当前位置:文档之家› 铸造多晶硅中的金属杂质及其对硅片性能的影响新编(终审稿)

铸造多晶硅中的金属杂质及其对硅片性能的影响新编(终审稿)

铸造多晶硅中的金属杂质及其对硅片性能的影响新编(终审稿)
铸造多晶硅中的金属杂质及其对硅片性能的影响新编(终审稿)

铸造多晶硅中的金属杂质及其对硅片性能的影

响新编

TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

铸造多晶硅中的金属杂质及其对硅片性能的影响摘要:

关键词:多晶硅铸造多晶硅金属杂质

正文:

金属杂质特别是过渡金属杂质,在原生铸锭中的浓度般都低于1×10”cm 3,但是它们无论是以单个原子形式,或者以沉淀形式出现,都对太阳能电池的转换效率有重要的影响。近期由于硅料中所含金属杂质超标,导致多个晶锭出现电阻率严重异常而整锭报废,另外还出现较多晶棒切片后的硅片电阻率出现较大波动,对公司的经济效益带来严重的影响。下面对铸造多晶硅中金属杂质的性质及其对硅片性能的影响进行详细的分析,为多晶硅片的生产及异常硅片的处理提供一定的参考。

1.铸造多晶硅中金属杂质的来源

铸造多晶硅中的金属杂质主要有Fe,Al,Ga,Cu,Co,Ni等,铸造多晶硅中金属杂质的来源主要有以下几个方面:

A.原生硅料中含有一定量的金属杂质,这也是金属杂质的一个主要来源。

目前由于硅料异常紧缺,导致一些含杂质较多的硅料在市场上流通,造

成铸出的晶锭出现问题的事故时有发生。

B.在硅料的清洗,铸锭及切片的整个过程中由于使用各种金属器件接触,导致金属杂质的引入。这也是铸造多晶硅中金属杂质含量偏高的一个主

要原因。整个工艺流程中引入金属杂质的途径有很多,例如硅料清洗过

程中清洗液的残留,晶锭转运过程中使用的不锈钢转运车,多晶硅棒破

碎过程中所使用的铁锤等。

2.过渡族金属在硅片中的扩散和溶解

硅中金属杂质的引入可以在晶体生长过程中,或者在硅片的抛光、化学处理、离子注入、氧化或其他处理过程中首先在表面附着,随后后续的高温热处理过程中扩散进入硅基体。

A.金属杂质在硅锭中的分布

在高温(>800℃)下,过渡族金属一般都有很快的扩散速度而溶解度则相对较小。Cu、Ni为快速扩散杂质,在高温下,Cu、Ni的扩散速率甚至可以接近于液相时的扩散速率,达到10-4cm2/s。而其他的金属杂质,如Fe、Cr等为慢扩散杂质,一般比Cu、Ni的扩散速率慢一到两个数量级,但在高温下仍可以达到几十到几百微米每秒。

在经过定向凝固的多晶硅锭中,金属杂质的浓度分布呈现出两头高中间低的趋势

B. 金属杂质在硅中的溶解度

硅中金属杂质的溶解度可用下面的热力学动力学表达式表示:

其中H,S,G分别为焓(enthalpy),熵(entropy)和自由能(free energy)。

Eb为金属杂质与临界相间的束缚能;

Ec为金属杂质与硅形成化合物时,金属外层电子与硅外层电子的结合能;

Es为金属原子在硅晶胞中的弹性应变能。

5.3.1实验样品及过程

实验样品为包含原始头部及尾部的长条形硅片,如上一节中图5-2.1。将样品于200℃热处理十分钟左右,快速退火,用微波光电导衰减仪分别测量样品处理前后的少子寿命值,根据前后少子寿命的变化而计算出Fe浓度,微秒具体关系式为:【Fe】=K·(1/;一1,Tm。)。基冉K。一m=3.4xl萨us/c隶。

5.3.2实验结果与讨论

图5 3.1间隙铁浓度沿硅锭生长方向分布图

由上图可以得知,间隙铁浓度沿硅锭长度方向的分布特征为:底部和顶部处浓度明显较高,数量级约为lO“泖一,中间部分浓度分布较为均匀,且其浓度基本上均低于5×10“删~。由于铁的分凝系数远小于l“”,所以顶部处铁浓度较高可以理解为由铁在硅熔体中分凝所导致的结果,然而硅锭底部处较高的铁浓度则无法用分凝来解释。由于铁在硅中具有较大的固相扩散系数,所以这可能是硅锭底部凝固完成后的冷却过程中,铁由坩埚或者氮化硅保护层中向硅锭底部进行固相扩散的结果。事实上,由于硅锭底部最先开始凝固,而通常整个凝固过程将持续数十个小时,硅锭底部将有较长的时间处于高温状态,因此来自坩埚和涂层的金属杂质(主要为铁)通过固相扩散进入到晶体中的现象极有可能发生

3.金属杂质对硅片性能的影响

铸造多晶硅中金属杂质一般以间隙态替位态、复合体或沉淀形式存在,往往会引入额外的电子或空穴,导致硅片载流子浓度改变,还可能成为复合中心,大幅度降低少数载流子寿命。另外,由于在多晶硅中含有境界、位错等大量缺陷,使得金属杂质很易于在这些缺陷处形成金属沉淀,对硅片的性能造成严重的破坏作用。

金属杂质在硅中会形成深能级,就是,距离导带和价带都很远的能级。还是拿火车来比喻,站台是价带,火车是导带,站台与火车之间的间隙时禁带。如果禁带很宽,一个人跳不过去,那么,就在中间垫一些“梅花桩”,大家应当可以踩着跳过去了,但假如间隙太大,只在火车与站台中间垫一个桩,而这个桩离两边还是很远,那么,加入有一个人站到了这个桩上,可能进退两难,既无法跳上火车,也无法跳回站台。

硅中金属杂质的情形与此相似,金属杂质会在硅中形成深能级,这些深能级距离导带和禁带都很远,所以不但这些杂质本身的能级对提高导电性没有什么关系,而且,一旦其它的浅能级(如磷或硼)载流子遇到这类深能级的杂质,反而会被“陷住”,更加不易发生跃迁,既难以跳到导带,也难以跳回价带,失去了载流子的作用。这就是所谓深能级对载流子的复合作用,这些深能级杂质所在的位置,称为“深能级复合中心”。复合中心的存在会降低少数载流子的寿命,从而降低太阳能电池的效率。如果这种复合作用是在光照之下慢慢发生的,就会形成所谓的太阳能电池的光致衰减现象。

对金属杂质含量过高硅片的处理

由于铸锭中古有晶界、位错等大量缺陷,使得金属杂质易于在这些缺陷处形成金属沉淀,在硅片的线锯工艺巾会带来巨大破坏。有研究指出,在铸锭中,金属沉淀不足南于同溶度随温度的降低而造成,而是由于金属原子易于在晶体缺陷出沉淀。由于Sic颗粒帝』金属杂质.如Fe,硬度较高,若较为严重,在线切割过程巾会造成断线,严重影响硅片的生产。因此在线开方后.需通过妾[外检测仪检测硬点,进行截断处理,以保证硅片的出片率。而一些轻微的硬点.在红外检测时未能发现,流人线切割工芝中,这样就会造成大量的硬点线痕,此类硅片只能作为等外品,进行回炉处理。严重的就会造成断线。这样就大大地影响了硅片的合格率,从而降低太阳电池的生产效率。图2为硬点线痕硅片的照片。,硬点硅棒一旦流人下一步切割【艺中,将会造成大量等外线痕硅片.降低硅片的一等片率。,Macdonald等51利用中于活化分析技术,研究了符种金属杂质在铸锭中沿晶体牛长方向的分布。金属杂质cu、Fe、co的浓度分别在上部和底部约10%以内的K域内蛀高,在中部的浓度较低。在铸锭晶体上部,是晶体最后凝阿的区域。由于硅中台属的分凝系数一般都远小于1.所以,最后凝固的这部分金属杂质浓度较高;而在铸锭底部,虽然根据分凝,其金属杂质维度应该较低.但是,由于这部分晶体紧靠石英坩埚,石英中的金属杂质会污染到这部分晶体,所以晶体底部的金属杂质谁度也较高。由于有金属杂质的存在.导致硅棒金属杂质聚集的地方电阻率偏大,超出了硅片电阻率的合格范围,在制作电池时,降低电池的转换效率。因此,钱开方工艺后,须用电导率仪测试每根晶棒头部,中部、尾部的电导率,对于电导率异常的品棒进行报废处理。经过处理后再铸成多晶硅利用。若没有检测出电导牢异常的现象,在电池车间,会出现方块电阻异常。

