当前位置:文档之家› 人教版八年级数学分式知识点及典型例题

人教版八年级数学分式知识点及典型例题

人教版八年级数学分式知识点及典型例题
人教版八年级数学分式知识点及典型例题

分式的知识点及典型例题分析

1、分式的定义:

例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、432

2b a -、2-a 2、m 1、65xy x 1、2

1

、212+x 、

π

xy

3、

y x +3、m

a 1

+中分式的个数为( ) (A) 2 (B) 3 (C ) 4 (D) 5

练习题:(1)下列式子中,是分式的有 .

⑴275x x -+; ⑵ 1

23

x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +.

(2)下列式子,哪些是分式?

5a -; 234x +;3

y y ; 78x π+;2x xy x y +-;145

b -+.

2、分式有,无意义,总有意义:

(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12+x ≠0)

例1:当x 时,分式51

-x 有意义; 例2:分式x

x -+212中,当____=x 时,分式没有意义

例3:当x 时,分式112-x 有意义。 例4:当x 时,分式1

2+x x

有意义

例5:x ,y 满足关系 时,分式

x y

x y

-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( )

A .

122+x x B.12+x x C.1

33+x x

D.25x x -

例7:使分式2

+x x

有意义的x 的取值范围为( )A.2≠x B.2-≠x C .2->x D .2

例8:要是分式)

3)(1(2

-+-x x x 没有意义,则x 的值为( )A. 2 B .-1或-3 C. -1

D.3

同步练习题:

3、分式的值为零:

使分式值为零:令分子=0且分母≠0,注意:当分子等于0使,看看是否使分母=0了,如果使分母=0了,那么要舍去。

例1:当x 时,分式1

21+-a a

的值为0 例2:当x 时,分式

112+-x x 的值为0 例3:如果分式2

2+-a a 的值为为零,则a 的值为( ) A. 2± B.2 C. 2-

D.以上全不对

例4:能使分式1

22--x x x 的值为零的所有x 的值是 ( )

A 0=x B 1=x C0=x 或1=x D 0=x 或1±=x

例5:要使分式6

59

22+--x x x 的值为0,则x 的值为( )A.3或-3 ?B.3 C.-3

D 2 例6:若

01=+a

a

,则a是( )A .正数 B.负数 C.零 D.任意有理数 4、分式的基本性质的应用:

分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 例1:aby a xy = ; z y z y z y x +=++2

)(3)(6 ;如果75

)13(7)13(5=++a a 成立,则a的取值范围是________;

C

B C A B A ??=

C B C

A B A ÷÷=

()0≠C

例2:)(1

332

=

b

a ab

)(c

b a

c b --=+- 例3:如果把分式b

a b

a ++2中的a和

b 都扩大10倍,那么分式的值( )

A 、扩大10倍 B、缩小10倍 C 、是原来的20倍 D 、不变 例4:如果把分式

y

x x

+10中的x ,y 都扩大10倍,则分式的值( ) A.扩大100倍 B.扩大10倍 C.不变 D.缩小到原来的10

1 例5:如果把分式

y

x xy

+中的x 和y 都扩大2倍,即分式的值( ) A、扩大2倍; B 、扩大4倍; C、不变; D 缩小2倍 例6:如果把分式

y

x y

x +-中的x 和y都扩大2倍,即分式的值( ) A、扩大2倍; B、扩大4倍; C、不变; D 缩小2倍 例7:如果把分式

xy

y

x -中的x和y 都扩大2倍,即分式的值( ) A 、扩大2倍; B 、扩大4倍; C 、不变; D 缩小2

1倍 例8:若把分式

x

y

x 23+的x、y 同时缩小12倍,则分式的值(? ) A .扩大12倍 B .缩小12倍 C.不变 ?D .缩小6倍

例9:若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )

A 、y x 23

B 、223y x

C 、y x 232

D 、2323y

x

例10:根据分式的基本性质,分式

b

a a

--可变形为( ) A b a a -- B b a a + C b a a -- D b

a a +-

例11:不改变分式的值,使分式的分子、分母中各项系数都为整数,=---05

.0012

.02.0x x ;

例12:不改变分式的值,使分子、分母最高次项的系数为正数, 2

11x x x

-+--= 。

5、分式的约分及最简分式:

①约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分

②分式约分的依据:分式的基本性质.

③分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式. ④约分的结果:最简分式(分子与分母没有公因式的分式,叫做最简分式) 约分主要分为两类:第一类:分子分母是单项式的,主要分数字,同字母进行约分。

第二类:分子分母是多项式的,把分子分母能因式分解的都要进行因式分解,再去找共同的因式约去。

例1:下列式子(1)

y x y x y x -=--122;(2)c

a b

a a c a

b --=

--;(3)1-=--b a a b ;(4)y x y x y x y x +-=--+-中正确的是( )A 、1个 B 、2 个 C 、 3 个 D 、 4 个

例2:下列约分正确的是( )

A 、3

26x x x =; B 、

0=++y x y x ; C 、x xy x y x 12=++; D 、2

14222=y x xy 例3:下列式子正确的是( ) A

022=++y

x y

x B.

