌由长柱状向短柱状转变。在实验掺杂浓度范围内, Sn的掺杂只是改变纳米ZnO的发光强度,对发光峰位置影响不大。

参考文献

[1] LiY, MengGW, Zhang L D,etal.Ordered semiconductorZnO nanowire arrays and their photolum inescence properties [J].Appl. Phys. Lett., 2000,76(15): 2011-2013.

[2]Jiao Shu jie, Lu Youming, Shen Dezhen,et al.n-ZnO/-iMgO/p-GaN hetero junction light-emitting diodes [J].Chin. J. Lumin. (发光学报), 2006,27(4): 499-502 ( in Chinese).

[3] Wei Zhipeng, Wu Chunxia, LuYouming,etal.MgxZn1-xO alloy grown by P-MBE and opticalproperties of MgZnO/ZnO hetrostructure [J].Chin. J. Lumin. (发光学报), 2006,27(5): 831-833 ( in Chinese).

[4] Zhang Zhenzhong, Wei Zhipen, Lu Youming,et al.p-type ZnO and ZnO p-n homojuncetion LED by using aclivated N2 doping [J].Chin. J. Lumin. (发光学报), 2006,27(6): 1026-1028 ( in Chinese).

[5] Rodriguez JA, Jirsak T, Dvorak J. Reaction ofNO2with Zn and ZnO: Photoemission, XANES, and density functional studies on the formation ofNO3[J].J. Phys. Chem.B, 2000,104(2): 319-328.

[6] KeisK, VayssieresL, LindquistS E,etal.Nanostructured ZnO electrodes forphotovoltaic applications [J].Nanostruct. Mater., 1999,12(1-4): 487-490.

[7] Kim H, Gilmore C M, Horwitz J S,et al.Transparent conducting aluminum-doped zinc oxide thin films organic lightemitting devices [J].Appl. Phys. Lett., 2000,76(3): 259-261.

[8] 彭寿, 孙玉明, 施朝淑, 等. [ J] . 中国科学( A 辑) , 2001, 31( 4) : 358 365.

[9] SrikantV, SergoV, Larke D R. Epitaxial aluminum-doped zinc oxide thin films on sapphire: Defect equilibria and electrical properties [J].J. Am. Ceram. Soc., 1995,78(7): 1935-1941.

[10] Kim K J, ParkY R. Large and abruptopticalband gap variation in In-doped ZnO [J].Appl. Phys. Lett., 2001,78(4): 475-479.

[11] BougrineA, Hichou A E, AddouM,et al.Structura,l optical and cathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis [J].Mater. Chem. Phys.,2003,80(2): 438-445.

[12] Bian JM, LiXM, GaoX D,et al.Deposition and electrical properties ofN-In codoped p-type ZnO films by ultrasonic spray pyrolysis [J].Appl. Phys. Lett.,2004,84(4): 541-543.

[13] 彭寿, 孙玉明, 施朝淑, 等. [ J] . 红外与毫米波学报, 2002, 21: 91 96.

[14] ZhongW Z, Liu G Z, ShiEW,et al.Growth units and formation mechanism of crystals under hydrothermal conditions [J].Science in ChinaB (中国科学,B辑), 1994,24(4): 349-356 ( in Chinese).

[15] ZhongW Z, LuoH S, Wang B G,et al.The crystal habits and form action mechanism of polar crystal [J].Chin. J. Struct. Chem. (结构化学), 1997,16(2): 106-112 ( in Chinese).

[16] Li SY, Lin P, Lee C Y,et al.EffectofSn dopanton the properties ofZnO nanowires [J].J. Phys.D:Appl. Phys.,2004,37(16): 2274-2282.

[17] 艳红, 王德军, 肇启东, 等. [ J] . 高等学校化学学报, 2005, 26( 5) : 942 944.

[18] 书霞, 张兴堂, 张慧玲, 等. [ J] . 无机化学学报, 2006,

22( 4) : 724 728.

[19] Wang JM, Gao L. Synthesis of uniform rod-like, mult-i pod-like ZnO whiskers and their photoluminescence properties[J]. Cryst. Growth,2004,262(1-4): 290-294.

[20] NiYH, WeiXW, Hong JM,etal.Hydrothermalpreparation and opticalproperties ofZnO nanorods [J].Mater. Sci. Eng.B, 2005,121(1-2): 42-47.

[21] Kong Y C, Yu D P, Zhang B,et al.Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach [J]. Appl. Phys. Lett.,2001,78(4): 407-4091

致谢

本文是云老师的指导下完成的。感谢云老师在百忙之中对我的多次指导关怀,在课题试验过程中及论文撰写过程中,老师给予很大帮助。每次遇到困难,老师都能伸出援助之手,特别让感动的是老师在论文修改过程中,不辞劳苦、认真细致对论文进行了审阅和大量的修改,使本人能够顺利的完成论文,作者非常感激。无论是课题研究上、还是做人做事上,本人都从老师们那儿学习了很多,在此深表感谢!

感谢在课题及论文完成过程中给予过帮助的老师、同学和朋友,你们无私关心和帮助,是本人完成课题的动力,作者在此致深深的谢意!