在线开方后工艺中.要将晶棒的头尾部截断.与金属杂质的诳度偏高也有密切联系,围金属杂质浓度高,使得这部分的电导率高于太阳电池晟佳电导率范围值.从而会太大影响电池的转换效率:在硅片,£产中,避免将这类电导卓异常的硅片流人电池部门,须将晶棒头尾部进行截断处理。

由上图可以得知,间隙铁浓度沿硅锭长度方向的分布特征为:底部和顶部处浓度明显较高,数量级约为lO“泖一,中间部分浓度分布较为均匀,且其浓度基浙江大学硕士学位论文

本上均低于5×10“删~。由于铁的分凝系数远小于l“”,所以顶部处铁浓度较高可以理解为由铁在硅熔体中分凝所导致的结果,然而硅锭底部处较高的铁浓度则无法用分凝来解释。由于铁在硅中具有较大的固相扩散系数,所以这可能是硅锭底部凝固完成后的冷却过程中,铁由坩埚或者氮化硅保护层中向硅锭底部进行固相扩散的结果。事实上,由于硅锭底部最先开始凝固,而通常整个凝固过程将持续数十个小时,硅锭底部将有较长的时间处于高温状态,因此来自坩埚和涂层的金属杂质(主要为铁)通过固相扩散进入到晶体中的现象极有可能发生。

杨德仁教授在他的《太阳电池材料》一书中,曾对单晶硅和多晶硅中的金属杂质进行过分析。分析得很是透彻。但该书中的分析有一个前提,就是认为,硅中的金属杂质的原子浓度在每立方厘米10的15次方个左右,也就是说小于0.1 ppma. 所以,尽管书中的归纳和分析也是十分有价值的,但多少还是不太适应物理法多晶硅的金属杂质问题。因为,UMG的金属杂质含量通常在几个ppm 以上,以原子浓度来说,都在每立方厘米10的16次方、甚至10的17次方以上。

其实,经过调查,针对UMG的金属杂质的表现,目前还没有一个统一的认识。中山大学沈辉教授的一位博士研究生徐华毕在2008年9月20日的常州会议上,对国际上关于物理法多晶硅中的杂质问题的学术研究作了一个比较全面的汇总,可以说明这一点。

笔者认为,金属杂质的存在,才是所制成的太阳能电池会衰减的必要条件。目前国际比较流行的看法是因为硼氧复合体的存在,但笔者对此不能苟同,个中理由将在与有关专家详尽分析后,另外撰文进行深入一点的分析。

金属杂质在硅中会形成深能级,就是,距离导带和价带都很远的能级。还是拿火车来比喻,站台是价带,火车是导带,站台与火车之间的间隙时禁带。如果禁带很宽,一个人跳不过去,那么,就在中间垫一些“梅花桩”,大家应当可以踩着跳过去了,但假如间隙太大,只在火车与站台中间垫一个桩,而这个桩离两边还是很远,那么,加入有一个人站到了这个桩上,可能进退两难,既无法跳上火车,也无法跳回站台。

硅中金属杂质的情形与此相似,金属杂质会在硅中形成深能级,这些深能级距离导带和禁带都很远,所以不但这些杂质本身的能级对提高导电性没有什么关系,而且,一旦其它的浅能级(如磷或硼)载流子遇到这类深能级的杂质,反而会被“陷住”,更加不易发生跃迁,既难以跳到导带,也难以跳回价带,失去了载流子的作用。这就是所谓深能级对载流子的复合作用,这些深能级杂质所在的位置,称为“深能级复合中心”。复合中心的存在会降低少数载流子的寿命,从而降低太阳能电池的效率。

如果这种复合作用是在光照之下慢慢发生的,就会形成所谓的太阳能电池的光致衰减现象。

除了光致衰减外,金属杂质如果过多,还会造成漏电流的增加。在太阳能电池的PN结附近,有一个空间电荷区,这个电荷区的电流正常情况下,应当是光生电流,即受光照后,载流子跃迁产生的电流,但金属杂质过多时,因为金属杂质的原子外围的电子是自由电子,因此,会产生漏电流,这些漏电流过大时,可能导致PN结的导通。

目前国内外许多专家认为铝的能级不是深能级,而且,铝因为是III族元素,与硼是同一族的,因此,还能够被用作P型的掺杂元素。事实上,在N型材料的电池中,也确实有用铝作为P型结扩散形成PN结的。

实际上,因为物理法提纯时,铝是金属杂质中比较难除的一种杂质。因为铝在硅中的分凝系数约在0.1 左右,比铁等其它金属要大得多,所以,分凝对铝的作用比较有限。因此,在物理法冶金硅中,铝往往是最后被去除的几种金属杂质之一。

如果硅中有铝存在,而且浓度在0.1ppm 以上的时候,铝会与硼一样,对电阻率的下降做出贡献。假如,硅中含有0.3ppm的硼,电阻率假如是0.5欧姆厘米,而同时又有0.3ppm的铝,可能会导致电阻率下降到0.1欧姆厘米以下。但铝所产生的载流子(空穴),其迁移率是否与硼的一样,还需要再研究,因此,铝的存在会导致材料的情况复杂。

此外,所谓的空穴也好,电子也好,都是在铝在硅中以固溶体的方式完全溶解才成立的。如果铝的浓度超过固溶度,则会产生铝沉淀,那么,沉淀物对材料的影响,则是完全以缺陷的方式来表现的,而这时,铝本身的金属特性将会显现,又会导致更加复杂的情况出现,可以肯定地时,这些情况不会是往好的方向改善的。在目前国际上还没有人对此进行深入研究的时候,还是应当尽量将铝去除的。而对于铁,因为是过渡金属,因此,完全看不到会有什么好的作用。而根据普罗与国内一些大学的合作研究表明,铁在硅中,会与硼也产生类似的复合体的作用,造成少子寿命的减少,而且,硼铁的相对作用,会因光照或温度而造成反复,这种现象,也从对物理法多晶硅的进一步的深入试验中得到了证实。但其中的机理和物理模型,则正在研究阶段中。根据初步分析,硼铁的作用,应当比硼氧复合体理论,更能解释物理法多晶硅的光致衰减作用。

铁的分凝系数很小,因此,通过定向凝固是比较容易去除的。它之所以在物理法多晶硅中成为比较难以去除的杂质,主要还是因为原料中的含量过大(通常大于1000ppm),以及在提纯过程中,容易受到污染所致。

硅中的杂质还有钛、钨、锰等。这些杂质由于自身的特性,会与氧、氢、氮等结合,所以,也会形成比较复杂的情况。

总之,硅材料中的金属杂质的影响,是物理法多晶硅导致的一个新问题,也是值得研究的一个问题。对于这些现象的研究、分析,无论是物理法提纯的公司还是有关的研究机构,都值得花些精力来做。

但笔者认为,最重要的,还是要将金属杂质尽量地除干净。这个问题在西门子法的提纯工艺中不是问题,也不应当永远成为物理法多晶硅的问题。而且,从理论和工艺实践上看,是可以把金属杂质提纯到没有副作用产生的程度的。

硅中的杂质(三)

定向凝固可以完全消除金属杂质吗?