1-=-+-y

a y

a C .x

z y x z x y -+=+-

D.

0=+--=+--a

d

c d c a d c a d c 例4:下列运算正确的是( )

A、a a a b a b =--+ B 、2412x x ÷= C 、22a a b b = D 、111

2m m m

-=

例5:下列式子正确的是( )

A.22a b a b = B.0=++b a b a C .1-=-+-b a b a D.b

a b

a b a b a +-=

+-232.03.01.0 例6:化简2

293m m m --的结果是( )A 、3+m m B 、3

+-m m C 、3-m m

D、m

m -3 例7:约分:=

-2

264xy y

x ;932--x x = ;()xy xy 132=;

(

)y x y x y x 536.03151+=-+。

例8:约分: 224

44a a a -++= ; =y x xy 2164 ;=++)()

(b a b b a a ; =--2

)(y x y x =-+2

2y x ay

ax

;=++-16

816

2

2x x x

=+-6

29

2x x 23314___________21a bc a bc -= 29__________3m m -=+=b

a ab

2205__________=+--9

69

2

2x x x __________。 例9:分式

3a 2a 2++,2

2b a b a --,)b a (12a 4-,2x 1

-中,最简分式有( )

A.1个

B.2个

C.3个

D.4个

6、分式的乘,除,乘方:

分式的乘法:乘法法测:

b a ·d

c =bd

ac . 分式的除法:除法法则:b a ÷d c =b a ·c

d

=bc ad

分式的乘方:求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(b a

)n .分式的乘方,

是把分子、分母各自乘方.用式子表示为:(b

a )n=n n

b a (n 为正整数)

例题:

计算:(1)7

4

6239251526y x x x -?

(2)13410431005612516a x a y x ÷ (3)a a a 1?÷ 计算:(4)24222a ab a b a ab a b a --?+- (5)425

5222--?+-x x x x (6)2144122++÷++-a a a a a

计算:(7)3

2

2

346y x y x -? (8)a b ab 2362÷- (9)()2

xy xy x x y -?- 计算:(10)

2

2221106532x

y

x y y x ÷? (11) 22213(1)69x x x x x x x -+÷-?+++(12)

()22

12

1441

a a a a a a -+÷+?++- 计算:(13)1112421222-÷+--?+-a a a a a a (14)()633446222-+-÷--÷+--a a a

a a a a 求值题:(1)已知:43=y x ,求xy

x y xy y xy x y x -+÷

+--22

22222的值。 (2)已知:x y y x 39-=+,求2

22

2y x y x +-的值。 (3)已知:311=-y x ,求y

xy x y

xy x ---+2232的值。 例题:

计算:(1)232()3y x = (2)5

2???

??-b a = (3)3

2323???

?

?

?-x y = 计算:(4)3

222???

???????? ??a b = (5)()4

3

22ab a b b a -÷?

??? ??-???? ??- (6)2

2221111???

??-+-???? ??-÷--a a a a a a a

求值题:(1)已知:

4

32z

y x == 求222z y x xz yz xy ++++的值。

(2)已知:0325102

=-++-y x x 求y

xy x

x 222++的值。

例题:计算y

x x

x y x y x +?+÷+2

22

)(的结果是( )A y x x +22 B y x +2 C y 1 D y

+11

例题:化简x y x x 1?÷的结果是( )A. 1 B. xy C. x

y D .

y

x 计算:(1)422448223-+?++-x x x x x x ;(2)1221

122

2+-÷-+-x x x x x (3)(a 2-1)·22221a a a +-+÷122a a +-

7、分式的通分及最简公分母:

通分:主要分为两类:第一类:分母是单项式;第二类:分母是多项式(要先把分母因式分解) 分为三种类型:“二、三”型;“二、四”型;“四、六”型等三种类型。 “二、三”型:指几个分母之间没有关系,最简公分母就是它们的乘积。 例如:

2

22--

+x x

x 最简公分母就是()()22-+x x 。 “二、四”型:指其一个分母完全包括另一个分母,最简公分母就是其一的那个分母。 例如:

4

222

--+x x

x 最简公分母就是[][]()2242-+=-x x x “四、六”型:指几个分母之间有相同的因式,同时也有独特的因式,最简公分母要有独特的;相同的都要有。 例如:

()()