纳米氧化锌制备法

氧化锌制备工艺 2008-06-04 12:21阅读(4)评 论(0) D0208、氧化锌制备工艺(本技术资料含国家发明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺 流程等,全套价格26 0元) (氧化锌*制备氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途 7、超声波-微波联合法

从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌22、改性的超细氧化锌

及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法 39、纳米氧化锌材料的

水热法制备纳米材料

实验名称:水热法制备纳米TiO2 水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。在水热条件下可以使反应得以实现。在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。 水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 一.实验目的 1.了解水热法的基本概念及特点。 2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。 3.熟悉XRD操作及纳米材料表征。 4.通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。 水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。 三.实验器材 实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。 实验试剂:无水TiCl4;蒸馏水;无水乙醇。 四.实验过程 1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。 2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。

ZnO纳米棒阵列生长机理及光催化 性能研究

Material Sciences 材料科学, 2018, 8(5), 482-489 Published Online May 2018 in Hans. https://www.doczj.com/doc/ba15574077.html,/journal/ms https://https://www.doczj.com/doc/ba15574077.html,/10.12677/ms.2018.85054 Growth Mechanism and Photocatalytic Performance of ZnO Nanorod Arrays Chunwei Liu, Yang Wan, Shenghai Zhuo, Sha Luo* College of Material Science and Engineering, Northeast Forestry University, Harbin Heilongjiang Received: Apr. 22nd, 2018; accepted: May 9th, 2018; published: May 16th, 2018 Abstract Well-defined ordered ZnO nanorod arrays were successfully prepared on activated carbon fibers by combining sol-gel with a hydrothermal method. The growth mechanism was proposed by SEM, XRD and N2 physisorption. Concentration of zinc acetate had a regulatory effect on the morphology of ZnO nanorods. ZnO films provided the nucleus for oriented growth of nanorods, promoting its preferential growth along the c-axis direction of activated carbon fibers. The photocatalytic tests showed the catalytic performance of ZnO nanorod arrays/activated carbon fibers was influenced obviously by zinc acetate. When the Zn(CH3COO)2 concentration was 0.15 mol?L?1, its removal effi-ciency of methylene blue reached 90% during 120 min. After five regeneration cycles, its photo-catalytic efficiency remained 82%. Keywords Zinc Oxide, Nanorod Array, Activated Carbon Fiber, Growth Mechanism, Photocatalysis ZnO纳米棒阵列生长机理及光催化 性能研究 刘春闱,万阳,卓盛海,罗沙* 东北林业大学材料科学与工程学院,黑龙江哈尔滨 收稿日期:2018年4月22日;录用日期:2018年5月9日;发布日期:2018年5月16日 *通讯作者。

纳米线制备

模板法: 按模板材料可分为碳纳米管模板法、多孔氧化铝模板法、聚合物膜模板法和生命分子模板法。其中聚合物模板法廉价易得。模板法的模板主要有两种:一种是径迹蚀刻聚合物膜,如聚碳酸脂膜,另一种是多孔阳极氧化铝膜,两者相比,氧化铝模板具有较好的化学稳定性、热稳定性和绝缘性,其余还有介孔沸石法、多孔玻璃、多孔Si 模板、MCM-41、金属、生物分子模板、碳纳米光模板等聚碳酸脂膜(聚合物)模板法:聚碳酸脂膜模板是所有聚合物膜模板中使用最广的一种,C.Schonenoberge等以不同规格不同厂家的聚碳酸酯过滤膜为模板,用电化学沉积的方法成功涤制备出了不同直径的Ni、Co、Cu和Au纳米线。 多孔氧化铝模板:采用该方法时,多孔氧化铝模板只是作为模具使用,纳米材料仍需要常规的化学反应来制备,如电化学沉积、化学镀、溶胶-凝胶沉积、化学 气相沉积等方法。多孔阳极氧化铝模板(AAO: porous anodic aluminum oxide)是典型的自组织生长的纳米结构的多孔材料,微孔直径大约在10~500nm之间, 密度为二丄1「「个/諾之间,阳极氧化法制备的有序多孔氧化铝模板的孔径大小一致,排列有序,呈均匀分布的六方密排柱状。通常孔径在20?250nm范围内,孔间距在5?500nm范围内。目前大部分究主要局限在以草酸为电解液的中孔径模板的制备和研究中。这是由于在草酸电解液中制得的模板较厚、孔径均一、大 小适中。膜厚可达100卩m以上。 当然模板法中这些只是作为模具使用,具体的纳米材料仍需要一些其它的方法来得到,常用的有电化学沉积、化学气相沉积法(CVD)化学聚合、溶胶-凝胶沉积等电化学沉积:电沉积方法主要分为三步,1、阳极氧化铝模板的制备及孔径的调节; 2、对氧化铝模板及阻挡层的径蚀,释放出有序的纳米线阵列,再经后续处理得到所需的纳米材料,开发出各种纳米器件。电沉积法只能制备导电材料纳米线,如金属、合金、半导体、导电高分子等。 按照电源不同分为直流沉积、交流沉积、循环伏安法沉积、脉冲电沉积。Al 在阳极氧化的过程中,表面生成由致密阻挡层和多孔外层组成的氧化铝膜,极薄的阻挡层具有半导体的特性,在沉积之前要先从铝基底上将多孔薄膜剥离,通孔,通过离子喷射或热蒸发等在模板表面涂上一层金属薄膜作为电镀阴极。该方法比 较复杂,也有研究者试图不将薄膜从铝基底上剥离,采用磷酸腐蚀致密层薄膜,但是该方法同时使多孔膜变薄,不易控制,也影响了纳米线的纵横比。 交流电沉积方法工艺简单可行,且不需要将模板和铝基底分离,通过控制电流、电压、频率、时间等参数,可合成各种纳米线有序阵列,其缺点是只能在孔中组装单一的金属或合金,当前对于交流沉积时,电流是如何通过阻挡层还没有定论。交流电沉积过程中的阳极电压作用至关重要! 循环伏安法、脉冲电流法:Sun等采用该法,制备了长径比达500的Ag纳米线阵列,Kim采用脉冲电化学沉积法首次利用Ti涂层解决了AAO膜的阻挡层去除问题,并得到了Si基底上的Pd纳米线阵列。 交流电沉积没有滞留点沉积得到的排列有序且易堆叠,。AAO模板与循环伏安法相结合,被证实是一种制备形状与尺寸可控的有序金属或半导体自支持纳米线阵列结构的有效方法。与直流电沉积相比,脉冲电沉积具有高度可靠性,可补偿纳米孔区域内离子扩散输运动力的不足。 国内学者近几年来在这方面做的工作也较多,于冬亮等人分别在AAO 模板中采