说到硅中金属杂质的去除,许多从事过冶金法或物理法提纯多晶硅的人都认为,通过定向凝固就可以把金属杂质“消除殆尽”,这是不错的。

不过,“殆尽”是“接近没有”的意思。这个“殆”字,到底指接近到什么程度,却值得认真探讨探讨。

如果降金属杂质从2000ppm除到10个ppm,只剩下十万分之一,在通常的意义上,可以说基本没有了,但这并不能满足太阳能电池的需要。如果消除到1个ppm ,更可以说接近没有了,但实际上,有些金属杂质哪怕只有0.2ppm,也一样会使材料无法达到正常的太阳能电池的参数。因此,仅仅靠定向凝固,对金属杂质的去除作用是有限的。

许多人认为,只要将定向凝固多做几次,就可以把金属杂质去除干净。实际上,哪怕进行一百次定向凝固,也不会将金属杂质无限度的减小。这与化学反应的情形一样,当杂质的含量小到了一定的程度,应当进行的反应往往就不进行了,同样地,分凝作用也不是那么明显了。如果读者有耐心从化学动力学和量子力学的角度去分析一下,就可以明白为什么会这样了。

刻蚀简介

刻蚀简介.txt遇事潇洒一点,看世糊涂一点。相亲是经销,恋爱叫直销,抛绣球招亲则为围标。没有准备请不要开始,没有能力请不要承诺。爱情这东西,没得到可能是缺憾,不表白就会有遗憾,可是如果自不量力,就只能抱憾了。本文由bshxl1贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 等离子刻蚀简介 自 1970 年代以来组件制造首先开始采用等离子刻蚀技术,对于等离子化学新的了解与认知也就蕴育而生。在现今的集成电路制造过程中,必须精确的控制各种材料尺寸至次微米大小且具有极高的再制性,而由于等离子刻蚀是现今技术中唯一能极有效率地将此工作在高良率下完成,因此等离子刻蚀便成为集成电路制造过程中的主要技术之一。等离子刻蚀主要应用于集成电路制程中线路图案的定义,通常需搭配光刻胶的使用及微影技术,其中包括了1) 氮化硅(Nitride)蚀刻:应用于定义主动区;2) 多晶硅化物/多晶硅(Polycide/Poly)刻蚀:应用于定义栅极宽度/长度;3) 多晶硅(Poly)刻蚀:应用于定义多晶硅电容及负载用之多晶硅;4) 间隙壁(Spacer)刻蚀:应用于定义 LDD 宽度;5) 接触窗(Contact) 及引线孔(Via)刻蚀:应用于定义接触窗及引线孔的尺寸大小;6) 钨回刻蚀(Etch Back):应用于钨栓塞(W-Plug)的形成;7) 涂布玻璃(SOG)回刻蚀:应用于平坦化制程;8) 金属刻蚀:应用于定义金属线宽及线长;接脚(Bonding Pad)刻蚀等。 9) 影响等离子刻蚀特性好坏的因素包括了:1) 等离子刻蚀系统的型态;2) 等离子刻蚀的参数;3) 前制程相关参数,如光刻胶、待刻蚀薄膜的沉积参数条件、待刻蚀薄膜下层薄膜的型态及表面的平整度等。何谓等离子体?基本上等离子体是由部份解离的气体及等量的带正、负电荷粒子所组成,其中所含的气体具高度的活性,它是利用外加电场的驱动而形成,并且会产生辉光放电(Glow Discharge) 现象。刻蚀用的等离子体中,气体的解离程度很低,通常在 10-5-10-1 之间,在一般的等离子体或活性离子反应器中气体的解离程度约为 10-5-10-4,若解离程度到达 10-3-10-1 则属于高密度等离子体。等离子体形成的原理:等离子体的产生可藉由直流(DC)偏压或交流射频(RF)偏压下的电场形成,如图 1-3 所示,而在等离子体中的电子来源通常有二:一为分子或原子解离后所产生的电子,另一则为离子撞击电极所产生的二次电子(Secondary Electron),在直流(DC)电场下产生的等离子体其电子源主要以二次电子为主,而交流射频(RF)电场下产生的等离子体其电子源则以分子或原子解离后所产生的电子为主。在等离子刻蚀中以直流方式产生辉光放电的缺点包含了:需要较高的功率消耗, 1) 也就是说产生的离子密度低; 2) 须要以离子撞击电极以产生二次电子,如此将会造成电极材料的损耗;3) 所需之电极材料必须为导体。如此一来将不适用于晶圆制程中。在射频放电(RF Discharge)状况下,由于高频操作,使得大部份的电子在半个周期内没有足够的时间移动至正电极,因此这些电子将会在电极间作振荡,并与气体分子产生碰撞。而射频放电所需的振荡频率下限将视电极间的间距、压力、射频电场振幅的大小及气体分子的解离位能等因素而定,而通常振荡频率下限为 50kHz。一般的射频系统所采用的操作频率大都为13.56MHz。相较于直流放电,射频放电具有下列优点:1) 放电的情况可一直持续下去而无需二次电子的发射,当晶圆本身即为电极的一部份时,这点对半导体材料制程就显得十分重要了;由于电子来回的振荡, 2) 因此离子化的机率大为提升,蚀刻速率可因而提升;3) 可在较低的电极电压下操作,以减低电浆对组件所导致之损坏;4) 对于介电质材料同样可以运作。现今所有的等离子体系统皆为射频系统。另外值得一提的是在射频系统中一个重要的参数是供给动力的电极面积与接地电极面积之比。等效电子及离子温度:存在于等离子体中的电场分别施力于带正电荷之离子与代负电荷之电子,F=E*q ,而加速度 a=F/M,由于离子质量远大于电子,因此电子所获得的加速度与速度将远大于离子,以致电子的动能远大于离子,电子与离子间处于一非平衡状态。从气体动力论中,得知 Ekinetic = (3/2) kT,由此可知,等效电子温度远大于等效离子温度,如此可视为“热”电子处于“冷”等

硅片生产工艺流程及注意要点

硅片生产工艺流程及注意要点 简介 硅片的准备过程从硅单晶棒开始,到清洁的抛光片结束,以能够在绝好的环境中使用。期间,从一单晶硅棒到加工成数片能满足特殊要求的硅片要经过很多流程和清洗步骤。除了有许多工艺步骤之外,整个过程几乎都要在无尘的环境中进行。硅片的加工从一相对较脏的环境开始,最终在10级净空房内完成。 工艺过程综述 硅片加工过程包括许多步骤。所有的步骤概括为三个主要种类:能修正物理性能如尺寸、形状、平整度、或一些体材料的性能;能减少不期望的表面损伤的数量;或能消除表面沾污和颗粒。硅片加工的主要的步骤如表1.1的典型流程所示。工艺步骤的顺序是很重要的,因为这些步骤的决定能使硅片受到尽可能少的损伤并且可以减少硅片的沾污。在以下的章节中,每一步骤都会得到详细介绍。 表1.1 硅片加工过程步骤 1.切片 2.激光标识 3.倒角 4.磨片 5.腐蚀 6.背损伤 7.边缘镜面抛光 8.预热清洗 9.抵抗稳定——退火 10.背封 11.粘片 12.抛光 13.检查前清洗 14.外观检查

15.金属清洗 16.擦片 17.激光检查 18.包装/货运 切片(class 500k) 硅片加工的介绍中,从单晶硅棒开始的第一个步骤就是切片。这一步骤的关键是如何在将单晶硅棒加工成硅片时尽可能地降低损耗,也就是要求将单晶棒尽可能多地加工成有用的硅片。为了尽量得到最好的硅片,硅片要求有最小量的翘曲和最少量的刀缝损耗。切片过程定义了平整度可以基本上适合器件的制备。 切片过程中有两种主要方式——内圆切割和线切割。这两种形式的切割方式被应用的原因是它们能将材料损失减少到最小,对硅片的损伤也最小,并且允许硅片的翘曲也是最小。 切片是一个相对较脏的过程,可以描述为一个研磨的过程,这一过程会产生大量的颗粒和大量的很浅表面损伤。 硅片切割完成后,所粘的碳板和用来粘碳板的粘结剂必须从硅片上清除。在这清除和清洗过程中,很重要的一点就是保持硅片的顺序,因为这时它们还没有被标识区分。 激光标识(Class 500k) 在晶棒被切割成一片片硅片之后,硅片会被用激光刻上标识。一台高功率的激光打印机用来在硅片表面刻上标识。硅片按从晶棒切割下的相同顺序进行编码,因而能知道硅片的正确位置。这一编码应是统一的,用来识别硅片并知道它的来源。编码能表明该硅片从哪一单晶棒的什么位置切割下来的。保持这样的追溯是很重要的,因为单晶的整体特性会随着晶棒的一头到另一头而变化。编号需刻的足够深,从而到最终硅片抛光完毕后仍能保持。在硅片上刻下编码后,即使硅片有遗漏,也能追溯到原来位置,而且如果趋向明了,那么就可以采取正确的措施。激光标识可以在硅片的正面也可在背面,尽管正面通常会被用到。