纳米氧化锌的制备、表面改性及应用

纳米氧化锌的制备、表面改性及应用 纳米氧化锌是一种面向21世纪的新型高功能精细无机产品,其粒径介于1~100纳米,又称为超微细氧化锌。由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米氧化锌产生了其本体块状材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。因而,纳米氧化锌在磁、光、电、化学、物理学、敏感性等方面具有一般氧化锌产品无法比拟的特殊性能和新用途,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前景。本文将对本公司生产的纳米氧化锌从制备方法、性能表征、表面改性以及目前所开发的应用领域方面进行较为详细的介绍。 一、纳米氧化锌的制备 氧化锌的制备方法分为三类:即直接法(亦称美国法)、间接法(亦称法国法)和湿化学法。目前许多市售氧化锌多为直接法或间接法产品,粒度为微米级,比表面积较小,这些性质大大制约了它们的应用领域及其在制品中的性能。我公司采用湿化学法(NPP-法)制备纳米级超细活性氧化锌,可用各种含锌物料为原料,采用酸浸浸出锌,经过多次净化除去原料中的杂质,然后沉淀获得碱式碳酸锌,最后焙解获得纳米氧化锌。与以往的制备纳米级超细氧化锌工艺技术相比,该新工艺具有以下技术方面的创新之处: 1.平衡条件下反应动力学原理与强化的传热技术结合,迅速完成碱式碳酸锌的焙解。 2.通过工艺参数的调整,可以制备不同纯度、粒度及颜色的各种型号的纳米氧化锌产品。 3.本工艺可以利用多种含锌物料为原料,将其转化为高附加值产品。 4.典型绿色化工工艺,属于环境友好过程。 二、纳米氧化锌的性能表征 纳米级氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。与传统氧化锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。 清华大学分析测试中心用透射电镜对产品进行了分析,纳米氧化锌粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。经ST-A表面和孔径测定仪测试,纳米氧化锌粉体的BET比表面积在35m2/g以上。此外,通过调整制备工艺参数,还可以生产出棒状纳米氧化锌。本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米氧化锌,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。 三、纳米氧化锌的表面改性 由于纳米氧化锌具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米氧化锌表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。因此对纳米氧化锌粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。 所谓纳米分散是指采用各种原理、方法和手段在特定的液体介质(如水)中,将干燥纳米粒子构成的各种形态的团聚体还原成一次粒子并使其稳定、均匀分布于介质中的技术。纳米粉体的表面改性则是在纳米分散技术基础上的扩展和延伸,即根据应用场合的需要,在已分散的纳米粒子表面包覆一层适当物质的薄膜或使纳米粒子分散在某种可溶性固相载体中。经过表面改性的纳米干粉体,其吸附、润湿、分散等一系列表面性质都会发生变化,一般可以自动或极易分散在特定的介质中,因此使用非常方便。一般来讲,纳米粒子的改性方法有三种:1.在粒子表面均匀包覆一层其他物质的膜,从而使粒子表面性质发生变化;2.利用电荷转移络合体(如硅烷、钛酸酯等偶联剂以及硬脂酸、有机硅等)作表面改性剂对纳米粒子表面进行化学吸附或化学反应;3.利用电晕放电、紫外线、等离子、放射线等高能量手段对纳米粒子表面进行改性。

水热法制备纳米材料3

水热法制备ZnO纳米棒 10092629 朱晓清 10092632 蒋桢 一、实验目的: 1、掌握水热合成方法。 2、掌握晶体分析方法。 二、实验原理: 压强是高压釜内填充度、温度的函数,提高压强会提高成核速率,有利于粉体的产生,粉体粒径较小。根据公式(1) P 1 V=nRT (1) P 2=P (2) P=P 1+P 2 =nRT/V+P (3) 式中:P 1 ——T温度时高压釜内空气的压强; P 2 ——T温度时高压釜内水的压强; P——T温度时高压釜内的总压强; P ——T温度时水的饱和蒸汽压; V——高压釜内气体体积。 可以看出在一定的水热温度下,压强的大小依赖于反应器中的原始溶剂的填充度。反应釜内的压强随填充度增大而升高。 ZnO纳米棒的形成过程可以分为两个阶段:第一阶段是成核阶段,第二阶段是生长阶段。具体的形成过程可以用下列反应式表示: Zn2++2OH-→Zn(OH) 2 (4) (CH 2) 6 N 4 +10H 2 O → 6HCHO + 4NH 3 ·H 2 O (5) NH 3·H 2 O ?NH4++OH- (6) Zn2++4NH 3→Zn(NH 3 ) 4 2+ (7) Zn(OH) 2→ZnO+H 2 O (8) Zn(OH) 42-→ZnO+ H 2 O+2OH- (9) 当将氢氧化钠滴入含有Zn2+的水溶液中,边滴入边搅拌,溶液变浑浊,这是由于有Zn(OH) 2 白色胶体生成(见反应式4),同时六次甲基四胺水解产生的氨水

(见反应式5),作为螯合剂通过和Zn2+结合而形成胺化合物Zn(NH 3) 4 2+(见反应式 7),而溶液中生成的Zn(OH) 4 2-为这个过程提供了条件,在这种溶液环境下,一 部分的Zn(OH) 2 胶体分解成Zn2+和OH-,当Zn2+和OH-的浓度大到超过某个临界值时,就会有大量的ZnO 晶核形成,那么最终的晶体生长过程就开始了(见反应式8和9)。 方法一(首选) 三、实验仪器和试剂: 1、仪器:超声清洗机,烧杯,水热合成反应釜,鼓风干燥箱,XRD衍射仪,扫描电子显微镜,紫外可见分光光度计。 2、试剂:铜衬底,丙酮,无水乙醇(C 2H 5 OH,分析纯),去离子水,硫酸锌(ZnSO 4 ·7H 2 O, 分析纯),氢氧化钠(NaOH,分析纯),六次甲基四胺(又名HMTA,C 6H 12 N 4 ,分 析纯)。 四、实验步骤: 1、铜衬底的清洗 清洗的目的是为了去掉衬底表面的油渍、脏物和表面杂质等,使其表面光亮平滑,避免杂质及缺陷在纳米棒生长过程中对纳米棒的形貌产生影响。具体的清洗过程如下: (1)将大小约为1cm×1cm 的铜衬底放入盛有乙醇的烧杯中,在超声仪中超声 10 分钟。 (2)取出衬底片,放入丙酮中超声10 分钟。 (3)取出衬底片,放入乙醇中超声10 分钟。 (4)最后再用去离子水超声一次,并经流动的去离子水反复冲洗后,用洗耳球 小气流吹干。 2、在铜衬底上制备ZnO纳米棒步骤: 将0.0056 mol硫酸锌溶于35 mL 去离子水中配制成溶液,同时按Zn2 +与OH-摩尔比值1:8将0.056 mol氢氧化钠溶于35 mL去离子水中;在磁力搅拌条件下,将氢氧化钠溶液逐滴滴加到硫酸锌的溶液中; 持续搅拌10 min 后,将0.50 g六次甲基四胺加入到上述溶液中并持续磁力搅拌10 min; 然后将混合溶液转移到内衬为聚四氟乙烯的反应釜中,将第一步中清洗的铜衬底垂直放置(如图1所示)。

水热合成法制备纳米氧化锌粉

第37卷第4期 人 工 晶 体 学 报 V o.l 37 N o .4 2008年8月 J OURNA L OF SYNTHET I C CRY STAL S A ugust ,2008 水热合成法制备纳米氧化锌粉 王艳香,孙 健,范学运,余 熙 (景德镇陶瓷学院,景德镇333001) 摘要:采用水热法合成了氧化锌纳米棒,研究了不同合成条件对Zn O 纳米晶的影响。采用碱式碳酸锌作为前驱体, 水为水热介质,可获得氧化锌纳米棒,水热时间的延长和水热温度的提高都使氧化锌纳米棒的长径比减小,其紫外 发射光和近红外发射强度增大。当在体系中加入聚乙二醇时,可获得片状氧化锌结晶。当以0.5m o l/L 的碳酸钠 水溶液为水热介质,可得到长径比超过20,直径为500n m 左右分散均匀的纳米氧化锌棒。以氢氧化锌为前驱体, 也能得到氧化锌纳米棒,其长径比为15左右。 关键词:水热合成;氧化锌;纳米棒 中图分类号:O 753 文献标识码:A 文章编号:1000-985X (2008)04-0866-06 H ydrotherm al Synthesis of N ano m eter Z i nc Oxi de WANG Yan-x iang,SUN J i a n,FAN X ue -yun,YU X i (Ji ngdez hen C era m i c I n stitute ,J i ngdez h en 333001,Ch i na) (R eceive d 8October 2007,acce p te d 14February 2008) Abst ract :Zinc ox ide nanorods w ere prepared by using hydro t h er m a l synthesis m ethod .The effect o f synthesis cond itions on t h e properties o f nano m eter ZnO w as studied .ZnO nanorods were obta i n ed w hen usi n g Zn 4CO 3(OH )6#H 2O and H 2O as precursor and hydrother m alm edia .Leng th -dia m eter ratio o fZnO nanor ods decreases and UV e m ission and near -i n frared e m issi o n i n tensities increase w ith the i n creasi n g o f hydrother m a l ti m e and te m perature .ZnO nanosheets w ere ach iev i n g w hen using Zn 4C O 3(OH )6#H 2O and PEG as precursor and hydrother m a l m edia .ZnO nanorods w ith leng t h -d ia m eter ratio o f 20and dia m eters of ~500nm w ere prepared by using 0.5m o l/L N a 2C O 3as hydrother m alm ed i a .ZnO nanorods w it h length -d ia m eter ratio 15can a lso be obta i n ed by usi n g Zn(OH )2as precurso r . K ey w ords :hydr o ther m al synthesis ;zinc ox i d e ;nanorods 收稿日期:2007-10-08;修订日期:2008-02-14 基金项目:江西省教育厅2006年度科技计划项目(N o .赣教技字[2006]206号) 作者简介:王艳香(1972-),女,河北省人,博士,副教授,硕士生导师。E-m ai:l yxw ang72@163.co m 1 引 言 氧化锌是一种用途十分广泛的功能材料,已被用于气敏、压敏、催化、抗菌等重要领域。ZnO 纳米材料,具有普通ZnO 材料所无法比拟的特性和用途,在陶瓷、电子、光学、化工、生物、医药等许多领域展现出特殊的用途。ZnO 纳米薄膜和一维ZnO 纳米结构在紫外探测器、发光二极管、激光二极管等领域显示出极大的发展潜力,已成为材料领域的研究前沿[1-4] 。尤其是近年来有关一维ZnO 纳米结构的形貌与紫外激光的研究,更是受到了人们的极大关注。一维氧化锌结构(纳米棒、纳米线、纳米带、纳米管等)的湿化学合成主要