晶体硅太阳能电池的制造工艺流程

晶体硅太阳能电池的制造 工艺流程 This model paper was revised by the Standardization Office on December 10, 2020

提高太阳能电池的转换效率和降低成本是太阳能电池技术发展的主流。 晶体硅太阳能电池的制造工艺流程说明如下: (1)切片:采用多线切割,将硅棒切割成正方形的硅片。 (2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。 (3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。 (4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为-。 (5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。 (6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。 (7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。 (8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。 (9)烧结:将电池芯片烧结于镍或铜的底板上。 (10)测试分档:按规定参数规范,测试分类。

由此可见,太阳能电池芯片的制造采用的工艺方法与半导体器件基本相同,生产的工艺设备也基本相同,但工艺加工精度远低于集成电路芯片的制造要求,这为太阳能电池的规模生产提供了有利条件。

CCD多晶硅刻蚀技术研究

收稿日期:2010-11-03. 材料、结构及工艺 CCD 多晶硅刻蚀技术研究 向鹏飞,袁安波,杨修伟,高建威 (重庆光电技术研究所,重庆400060) 摘 要: CCD 晶硅刻蚀相比于传统CM OS 工艺的多晶硅刻蚀需要多晶硅对氮化硅更高的刻蚀选择比,更长的过刻蚀时间。采用Cl 2+H e,Cl 2+H e+O 2,Cl 2+H e+O 2+H Br 三种工艺气体组分在Lam4420机台进行了多晶硅刻蚀实验,研究了不同气体配比、不同射频功率对刻蚀速率、选择比、条宽、侧壁形貌等参数的影响。通过优化工艺参数,比较刻蚀结果,最终获得了适合于CCD 多层多晶硅刻蚀的工艺条件。 关键词: 多晶硅;刻蚀;选择比;CCD 中图分类号:TN386.5 文献标识码:A 文章编号:1001-5868(2010)06-0885-03 Study on Technology of Poly Etch in C CD XIANG Pengfei,YUAN Anbo,YANG Xiuw ei,GAO Jianw ei (C hongqing Optoelectronics Research Institute,C hongqing 400060,CHN) Abstract: Relative to nor mal CM OS po ly etch process,the techno logy of poly etch in CCD need higher selectiv ity betw een poly and SiN,and mo re over etch tim e.Po ly etch on Lam 4420machine w as perform ed w ith Cl 2+H e,Cl 2+H e+O 2and Cl 2+H e+O 2+H Br as etching gases.The relationship betw een different etching gases,RF pow er and the four par am eters of etch rate,selectivity ,profile and CD bias w as researched.By o ptimizing the ratio of different gases and com paring the different etching results,the optimized etching process for CCD w as obtained. Key words: poly;etch;selectiv ity;CCD 0 引言 CCD 和标准的CM OS 器件一样,都是用多晶硅作为器件的栅极,多晶硅栅的刻蚀是整个CCD 制作中的关键工艺,器件成品率和器件性能都与多晶硅栅的刻蚀工艺有直接的关系。目前多晶硅刻蚀在CM OS 工艺中是很成熟的工艺技术,但CCD 的多晶硅栅刻蚀与CMOS 器件的多晶硅刻蚀相比有较大的不同。因为CCD 多晶硅栅极下的介质层是氮化硅,而且需要3~4次多晶硅栅刻蚀布线以形成交叠,相比于CM OS 工艺中的多晶硅刻蚀需要更高的刻蚀选择比,更长的过刻蚀时间,才能满足CCD 多晶硅栅极刻蚀的要求。本文针对CCD 多晶硅刻蚀在刻蚀选择比、刻蚀形貌、条宽控制等几个方面进行 了研究,找到了满足CCD 多层多晶硅栅布线的多晶硅刻蚀条件。 1 多晶硅刻蚀原理 反应离子刻蚀多晶硅的反应气体是Cl 2,H Br 等气体,反应离子刻蚀主要有化学刻蚀和物理刻蚀两方面的作用。 (1)化学刻蚀(反应刻蚀)。反应气体(Cl 2,H Br)在高频电场中被电离,产生离子、电子、激发原子、游离原子(亦称游离基)等,具有很强的化学活性,可以与处于等离子体中的物质发生如下化学反应[1]:Si+4Cl SiCl 4 ,Si+4Br SiBr 4 。 (2)物理刻蚀(溅射刻蚀)。由于反应离子在电场中获得能量,并且定向移动到硅片表面,形成对硅片物理轰击作用,使原子或分子得到足够的动能离 885 半导体光电 2010年12月第31卷第6期向鹏飞等: CCD 多晶硅刻蚀技术研究

硅片生产工艺技术流程

顺大半导体发展有限公司太阳能用 硅单晶片生产技术 目录 一、硅片生产工艺中使用的主要原辅材料 1、拉制单晶用的原辅材料,设备和部件: 2、供硅片生产用的原辅材料,设备和部件: 二、硅片生产工艺技术 1、硅单晶生产部 (1)、腐蚀清洗工序生产工艺技术 对处理后原材料质量要求 (2)、腐蚀清洗生产工艺流程 ①多晶硅块料,复拉料和头,尾料处理工艺流程 ②边皮料酸碱清洗处理工艺流程 ③埚底料酸清洗处理工艺流程 ④废片的清洗处理工艺流程 (3)、硅单晶生长工艺技术 (4)、单晶生长中的必备条件和要求 ①单晶炉 ②配料与掺杂 (5),单晶生长工艺参数选择 (6)、质量目标: (7)、硅单晶生长工艺流程

2、硅片生产部 (1)、硅片加工生产工艺技术 (2)、硅片加工工艺中的必备条件和要求 ①切割机 ②切割浆液 (3)、质量目标 (4)、硅片加工工艺技术流程 ①开方锭生产工艺流程 ②切片生产工艺流程 (5)、硅片尺寸和性能参数检测

前言 江苏顺大半导体发展有限公司座落于美丽的高邮湖畔。公司始创生产太阳能电池用各种尺寸的单晶和多晶硅片。拥有国内先进的拉制单晶设备104台,全自动单晶炉112台。年产量可达到××××吨。拥有大型先进的线切割设备×××台。并且和无锡尚德形成了合作联盟(伙伴),每×可以向尚德提供×××硅单晶片。同时河北晶于2004年,占地面积××××。公司现在有×××名员工,从事澳、南京等光伏组件公司都和顺大形成了长年的合作关系。为了公司的进一步发展,扩大产业链,解决硅单晶的上下游产品的供需关系,2006年在扬州投资多晶硅项目,投资规模达到××亿。工程分两期建设,总规模年产多晶硅6000吨。2008年底首期工程已经正式投入批量生产,年产多晶硅×××吨。 太阳能用硅片生产工艺十分复杂,要通过几十道工序才能完成,只有发挥团队精神才能保证硅片的最终质量。编写该篇壮大资料的目的:首先让大家了解整个硅片生产过程,更重要的是让各生产工序中的每一位操作人员明确自己的职责,更自觉地按操作规程和规范做好本职工作,为顺大半导体发展有限公司的发展,尽自己的一份力量。