水热法合成纳米氧化锌

水热法合成纳米氧化锌 一、引言 二、实验部分 2.1实验仪器 集热恒温磁力搅拌器山东鄄城永兴仪器厂2(加搅拌子2) X射线衍射仪(DX-2000型)丹东方圆仪器有限公 司 1 光学显微镜 1 恒温干燥箱 1 聚四氟乙烯高压反应釜编号100-25、100-44 2 马弗炉 1 量筒(50ml) 1 烧杯3个100ml、2个150ml 坩埚 1 玻璃棒 1 培养皿 2 抽滤瓶 1 载玻片 2 2.2实验药品 草酸天津市元立化工有限公司分析纯氢氧化钠天津市福晨化学试剂厂分析纯 硝酸锌天津市天大化工试剂厂分析纯 氨水天津市元立化工有限公司25% 无水乙醇天津市风船化学试剂有限公司分析纯

去离子水 2.3实验内容 2.3.1水热合成纳米氧化锌 称取8.9482gZn(NO3).6H2O固体溶解于20ml去离子水中,在充分搅拌条件下缓慢滴加2 5%的浓氨水,至生成的沉淀恰好消失为止( p H≈10 ),得到前驱体溶液(其浓度认为等于Zn的浓度)。将上述溶液转移到聚四氟乙烯内胆的高压釜中,保持其填充度为80%。在180℃下反应3h后,自然冷却至室温。抽滤并收集白色沉淀,然后用去离子水反复冲洗以除去吸附的多余离子,于90℃烘箱中干燥以备表征。 2.3.2草酸高温合成纳米氧化锌 称取3.111gZn(NO3).6H2O溶解于20ml去离子水,在充分搅拌情况下缓慢滴加滴加草酸溶液(1~2d每秒为宜),使之沉淀完毕,搅拌0.5h,进行抽滤,用去离子水和无水乙醇洗涤,放入90℃烘箱干燥2h,然后高温700℃灼烧2h。 2.3.3在玻璃基体上生长纳米氧化锌阵列 (1)晶种层的制备 载玻片衬底先后在稀氢氟酸、氢氧化钠溶液、去离子水和无水酒精中超声清洗,然后放入烘箱中烘干备用。 Z n O种子液配制如下:制备等量的0.001mol/L和0.002mol/L的硝酸锌溶液,于磁力搅拌下分别缓慢滴加稀氨水,直至沉淀消失,在60℃水浴30min获得均匀澄清溶液采用浸渍提拉法在清洁衬底上涂敷Z n O凝胶膜:浸人种子液的浸渍时间为1 min,提拉速度0 .8 5 m m/s,8 0℃烘箱烘干,重复以上操作3次,最后将涂有薄膜的衬底进行热处理5 5 0℃,保温 1.5h 。最终获得晶种膜。 (2)水溶液生长 一定量的硝酸锌和氨水( 2 5 %) 加入去离子水中。配制20ml的生长液。搅拌均匀并密封,锌浓度范围为0.001mol/L。氨水和硝酸锌的物质的量的比为4:1至11:1,将有晶种层的衬底放人装有生长液的密封反应釜中。于9 0℃水浴中保持6h。硝酸溶液( p H = 0.4 ) 和氨水(2 5 %) 被用来进行生长液p H值( 8.2~9.8) 的原位二次调整。最后合成的薄膜用去离子水清洗,空气中晾干。 三、结果与讨论 3.1纳米氧化锌的XRD表征谱图 两组纳米氧化锌粉末进行XRD测试,设置扫描范围20°~70°,扫描速度0.1,铜靶波长1.54184?。两者对照谱图如下:

ZnO纳米阵列合成

ZnO纳米阵列的水热合成 摘要 水热合成技术是指在特制的密封反应器(高压釜)中,以水溶液作为反应体系,通过对反应体系的加热至或接近其临界温度而产生高压,从而进行无机材料的合成与制备的一种有效方法“吲。该方法可使一些在常温常压下反应速率很慢的热力学反应在水热条件下实现反应快速化。在水热条件下,水既作为溶剂又作为矿化剂,在液态或气态还是传递压力的媒介,同时由于在高压下绝大多数反应物均能部分溶解于水从而促使反应在液相或气相中进行。水热反应有水热氧化、热沉淀、水热合成、水热还原、水热分解、水热结晶等类型。水热反应法为各种前驱物的反应和结晶提供了一个在常压条件下无法得到的、特殊的物理和化学环境。水热反应的温度一般在100—400。C,压力从大于0.1Mpa直至几十到几百Mpa。与其它粉体制备方法相比,水热合成纳米材料的纯度高、晶粒发育好,避免了因高温煅烧和球磨等后续处理引起的杂质和结构缺陷。水热法的原料成本相对较低,所得纳米颗粒纯度高,分散性好,晶型好,且大小可控,因而水热合成法是制备纳米氧化物的好的方法之一. 关键词: 目录 1、绪论

ZnO 属于带隙较宽( 室温下3. 37eV) 的半导体材料, 由于本征缺陷的存在, 使得ZnO 往往具有的N 型导电性。与其它传统半导体材料如Si、GaAS、CdS、GaN 等相比, ZnO 具有高的激子束缚能( 高达60meV,远大于GaN 的21~ 25meV) 、高的击穿强度和饱和电子迁移速率, 可用作高温、高能、高速电子器件。另外,ZnO 还具有热电效应和化学传感特性, 在传感器领域有重要的应用。纳米级氧化锌由于粒子尺寸小, 比表面积大, 具有表面效应、量子尺寸效应和小尺寸效应等, 与普通氧化锌相比, 表现出许多特殊的性质, 如无毒和非迁移性、压电性、吸收和散射紫外线能力。这一新的物质形态,赋予了氧化锌在科技领域许多新的用途。目前来说, 制备ZnO 纳米结构的工艺方法很多,如物理气相沉积法、化学气相沉积法、溶胶凝胶法, 分子束外延法、热蒸发法、阳极氧化铝模板法、水热法等等。这些方法制备的ZnO 纳米材料具有非常丰富的结构形貌, 如ZnO 纳米线、纳米带、纳米环、纳米梳, 四脚状纳米ZnO 结构等等。相对而言, 化学溶液方法比较简单。水热法是一种制备氧化物的湿化学方法。水热法又称高温溶液法, 是指在特制的密闭反应器( 高压釜) 中, 采用水溶液作为反应体系, 通过对反应体系加热,在反应体系中产生一个高温高压的环境进行无机合成与材料制备的一种有效方法。在水热法中, 由于水处于高温高压状态, 在反应中具有传媒剂作用; 另一方面, 高压下绝大多数反应物均能完全( 或部分) 溶解于水, 从而加快反应的进行。近年来, 由于其相对于其它方法具有能耗低、适用性广、可控性强、产率高、物相均匀、纯度高、结晶良好以及环境污染小等优点, 引起了人们越来越广泛的关注。在本文中, 我们采用ZnCl2 溶液和浓氨水( 25%) ,利用一种简单的水热法合成了