铸造多晶硅中的金属杂质及其对硅片性能的影响aaa

铸造多晶硅中的金属杂质及其对硅片性能的影响 摘要: 关键词:多晶硅铸造多晶硅金属杂质 正文: 金属杂质特别是过渡金属杂质,在原生铸锭中的浓度般都低于1×10”cm 3,但是它们无论是以单个原子形式,或者以沉淀形式出现,都对太阳能电池的转换效率有重要的影响。近期由于硅料中所含金属杂质超标,导致多个晶锭出现电阻率严重异常而整锭报废,另外还出现较多晶棒切片后的硅片电阻率出现较大波动,对公司的经济效益带来严重的影响。下面对铸造多晶硅中金属杂质的性质及其对硅片性能的影响进行详细的分析,为多晶硅片的生产及异常硅片的处理提供一定的参考。 1.铸造多晶硅中金属杂质的来源 铸造多晶硅中的金属杂质主要有Fe,Al,Ga,Cu,Co,Ni等,铸造多晶硅中金属杂质的来源主要有以下几个方面: A.原生硅料中含有一定量的金属杂质,这也是金属杂质的一个主要来源。目前由于硅料异常紧缺,导致一些含杂质较多的硅料在市场上 流通,造成铸出的晶锭出现问题的事故时有发生。 B.在硅料的清洗,铸锭及切片的整个过程中由于使用各种金属器件接触,导致金属杂质的引入。这也是铸造多晶硅中金属杂质含量偏高 的一个主要原因。整个工艺流程中引入金属杂质的途径有很多,例 如硅料清洗过程中清洗液的残留,晶锭转运过程中使用的不锈钢转 运车,多晶硅棒破碎过程中所使用的铁锤等。 2.过渡族金属在硅片中的扩散和溶解 硅中金属杂质的引入可以在晶体生长过程中,或者在硅片的抛光、化学处理、离子注入、氧化或其他处理过程中首先在表面附着,随后后续的高温热处理过程中扩散进入硅基体。 A.金属杂质在硅锭中的分布 在高温(>800℃)下,过渡族金属一般都有很快的扩散速度而溶解度则相对较小。Cu、Ni为快速扩散杂质,在高温下,Cu、Ni的扩散速率甚至可以接近于

铸造多晶硅杂质和缺陷处理工艺研究进展

铸造多晶硅杂质和缺陷处理工艺研究进展 摘要:近年来,低成本和高效率的多晶硅已经成为最主要光伏材料之一。本文从太阳能电池制备工艺角度出发,综述了国内外近年来关于对铸造多晶硅杂质和缺陷处理方面的工艺研究进展。分析比较了各种处理工艺,包括磷吸杂、铝吸杂、磷铝共吸杂和多孔硅吸杂对杂质吸除效果、少子寿命的影响。也分析了钝化和热处理工艺对多晶硅材料性能的影响。综合考虑成本要求和除杂效果,高温P-AI 联合吸杂以及多孔硅吸杂是较好的选择,它们可能在未来的铸造多晶硅除杂工艺领域中占据重要地位。 一、引言 随着国际原油的价格突破100美元/桶,能源问题变得愈来愈严峻。与此同时,环境问题也要求新能源能够替代化石能源。自1954年贝尔实验室研制出第一块太阳电池以来,光伏材料为基础所制得的太阳电池直接将太阳能转化为电能,这被公认为解决能源和环境问题最有效的途径之一。 在过去的五年中,光伏产业的年增长率超过了40%,成为目前发展最快的产业。2006年,全球太阳能电池产能达到了2520MWp,创造了一个价值120亿欧元的产业。据商业分析,2010年的太阳能产值将达到400亿欧元。 多晶硅作为太阳能电池的主要原料之一,以其相对低廉的成本,成为最重要的原材料,目前已经占据市场50%以上的份额,并且市场份额还有继续扩大的趋势。但是,由于太阳能用多晶硅原材料很多都来源于微电子工业的头尾料,从而导致太阳能用铸造多晶硅中存在大量的微缺陷和氧、氮、碳等非金属杂质,以及较多的铁、铜、镍、锰、钛等金属杂质。多晶硅中位错、晶界等这些扩展缺陷存在的悬挂键和金属杂质是少数载流子的复合中心,这些金属杂质和微缺陷在硅禁带中引人了深能级,成为光生少数载流子的复合中心,从而减少了少数载流子的寿命,严重影响了太阳电池的光电转换效率。如何消除这些因素对多晶硅电池的影响就成为当前研究的主要课题之一。 本文从太阳能电池制备工艺角度出发,综述了国内外近年来关于对铸造多晶硅杂质和缺陷的处理方法的报道,分析比较了各种处理工艺对杂质吸除效果、少子寿命的影响,并对未来的技术和工艺发展的趋势做出了展望。 二、吸杂工艺 吸杂可分为外吸杂和内吸杂,内吸杂是利用硅中氧沉积所产生的缺陷作为“陷阱”,以此捕获硅体内的杂质,从而在表面形成一层“洁净”区域用于制备器件,一般用于IC(Integrated Circuit)行业。外吸杂是采用外部吸收的方式, 使金属杂质从活跃区域移动到不产生负面效果的区域,一般是采用磷、铝的单独吸杂或两者的共同吸杂。太阳电池作为体器件,其吸杂只能使用外吸杂。

电池片生产工艺流程汇总

电池片生产工艺流程 一、制绒 a.目的 在硅片的表面形成坑凹状表面,减少电池片的反射的太阳光,增加二次反射的面积。一般情况下,用碱处理是为了得到金字塔状绒面; 用酸处理是为了得到虫孔状绒面。不管是哪种绒面,都可以提高硅片的陷光作用。 b.流程 1.常规条件下,硅与单纯的HF、HNO3(硅表面会被钝化,二氧化硅与HNO3不反应)认为是不反应的。但在两种混合酸的体系中,硅则可以与溶液进行持续的反应。 硅的氧化 硝酸/亚硝酸(HNO2)将硅氧化成二氧化硅(主要是亚硝酸将硅氧化) Si+4HNO3=SiO2+4NO2+2H2O (慢反应 3Si+4HNO3=3SiO2+4NO+2H2O (慢反应 二氧化氮、一氧化氮与水反应,生成亚硝酸,亚硝酸很快地将硅氧化成二氧化硅。 2NO2+H2O=HNO2+HNO3 (快反应 Si+4HNO2=SiO2+4NO+2H2O (快反应(第一步的主反应)

4HNO3+NO+H2O=6HNO2(快反应 只要有少量的二氧化氮生成,就会和水反应变成亚硝酸,只要少量的一氧化氮生成,就会和硝酸、水反应很快地生成亚硝酸,亚硝酸会很快的将硅氧化,生成一氧化氮,一氧化氮又与硝酸、水反应,这样一系列化学反应最终的结果是造成硅的表面被快速氧化,硝酸被还原成氮氧化物。 二氧化硅的溶解 SiO2+4HF=SiF4+2H2O(四氟化硅是气体 SiF4+2HF=H2SiF6 总反应 SiO2+6HF=H2SiF6+2H2O 最终反应掉的硅以氟硅酸的形式进入溶液。 2.清水冲洗 3.硅片经过碱液腐蚀(氢氧化钠/氢氧化钾),腐蚀掉硅片经酸液腐蚀后的多孔硅 4.硅片经HF、HCl冲洗,中和碱液,如不清洗硅片表面残留的碱液,在烘干后硅片的表面会有结晶 5.水冲洗表面,洗掉酸液 c.注意

单晶硅片制作工艺流程

单晶硅电磁片生产工艺流程 ?1、硅片切割,材料准备: ?工业制作硅电池所用的单晶硅材料,一般采用坩锅直拉法制的太阳级单晶硅棒,原始的形状为圆柱形,然后切割成方形硅片(或多晶方形硅片),硅片的边长一般为10~15cm,厚度约200~350um,电阻率约1Ω.cm的p型(掺硼)。 ?2、去除损伤层: ?硅片在切割过程会产生大量的表面缺陷,这就会产生两个问题,首先表面的质量较差,另外这些表面缺陷会在电池制造过程中导致碎片增多。因此要将切割损伤层去除,一般采用碱或酸腐蚀,腐蚀的厚度约10um。 ? ? 3、制绒: ?制绒,就是把相对光滑的原材料硅片的表面通过酸或碱腐蚀,使其凸凹不平,变得粗糙,形成漫反射,减少直射到硅片表面的太阳能的损失。对于单晶硅来说一般采用NaOH加醇的方法腐蚀,利用单晶硅的各向异性腐蚀,在表面形成无数的金字塔结构,碱液的温度约80度,浓度约1~2%,腐蚀时间约15分钟。对于多晶来说,一般采用酸法腐蚀。 ? 4、扩散制结:

?扩散的目的在于形成PN结。普遍采用磷做n型掺杂。由于固态扩散需要很高的温度,因此在扩散前硅片表面的洁净非常重要,要求硅片在制绒后要进行清洗,即用酸来中和硅片表面的碱残留和金属杂质。 ? 5、边缘刻蚀、清洗: ?扩散过程中,在硅片的周边表面也形成了扩散层。周边扩散层使电池的上下电极形成短路环,必须将它除去。周边上存在任何微小的局部短路都会使电池并联电阻下降,以至成为废品。 目前,工业化生产用等离子干法腐蚀,在辉光放电条件下通过氟和氧交替对硅作用,去除含有扩散层的周边。 扩散后清洗的目的是去除扩散过程中形成的磷硅玻璃。 ? 6、沉积减反射层: ?沉积减反射层的目的在于减少表面反射,增加折射率。广泛使用PECVD淀积SiN ,由于PECVD淀积SiN时,不光是生长SiN 作为减反射膜,同时生成了大量的原子氢,这些氢原子能对多晶硅片具有表面钝化和体钝化的双重作用,可用于大批量生产。 ? 7、丝网印刷上下电极: ?电极的制备是太阳电池制备过程中一个至关重要的步骤,它不仅决定了发射区的结构,而且也决定了电池的串联电阻和电

硅刻蚀

硅刻蚀技术简介 在半导体制程中,单晶硅与多晶硅的刻蚀通常包括湿法刻蚀和干法刻蚀,两种方法各有优劣,各有特点。 湿法刻蚀即利用特定的溶液与薄膜间所进行的化学反应来去除薄膜未被光刻胶掩膜覆盖的部分,而达到刻蚀的目的。因为湿法刻蚀是利用化学反应来进行薄膜的去除,而化学反应本身不具方向性,因此湿法刻蚀过程为等向性。湿法刻蚀过程可分为三个步骤:1) 化学刻蚀液扩散至待刻蚀材料之表面;2) 刻蚀液与待刻蚀材料发生化学反应; 3) 反应后之产物从刻蚀材料之表面扩散至溶液中,并随溶液排出。 湿法刻蚀之所以在微电子制作过程中被广泛的采用乃由于其具有低成本、高可靠性、高产能及优越的刻蚀选择比等优点。但相对于干法刻蚀,除了无法定义较细的线宽外,湿法刻蚀仍有以下的缺点:1) 需花费较高成本的反应溶液及去离子水;2) 化学药品处理时人员所遭遇的安全问题;3) 光刻胶掩膜附着性问题;4) 气泡形成及化学腐蚀液无法完全与晶片表面接触所造成的不完全及不均匀的刻蚀。 基于以上种种原因,这里就以下三个方面着重介绍下干法刻蚀。 1、硅等离子体刻蚀工艺的基本原理 干法刻蚀是利用射频电源使反应气体生成反应活性高的离子和电子,对硅片进行物理轰击及化学反应,以选择性的去除我们需要去除的区域。被刻蚀的物质变成挥发性的气体,经抽气系统抽离,最后按照设计图形要求刻蚀出我们需要实现的深度。 干法刻蚀可以实现各向异性,垂直方向的刻蚀速率远大于侧向的。其原理如图所示,生成CF基的聚合物以进行侧壁掩护,以实现各向异性刻蚀。 刻蚀过程一般来说包含物理溅射性刻蚀和化学反应性刻蚀。对于物理溅射性刻蚀就是利用辉光放电,将气体解离成带正电的离子,再利用偏压将离子加速,溅击在被蚀刻物的表面,而将被蚀刻物质原子击出(各向异性)。对于化学反应性刻蚀则是产生化学活性极强的原(分)子团,此原(分)子团扩散至待刻蚀物质的表面,并与待刻蚀物质反应产生挥发性的反应生成物(各向同性),并被真空设备抽离反应腔。 2、硅刻蚀工艺的要求

单晶硅生产工艺

什么是单晶硅 单晶硅可以用于二极管级、整流器件级、电路级以及太阳能电池级单晶产品的生产和深加工制造,其后续产品集成电路和半导体分离器件已广泛应用于各个领域,在军事电子设备中也占有重要地位。 在光伏技术和微小型半导体逆变器技术飞速发展的今天,利用硅单晶所生产的太阳能电池可以直接把太阳能转化为光能,实现了迈向绿色能源革命的开始。北京2008年奥运会将把“绿色奥运”做为重要展示面向全世界展现,单晶硅的利用在其中将是非常重要的一环。现在,国外的太阳能光伏电站已经到了理论成熟阶段,正在向实际应用阶段过渡,太阳能硅单晶的利用将是普及到全世界范围,市场需求量不言而喻。 单晶硅产品包括φ3”----φ6”单晶硅圆形棒、片及方形棒、片,适合各种半导体、电子类产品的生产需要,其产品质量经过当前世界上最先进的检测仪器进行检验,达到世界先进水平。 相对多晶硅是在单籽晶为生长核,生长的而得的。单晶硅原子以三维空间模式周期形成的长程有序的晶体。多晶硅是很多具有不同晶向的小单晶体单独形成的,不能用来做半导体电路。多晶硅必须融化成单晶体,才能加工成半导体应用中使用的晶圆片 加工工艺: 加料—→熔化—→缩颈生长—→放肩生长—→等径生长—→尾部生长 (1)加料:将多晶硅原料及杂质放入石英坩埚内,杂质的种类依电阻的N或P型而定。杂质种类有硼,磷,锑,砷。 (2)熔化:加完多晶硅原料于石英埚内后,长晶炉必须关闭并抽成真空后充入高纯氩气使之维持一定压力范围内,然后打开石墨加热器电源,加热至熔化温度(1420℃)以上,将多晶硅原料熔化。 (3)缩颈生长:当硅熔体的温度稳定之后,将籽晶慢慢浸入硅熔体中。由于籽晶与硅熔体场接触时的热应力,会使籽晶产生位错,这些位错必须利用缩颈生长使之消失掉。缩颈生长是将籽晶快速向上提升,使长出的籽晶的直径缩小到一定大小(4-6mm)由于位错线与生长轴成一个交角,只要缩颈够长,位错便能长出晶体表面,产生零位错的晶体。 (4)放肩生长:长完细颈之后,须降低温度与拉速,使得晶体的直径渐渐增大到所需的大小。 (5)等径生长:长完细颈和肩部之后,借着拉速与温度的不断调整,可使晶棒直径维持在正负2mm之间,这段直径固定的部分即称为等径部分。单晶硅片取自于等径部分。 (6)尾部生长:在长完等径部分之后,如果立刻将晶棒与液面分开,那么热应力