纳米线的制备方法

纳米线的制备方法 与零维量子点相比,纳米线具有阵列结构因此有更大的表面或体积比,尤其是他们所具有的直线电子传输特性,十分有利于光能的吸收和光生载流子的快速转移,由此使得这类准一维纳米结构更适宜制作高效率太阳电池(Si纳米线太阳电池)。《TiO2纳米线和ZnO纳米线则主要用于染料敏化太阳电池的光阳极制作》。 Si纳米线的生长方法: 迄今为止,已采用各种方法制备了具有不同直径、长度和形状的高质量的Si纳米线,利用各种表征技术对其结构特征进行了检测分析,就制备方法而言,目前主要有热化学气相沉积、低压化学气相沉积、等离子体化学气相沉积、激光烧浊沉积、热蒸发、电子束蒸发(EBE)、溶液法和水热法等;就生长机制而言,则主要有气—液—固(VLS)法、气—固(VS)法、气—固—固(VSS)法、固—液—固(SLS)法等,就纳米线类型而言,又有本证Si纳米线和掺杂Si 纳米线之分。研究指出,Si纳米线的生长于Si纳米晶粒和量子点的形成不同,后者只需衬底表面具有合适密度与尺寸的成核位置,而前者除了具备上述条件外,还需要同时满足线状结构的生长规律与特点,因此工艺技术要求更加严格。研究者从实验中发现,如果能够利用某一催化剂进行诱导,使纳米点或团簇在催化剂的方向趋使作用下按一定去向生长,预计可以形成纳米线及其阵列结构。大量的研究报道指出,以不同的金属作为Si纳米线合成的催化剂,利用VLS机制

可以实现在Si晶体表面上Si纳米线的成功生长。 目前,作为制备Si纳米线的主流工艺应首推采用金属催化的VLS 生长技术,这种方法的主要工艺步骤是:首先在Si衬底表面上利用溅射或蒸发等工艺沉积一薄层具有催化作用的金属(Au、Fe、Ni、Ga、Al),然后进行升温加热,利用金属与Si衬底的共晶作用形成合金液滴,该液滴的直径和分布于金属的自身性质、衬底温度和金属层厚度直接相关。此后,通过含Si的源气体(SiH4、Si2H6、SiCl4)的气相输运或固体靶的热蒸发,使参与Si纳米线生长的原子在液滴处凝聚成核,当这些原子数量超过液相中的平衡浓度以后,结晶便会在合金液滴的下部分析出并最终生长成纳米线,而合金则留在其顶部,也就是说,须状的结晶是从衬底表面延伸,按一定的方向形成具有一定形状、直径和长度Si纳米线的。 除了VLS机制外,SLS机制也可以用于Si纳米线的可控生长,在这种情况下,预先在Si衬底表面沉积一层约厚10nm的金属薄膜(Au、Ni、Fe),然后再N2保护下进行热处理,随着温度的升高,金属催化粒子开始向Si衬底中扩散在界面形成Au-Si合金,当温度达到二者的共熔点时,合金开始融化并形成合金液滴,此时将有更多的Si原子扩散到这些合金液滴中去,当氮气通入反应室中时,液滴便面温度会迅速降低,这将导致Si原子从合金的表面分离和析出,其后,在退火温度为1000°C和氮气流量为1.5L/min的条件下,便可以实现可控Si纳米线的生长。在这,SLS与VLS生长机制的主要不同是:前者是以Si晶片衬底作为参与Si纳米线生长的Si原子的原

纳米氧化锌的制备实验报告

纳米ZnO2的制备 实验报告 班级:应091-4 组号:第九组 指导老师:翁永根老师 成员:任晓洁 1428 邵凯 1429 孙希静 1432 【实验目的】 1.了解纳米氧化锌的基本性质及主要应用 2.通过本实验掌握纳米氧化锌的制备方法

3.对于纳米氧化锌的常见产品掌握制备原理和方法,并学会制备简易产 品。 4.通过本实验复习并掌握EDTA溶液的配制和标定,掌握配位滴定的原 理,方法,基准物质的选择依据以及指示剂的选择和pH的控制。 5.掌握基础常用的缓冲溶液的配制方法和原理。 6.加深对实验技能的掌握及提高查阅文献资料的能力。 【实验原理】 1. 超细氧化锌是一种近年来发展的新型高功能无机产品,晶体为六方结构,其颗粒大小约在1~100纳米。纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。纳米氧化锌一系列的优异性和十分诱人的应用前景。 2. 纳米氧化锌的制备方法主要有:水热法,均相沉淀法,溶胶一凝胶法,微乳液法,直接沉淀法 3. 本工艺是将锌焙砂(主要成份是ZnO,主要伴生元素及杂质为铁,铜,铅,镍,铬,镍,此外,还含有其它微量杂质,因而用锌焙砂直接酸浸湿法生产活性氧化锌,必须利用合理的酸浸及除杂工艺,分离铅,脱铁、锰,除钙、镁等重金属)与硫酸反应,生产出粗制硫酸锌,加高锰酸钾、锌粉等,经过提纯得到精制硫酸锌溶液后,再经碳化母液沉淀,制得碱式碳酸锌,最后经烘干,煅烧制成活性氧化锌成品。 4. 氧化锌含量的测定采用配位滴定法测定,用NH3-NH4Cl缓冲溶液控 制溶液pH≈10,以铬黑T为指示剂,用EDTA标准溶液进行滴定,其主要反应如下: 在氨性溶液中: Zn2++4NH3?Zn(NH3)42+ 加入EBT(铬黑T)时: Zn(NH3)42++EBT(蓝色)?Zn-EBT(酒红色)+4NH3 滴定开始-计量点前: Zn(NH3)42++EDTA?Zn-EDTA+4NH3 计量点时: Zn-EBT(酒红色)+EDTA?Zn-EDTA+EBT(蓝色)