铸造多晶硅小平面枝晶生长机制的研究

13)增刊(Ⅱ)-0192-06 铸造多晶硅小平面枝晶生长机制的研究? 罗大伟1,龙剑平1,李廷举2 (1.成都理工大学材料与化学化工学院,四川成都610059; 2.大连理工大学材料科学与工程学院,辽宁大连116024) 摘一要:一近些年来由于低成本二低耗能和少污染等特点,铸造多晶硅已成为主要的光伏材料之一,越来越受到人们的广泛关注三但通过定向凝固工艺获得的粗大的晶体中存在大量的孪晶,认为孪晶就有可能对晶体生长起着主导作用三采用自行设计的真空电磁感应熔炼炉及定向凝固炉对冶金级多晶硅进行了真空条件下的定向凝固实验,通过对定向凝固铸锭的观察和分析并结合国内外其它研究机构在此方面的研究,对铸造多晶硅中平行孪晶的生长机制和小平面枝晶的生长机制进行了详细的分析和讨论三 关键词:一铸造多晶硅;平行孪晶;定向凝固;生长机制中图分类号:一TM914.4文献标识码:A DOI:10.3969/j.issn.1001-9731.2013.增刊(Ⅱ).005 1一引一言 由于制备成本低廉及工艺简单等特点,自20世纪70年代以来铸造多晶硅制备技术在国内外得到迅速的发展三多晶硅目前已经成为最主要的光伏材料之一,但与单晶硅相比,由于用于制备多晶硅的原材料中含有较高的杂质元素,并且结晶条件和结晶组织也有差异,故多晶硅铸锭中存在较多的位错二孪晶等晶体缺陷,它们在光电转换器件中成为载流子的复合中心,从而严重影响太阳电池的光电转换效率三研究表明,铸造多晶硅的晶粒尺寸越大越好,这样可以减少晶界的表面积,并且最好使晶界方向与硅晶片表面相互垂直,这样可以明显降低晶界对多晶硅太阳电池转换效率的影响[1]三通过采用定向凝固技术可以获得沿生长方向整齐排列的粗大柱状晶组织,这些粗大的柱状晶尺寸减少了晶界数量同时也有利于提高太阳电池转换效率三因而研究铸造多晶硅中各类晶体缺陷的分布及其控制方法,对于多晶硅材料的进一步发展具有重要意义三孪晶是多晶硅中出现较多的另一类晶体缺陷三许多研究已经报道了关于小平面方式生长晶体(例如Si二Ge和Bi等)中的孪晶生长现象[2-5]三这些研究表明晶粒的生长方向与孪晶的表面是平行的,既然在这些晶体中存在大量的孪晶,那么孪晶就有可能对晶体生长起着主导作用三虽然孪晶的晶界并不捕获杂质,由于它们高度一致的晶界,因此在太阳电池器件中孪晶对于其光电转换效率的影响是微乎其微的三但是普通的晶界却能够引起杂质的诱捕,因此为了对杂质诱捕位置处的晶界进行评估,消除晶粒边界处的孪晶晶界是非常必要的三本文以经纯化处理的优级冶金级硅为原料,采用自行设计的真空电磁感应熔炼炉及定向凝固炉对冶金级多晶硅进行了真空条件下的定向凝固实验三采用光学金相显微镜对多晶硅铸锭中孪晶的分布规律进行观察和分析,同时对铸造多晶硅中平行孪晶的生长机制和小平面枝晶的生长机制进行了详细的分析和讨论三 2一实一验 自主设计的真空感应熔炼炉的结构示意图如图1所示三真空感应熔炼炉主要由两部分组成,即感应熔炼部分和定向凝固部分三其中感应熔炼炉的最大功率和频率分别为200kW和3000Hz三而定向凝固部分则由4段保温装置所构成,从而为定向凝固过程提供一个从上到下具有负温度梯度的温度场三实验所用的硅料为经过酸洗处理的粒度在0.3~0.5mm之间,质量为2.5k g三 图1一真空感应熔炼炉的结构示意图 Fi g1The structure dia g ram of vacuum induction meltin g furnace 实验具体过程如下:将经过酸洗的硅料放入石英 ?基金项目:四川省科技支撑资助项目(2010GZ0228) 收到初稿日期:2013-01-03收到修改稿日期:2013-07-03通讯作者:罗大伟作者简介:罗大伟一(1983-),男,内蒙古通辽人,副教授,主要从事新能源材料制备与研究三

定向凝固制备铸造多晶硅的原理及应用综述

定向凝固制备铸造多晶硅的原理及应用综述 摘要:阐述了介绍了定向凝固应用于硅材料的理论基础,论述了近年来定向凝固制备技术在杂质提纯和晶体生长的研究进展,提出了定向凝固制备铸造多晶硅研究现状和存在的问题。展望今后的发展前景,认为新型的定向凝固技术制备出的硅锭在杂质含量、晶体结构方面均优于传统凝固技术,应积极改善定向凝固技术,以制备高品质的太阳能硅材料。 关键词定向凝固;铸造多晶硅;杂质和缺陷;转化效率 晶体硅太阳能电池包括单晶电池和多晶电池2种,多晶电池的市场份额占到一半以上,商业化的多晶电池效率可以达到14%左右[1]。实验条件下,多晶电池的最高转化效率达到20.30左右,多晶电池的效率虽然略低于单晶电池1%~2%,但多晶电池制造成本低、环境污染小,仍有很高的性价比和市场[2]。近年来,由于技术改良、电池效率提高及生产成本下降等有利因素,因而大大促进了多晶电池应用技术的发展,也使业内专家学者给予了多晶电池制备技术更多研究和关注[3]。影响多晶电池转换效率主要有2个方面:一是多晶硅铸锭的纯度,即使材料中含有少量的杂质,对电池的光电性能就有很大的影响[4];二是尽量减少材料中各种缺陷,多晶硅铸锭中的晶界、位错与杂质聚集成载流子复合中心,大大的降低了多晶电池效率。由以上表述可知,要提高多晶电池的效率,必须围绕提高材料纯度和降低材料缺陷的技术进行研究,而定向凝固技术正是制备硅晶体材料的典型应用。定向凝固技术开始只用于传统的高温合金研制,经过几十年的发展,它已经是一种成熟的材料制备技术[5]。定向凝固技术在多晶硅铸造主要是控制晶体生长和杂质提纯2方面的应用。定向凝固技术可以很好地控制组织的晶面取向,消除横向晶界,获得大晶粒或单晶组织,提高材料的力学性能[6]。同时,定向凝固可生成按照一定晶面取向、排列整齐的晶体结构,由于分凝系数的不同,杂质凝聚于晶界和铸锭上方,对材料起到提纯作用。 1. 基本原理 多晶硅铸锭实际上就是由定向排列的柱状晶体组合形成,形成的理论基础就

晶体硅的生产过程

一、单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。 单晶硅棒是生产单晶硅片的原材料,随着国内和国际市场对单晶硅片需求量的快速增加,单晶硅棒的市场需求也呈快速增长的趋势。 单晶硅圆片按其直径分为6英寸、8英寸、12英寸(300毫米)及18英寸(450毫米)等。直径越大的圆片,所能刻制的集成电路越多,芯片的成本也就越低。但大尺寸晶片对材料和技术的要求也越高。单晶硅按晶体生长方法的不同,分为直拉法(CZ)、区熔法(FZ)和外延法。直拉法、区熔法生长单晶硅棒材,外延法生长单晶硅薄膜。直拉法生长的单晶硅主要用于半导体集成电路、二极管、外延片衬底、太阳能电池。目前晶体直径可控制在Φ3~8英寸。区熔法单晶主要用于高压大功率可控整流器件领域,广泛用于大功率输变电、电力机车、整流、变频、机电一体化、节能灯、电视机等系列产品。目前晶体直径可控制在Φ3~6英寸。外延片主要用于集成电路领域。 由于成本和性能的原因,直拉法(CZ)单晶硅材料应用最广。在IC工业中所用的材料主要是CZ抛光片和外延片。存储器电路通常使用CZ抛光片,因成本较低。逻辑电路一般使用价格较高的外延片,因其在IC制造中有更好的适用性并具有消除Latch-up的能力。 单晶硅也称硅单晶,是电子信息材料中最基础性材料,属半导体材料类。单晶硅已渗透到国民经济和国防科技中各个领域,当今全球超过2000亿美元的电子通信半导体市场中95%以上的半导体器件及99%以上的集成电路用硅。 二、硅片直径越大,技术要求越高,越有市场前景,价值也就越高。 日本、美国和德国是主要的硅材料生产国。中国硅材料工业与日本同时起步,但总体而言,生产技术水平仍然相对较低,而且大部分为2.5、3、4、5英寸硅锭和小直径硅片。中国消耗的大部分集成电路及其硅片仍然依赖进口。但我国科技人员正迎头赶上,于1998年成功地制造出了12英寸单晶硅,标志着我国单晶硅生产进入了新的发展时期。 目前,全世界单晶硅的产能为1万吨/年,年消耗量约为6000吨~7000吨。未来几年中,

单晶硅生产工艺及单晶硅片生产工艺

单晶硅生产工艺及单晶硅片生产工艺 单晶硅原子以三维空间模式周期形成的长程有序的晶体。多晶硅是很多具有不同晶向的小单晶体单独形成的,不能用来做半导体电路。多晶硅必须融化成单晶体,才能加工成半导体应用中使用的晶圆片。 加工工艺: 加料—→熔化—→缩颈生长—→放肩生长—→等径生长—→尾部生长(1)加料:将多晶硅原料及杂质放入石英坩埚内,杂质的种类依电阻的N或P型而定。杂质种类有硼,磷,锑,砷。 (2)熔化:加完多晶硅原料于石英埚内后,长晶炉必须关闭并抽成真空后充入高纯氩气使之维持一定压力范围内,然后打开石墨加热器电源,加热至熔化温度(1420℃)以上,将多晶硅原料熔化。 (3)缩颈生长:当硅熔体的温度稳定之后,将籽晶慢慢浸入硅熔体中。由于籽晶与硅熔体场接触时的热应力,会使籽晶产生位错,这些位错必须利用缩颈生长使之消失掉。缩颈生长是将籽晶快速向上提升,使长出的籽晶的直径缩小到一定大小(4-6mm)由于位错线与生长轴成一个交角,只要缩颈够长,位错便能长出晶体表面,产生零位错的晶体。 (4)放肩生长:长完细颈之后,须降低温度与拉速,使得晶体的直径渐渐增大到所需的大小。 (5)等径生长:长完细颈和肩部之后,借着拉速与温度的不断调整,可使晶棒直径维持在正负2mm之间,这段直径固定的部分即称为等径部分。单晶硅片取自于等径部分。 (6)尾部生长:在长完等径部分之后,如果立刻将晶棒与液面分开,那么热应力将使得晶棒出现位错与滑移线。于是为了避免此问题的发生,必须将晶棒的直径慢慢缩小,直到成一尖点而与液面分开。这一过程称之为尾部生长。长完的晶棒被升至上炉室冷却一段时间后取出,即完成一次生长周期。 单晶硅棒加工成单晶硅抛光硅片 加工流程: 单晶生长—→切断—→外径滚磨—→平边或V型槽处理—→切片 倒角—→研磨腐蚀—→抛光—→清洗—→包装

多晶硅中杂质含量_分布及其检测方法的探讨

2013年7月Jul.2013 化 学工业与工程CHEMICAL INDUSTRY AND ENGINEERING 第30卷Vol.30 第4期No.4 收稿日期:2012-04-25 作者简介:李闻笛(1987-),女,硕士研究生,研究方向为高纯三氯氢硅精馏提纯模拟。 联系人:丛山, E-mail :congshan_tju@yahoo.com.cn 櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓櫓毄 毄 毄 毄 。应用技术 文章编号:1004-9533(2013)04-0073-06 多晶硅中杂质含量、分布及其检测方法的探讨 李闻笛1,廉景燕2 ,丛 山 3* (1.天津大学化工学院,天津300072;2.天津理工大学化学化工学院,天津300384; 3.精馏技术国家工程研究中心,天津300072) 摘要:多晶硅中杂质的组成及含量是衡量多晶硅产品质量的重要指标之一,由于其杂质组成复杂、 含量低于常规检测方法检出限,这就使对多晶硅中杂质含量、分布及检测方法的研究具有重要意义。概述了目前用于检测分析多晶硅中杂质含量、分布的方法及其优缺点;总结了近年来国内外在多晶硅杂质检测方法研究中的进展以及多晶硅中杂质的含量和分布数据,为多晶硅的检测提供了参考。 关键词:多晶硅;杂质;含量;分布;检测方法中图分类号:O657.3 文献标志码:A Discussion of Concentration ,Distribution and Detection Methods of Impurities in Polysilicon LI Wen-di 1,LIAN Jing-yan 2,CONG Shan 3* (1.School of Chemical Engineering and Technology ,Tianjin University ,Tianjin 300072,China ;2.School of Chemistry and Chemical Engineering ,Tianjin University of Technology ,Tianjin 300384,China ; 3.National Engineering Research Center for Distillation Technology ,Tianjin 300072,China ) Abstract :Composition and concentration of impurities in polysilicon are important factors determining the quality of polysilicon production.Due to the complex composition and the trace concentration of impuri-ties which are below the limit of traditional detection methods ,it had great significance for the discussion of concentration and distribution of impurities in polysilicon.In this paper ,the advantages and disadvan-tages of different detection methods used for analysising and detecting the concentration and distribution of impurities were summarized.Progress in research of detection methods and data of concentration as well as distribution were also discussed ,which may provide a reference for the detection of polysilicon.Key words :polysilicon ;impurity ;concentration ;distribution ;detection method 多晶硅产业最大的特点之一就是其对产品质量分数的要求非常高,太阳能级和电子级多晶硅的质量分数分别要求达到至少6N (99.9999%)、8N (99.999999%),而杂质含量也是公认的衡量多晶 硅材料质量的重要参数之一。因此,如何尽可能的除去多晶硅产品中的微量杂质是众多学者研究的重点。要实现微量杂质的脱除,首先就有必要对其中所含的微量杂质进行分析, 确定杂质的组成和含DOI:10.13353/j.issn.1004.9533.2013.04.009

多晶硅刻蚀特性的研究

多晶硅刻蚀特性的研究 随着硅珊MOS器件的出现,多晶硅渐渐成为先进器件材料的主力军。文章主要对多晶硅刻蚀的特性进行研究,希望能够给相关人士一定的借鉴。 标签:多晶硅;刻蚀;研究 1 硅和多晶硅刻蚀的介绍 硅栅(Poly Gate)的干法刻蚀: 随着晶体管尺寸的不断缩小对硅栅的刻蚀就越具有挑战性。因为受到光刻线宽的限制,为达到最后的CD线宽要求往往需要先对光阻进行缩小处理,然后进一步往下刻蚀。BARC打开后,再以光阻为阻挡层将TEOS打开。接着把剩余的光阻去除,再以TEOS作为阻挡层对硅栅进性刻蚀。为了保护栅极氧化层不被损伤,通常要把硅栅的刻蚀分成几个步骤:主刻蚀、着陆刻蚀和过刻蚀。主刻蚀通常有比较高的刻蚀率但对氧化硅的选择比较小。通过主刻蚀可基本决定硅栅的剖面轮廓和关键尺寸。着陆刻蚀通常对栅极氧化层有比较高的选择比以确保栅极氧化层不被损伤。一旦触及到栅极氧化层后就必须转成对氧化硅选择比更高的过刻蚀步骤以确保把残余的硅清除干净而不损伤到栅极氧化层。 Cl2,HBr,HCl是硅栅刻蚀的主要气体,Cl2和硅反应生成挥发性的SiCl4而HBr和硅反应生成的SiBr4同样具有挥发性。为了避免伤及栅极氧化层,任何带F基的气体如CF4,SF6,NF3都不能在过刻蚀的步骤中使用。 2 硅和多晶硅刻蚀的结构 我们介绍一个Logic刻蚀的程式,刻蚀多晶硅的结构包括PR,SION,Poly,Oxide。多晶硅的线宽要求非常小。如图1所示。 在MOS器件中,掺杂的LPCVD多晶硅是用做栅极的导电材料。掺杂多晶硅线宽决定了有源器件的栅长,并会影响晶体管的性能。因此,CD控制是很关键的。多晶硅栅的刻蚀工艺必须对下层栅氧化层有高的选择比并具有非常好的均匀性和可重复性。同时也要求高度的各向异性,因为多晶硅栅在源/漏的注入过程中起阻挡层的作用。倾斜的侧壁会引起多晶硅栅结构下面部分的掺杂。 刻蚀多晶硅(硅)通常是一个三步工艺过程。这使得在不同的刻蚀步骤中能对各向异性刻蚀和选择比进行优化。这三个步骤是: (1)第一步是预刻蚀,用于去除自然氧化层、硬的掩蔽层(如SiON)和表面污染物来获得均匀的刻蚀(这减少了刻蚀中作为微掩蔽层的污染物带来的表面缺陷)。

相关主题
文本预览
相关文档 最新文档