水热法制备TiO2纳米材料

水热法制备TiO2纳米材料 实验目的:采用水热法,制备了不同晶相的二氧化钛( 即锐钛矿相和金红石相) 。 实验原理:以无水TiCl4为原料制备出的纳米晶是锐钛矿相的, 而用钛酸四正丁酯制备的纳米晶是金红石相的。两者的晶相有所不同, 这是因为无水TiCl4 中加入水后水解剧烈, 已经直接生成了大量的锐钛矿相TiO2。而钛酸四正丁酯中加入水后, 水解速度较慢, 首先生成锐钛相TiO2, 而生成的锐钛矿相TiO2 颗粒较小, 故其反应的活性较大。在水热反应过程中, 如果保温时间足够长, 就有可能由锐钛矿相完全转变为金红石相。采用本方法制备出的金红石相的TiO2 纳米晶相的过程更简单、反应温度更低。 实验药品,器材 无水TiCl4、钛酸四正丁酯、HCl 溶液(12 mol/L) X 射线衍射(XRD)、透射电子显微镜( TEM) 高压反应釜、高速离心机、恒温干燥箱 实验过程:T iO 2 纳米颗粒的制备 (1)以无水TiCl4 为原料取容量为10 mL 的小量筒1 只, 将其放进干燥箱彻底干燥后(因为TiCl4 极易水解)取出, 量取2 mL 的无水TiCl4。把量筒内的无水TiCl4 倒入已经清洗干净、并且已经干燥过的高压反应釜的内衬中。用容量为20 mL的量筒量取20 mL 蒸馏水并快速倒入反应釜的内衬中。反应温度为120 ℃, 时间为5 h 。样品自然冷却后, 用蒸馏水和无水乙醇冷却, 直接用于XRD 和TEM 的观测。 ( 2) 以钛酸四正丁酯为原料 用量筒量取2 mL 的钛酸四正丁酯倒入反应釜的内衬后, 以体积比为1 ∶10 量取20 mL 蒸馏水, 将蒸馏水倒入内衬和钛酸四正丁酯混合后放入烘箱中。反应温度为120 ℃, 时间为5 h 。样品自然冷却后, 用蒸馏水和无水乙醇冷却, 直接用于XRD 和TEM 的观测。 数据记录 参考文献: 夏金德. 水热法制备二氧化钛纳米材料[J].安徽工业大学学报,2007 ,24(2)140- 141. 肖逸帆,柳松. 纳米二氧化钛的水热法制备及光催化研究进展[J].硅酸盐通报,2007, 26(3)523-527

张家杰 葡萄糖水热法制备纳米碳球

葡萄糖水热法制备纳米碳球 广州华南农业大学理学院化学08材化(1)班张家杰学号:200830750131 引言 碳微球材料由于具有高密度、高强度、高比表面积以及在锂离子电池方面的应用前景,已引起许多研究人员的兴趣。碳微球的形状和大小显著影响着其电学性能。 葡萄糖在水热条件下会发生许多化学反应,实验结果表明:碳微球的增长似乎符合LaMer模型(见图1),当0.5 molL-1的葡萄糖溶液在低于140 C或反应时间小于1h时不会形成碳球,在此条件下反应后溶液呈橙色或红色并且粘度增强,表明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。当反应条件为0.5molL-1、160℃、3h时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。从现有的研究结果表明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响炭球的粒径分布,其中反应时间对颗粒粒径影响很大,随着反应时间的延长,这些纳米炭球粒径从150nm(最初核的大小,实验所得到的最小的尺寸)生长到1500nm。 由葡萄糖水热法制备纳米炭球具有绿色环保无污染的特点,实验过程中没有引入任何引发剂以及有毒溶剂,得到的炭球粒径均匀,大小可控,同时表面含有大量活性官能团,具有优良的亲水性和表面反应活性,可应用于生物化学、生物诊断以及药物传输领域,也可以作为制备核壳结构材料或者多孔材料的模板等等,具有令人欣喜的应用前景。 图1 水热法形成炭球的结构变化示意图 本实验将利用葡萄糖水热法来制备纳米碳球,要求从中学会高温高压反应釜的组

水热法制备纳米氧化锌及其光催化性质的研究

水热法制备纳米氧化锌及其光催化性质的研究 纳米氧化锌因其很小的微粒尺寸,其比表面积较一般氧化锌粒子要大很多,具有其块状物料没有的表面与界面效应,小尺寸效应,量子尺寸效应,宏观量子隧道效应等。使其在很多领域都有非常重要的应用价值。本文通过水热法加入不同配比和不同类别的表面活性剂和掺杂钠钾离子,和对反应体系的某些条件来控制合成纳米氧化锌的微观形貌,并且对改变条件和表面活性剂的不同的纳米氧化锌对次甲基蓝的水溶液的光催化活性进行了初步的研究和探讨。在实验中我们发现,添加不同表面活性剂、掺杂有不同金属离子的纳米氧化锌的光催化的活性不同。 本文主要内容如下:首先简单介绍了纳米材料及纳米氧化锌的性能,制备,应用和表征的手段,并且对表面活性剂的类别和应用做了概述。 二、以尿素、乙酸锌、草酸钠和草酸钾为原料,用水热法通过改变不同的焙烧温度制备纳米氧化锌。所得的样品使用X射线粉末衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、高分辨率透射电镜(HRTEM)、透射电子显微镜(TEM)对其进行了表征,得出结果,掺杂不同主族金属钠、钾离子的纳米氧化锌其形貌和粒径分布大不相同。其中,焙烧温度为600℃制备的掺杂有金属钠、钾离子的纳米氧化锌具有较小的粒径和分散性。 三、以尿素和乙酸锌为原料,通过水热法成功制备了只添加单一表面活性剂SDS(十二烷基硫酸钠),非离子表面活性剂:PEG6000(聚乙二醇6000)表面改性的纳米氧化锌和通过添加比例不同的两种表面活性剂表面改性的纳米氧化锌。发现使用不同比例以及不同种类的表面活性剂合成的纳米氧化锌具有不同的形貌和粒径,并用XRD、FT-IR、SEM、TEM、HRTEM对产品进行了表征。根据其表征结果发现,应用不同种类和不同配比的表面活性剂合成的纳米氧化锌对产品的尺寸和形貌有较大的影响。 四、自制的上述纳米氧化锌对水溶性有机染料次甲基蓝作为模拟污染物的水溶液进行了光的催化降解实验,并根据实验结果探讨了制备的纳米氧化锌的结构和形貌对其光催化活性的影响。其中,掺杂有钠或钾金属离子的纳米氧化锌600℃焙烧的样品比在400℃和800℃焙烧的样品的光催化活性更好。通过加入不同种类和配比的表面活性剂制备的纳米氧化锌的所有产品中,加入PEG6000和SDS(十二烷基硫酸钠)比例为1:3的光催化性能最好。通过实验数据发现光催化活性是与产品的形貌,粒子的尺寸大小等多种因素有关。

氧化锌纳米棒研究进展汇总

氧化锌纳米棒研究进展** 孔祥荣*, 邱晨, 刘强, 刘琳, 郑文君 (南开大学化学学院材料系,天津,300071) Kxr0918@https://www.doczj.com/doc/ba15574077.html, 摘要:氧化锌纳米棒由于具有新奇的物理化学性质而成为研究的热点,本文就近年来氧化锌纳米棒在制备方法和反应机理及应用研究等方面予以综述。 关键词:氧化锌; 纳米棒; 制备; 反应机理 1 引言 近年来,低维纳米结构的半导体材料引起了广泛的关注,尤其是一维(1-D纳米材料在维数和大小物理性质的基础研究中有潜在的优势,同时在光电纳米器件和功能材料中的应用研究成为热点。氧化锌由于在室温下较大的导带宽度和较高的电子激发结合能(60meV 及光增益系数(300 cm 而使之具有独特的催化、电学、光电学、光化学性质,在太阳能电池、表面声波和压电材料、场发射、纳米激光、波导、紫外光探测器、光学开关、逻辑电路 [5,6][1]-1[2][3][4] 等领域潜在的应用等方面均具有广泛的应用前景。本文就氧化锌纳米棒及其阵列的制备、反应机理、应用研究等进行简要的综述。 2 氧化锌纳米棒的制备 2.1 超声波法和微波法 刘秀兰等在低温反应条件下(冰水浴),通过超声的方法,采用醋酸锌和水合肼为原料,[7] 以DBS 作为表面活性剂,制备了ZnO 纳米棒,截面为六方型,直径100nm ,长度1μm。研究表明:与其它制备方法相比,低温与超声技术可以更为方便获得分布均

一、长径比较小的ZnO 纳米棒。Hu等分别用超声和微波辐射两种方法得到了交联(二聚体,三聚体(T形,四聚体(X[8] 形))的ZnO纳米棒。超声辐射法和微波辐射法具有一个共同的特点,反应速度快,设备要求简单。 2.2 水热法 Liu 等用六水合硝酸锌和氢氧化钠为原料配成溶液,180 ℃水热处理20h 得到晶化程度[9] 很高的直径的为50 nm的高长径比的氧化锌纳米棒。Vayssieres [10]用硝酸锌盐和等摩尔的六次甲基四胺在水热条件下95 ℃几小时就可以在底物上得到了直径100~200 nm ,长度为10 μm 氧化锌纳米棒及其阵列。Wang 等[11]报道用Zn 作为底物同时作为反应物水热条件下得到了形貌可控的ZnO 纳米棒。陶新永等[12]采用PEG 辅助水热法合成了ZnO 纳米棒。研究发现,氢 [13]氧化钠浓度和反应时间对产物形貌和尺寸有较大的影响。Tang 等用H 2O 2、NaOH 和Zn 箔为 [14]原料辅助的水热法来合成具有良好光学性质的ZnO 纳米棒阵列。Wu 等用溴化十六烷三甲 基铵(CTAB 表面活性剂作导向剂在水热条件下,通过粒径几十纳米的纳米晶自组装得到了ZnO 单晶纳米棒。Guo 等[15]用氧化铟锡(ITO )底物上用简单的水热法通过改变温度成功的 [16]合成了粒径长度可控的分布较窄的高趋向的ZnO 纳米棒阵列。郭敏等采用廉价低温的水 热法, 在基底上制备高质量、高取向统一、平均直径小于50 nm 并且直径分布很窄的ZnO 纳米棒阵列薄膜。

相关主题
文本预览
相关文档 最新文档