22

22-+-x x x x 最简公分母是:()22-x x

这些类型自己要在做题过程中仔细地去了解和应用,仔细的去发现之间的区别与联系。 例1:分式

n

m n m n m --+2

,1,12

2的最简公分母是( ) A.))((22n m n m -+ B.222)(n m - C .)()(2n m n m -+ D.22n m - 例2:对分式

2y

x ,23x y ,14xy

通分时, 最简公分母是( ) A .24x2y 3 B.12x2y2 C .24xy2 D .12x y2

例3:下面各分式:221x x x -+,22x y x y +-,11x x --+,22

22

x y x y +-,其中最简分式有( )个。

A. 4

??B. 3 ? C. 2?? ?D. 1

例4:分式

412

-a ,4

2-a a 的最简公分母是 . 例5:分式a与1

b

的最简公分母为________________;

例6:分式xy

x y x +--2

221

,1的最简公分母为 。

8、分式的加减:

分式加减主体分为:同分母和异分母分式加减。 1、同分母分式不用通分,分母不变,分子相加减。

2、异分母分式要先通分,在变成同分母分式就可以了。

通分方法:先观察分母是单项式还是多项式,如果是单项式那就继续考虑是什么类型,找出最简公分母,进行通分;如果是多项式,那么先把分母能分解的要因式分解,考虑什么类型,继续通分。

分类:第一类:是分式之间的加减,第二类:是整式与分式的加减。

例1:m

n

m 22-= 例2:141322222--+-+a a a a = 例3:

x y x

y x y -+-= 例4:2

2222222y

x x x y y y x y x ---+-+= 计算:(1)41

33m m m -+++ (2)a b b b a a -+- (3) 2

222)

()(a b b b a a --- (4) 2253a b ab +-2235a b ab --22

8a b

ab

+.

例5:化简1x +12x +1

3x 等于( ) A .12x B.32x C .116x D.56x

例6:c a b c a b +- 例7:221

42a a a --- 例8:

x x x x ---3)

3(32

例9:

x x x x x x 13632+-+-- 例10:2212a a a ++--2

2

4

a a -- 例11:11--+a a a 例12:

2

11

x x x --- 练习题:(1)

22a b ab b a b -++ (2) x

x x x +-+-+-2144212

(3) 2129a -+2

3a -. (4) b a b -a b 2++ (5) 2x y

x y y x

---- 例13:计算1

1--+a a

a 的结果是( )A 11-a B 11--a C 112---a a a D

1-a

例14:请先化简:

2

1224

x

x x ---,然后选择一个使原式有意义而又喜欢的数代入求值. 例15:已知:0342=-+x x 求4

42122

++--+x x x

x x 的值。

9、分式的混合运算:

例1:4

421642++

-÷-x x

x x 例2:34121311222+++-?-+-+x x x x x x x 例3:222)2222(x x x x x x x -?-+-+- 例4:1342+??

?? ?

?+-x x x 例5:1

111-÷??? ??

--x x x 例6:2

2224421y xy x y x y x y x ++-÷+-- 例72

2112(

)2y

x y x y x xy y -÷-+-+ 例8: x

x x x x

x x 1

1212

2

÷??? ??+---+ 例9: x x x x x x x x 4

)4

4122(

22-÷+----+

练习题:

10、分式求值问题: 例1:已知x 为整数,且23x ++23x -+22189

x x +-为整数,求所有符合条件的x值的和. 例2:已知x=2,y =

12,求222424()()x y x y ??-??+-??÷11x y x y ??+ ?+-?

?的值. 例3:已知实数x 满足4x 2-4x+l =O ,则代数式2x+

x

21

的值为________. 例4:已知实数a 满足a 2

+2a-8=0,求3

41

21311222+++-?

-+-+a a a a a a a 的值. 例5:若13x x += 求12

42++x x x 的值是( ).A.81 B.101 C.21 D .41

例6:已知113x y -=,求代数式21422x xy y

x xy y

----的值

例7:先化简,再对a 取一个合适的数,代入求值22

1369

324

a a a a a a a +--+-÷-+-. 练习题:

(1)168422+--x x x x ,其中x=5. (2)16

16822-+-a a a ,其中a=5 (3)2222b ab a ab

a +++,其中

a=-3,b=2

(4)21

44122++÷

++-a a a a a ;其中a=85; (5)x

x x x x x x x 4)44122(22-÷+----+,其中x= -1 (6)先化简,再求值:

324x x --÷(x +2-5

2

x -).其中x =-2. (7)3,3

2

,1)()2(2

22222-==+--+÷+---b a b a a b a a b ab a a b a a 其中 (8)先化简,2

11

1x x x -??+÷ ???

,再选择一个你喜欢的数代入求值.

11、分式其他类型试题: 例1:观察下面一列有规律的数:32,83,154,245,356,48

7

,……. 根据其规律可知第n个数应是___(n 为正整数)

例2: 观察下面一列分式:2345124816

,,,,,...,x x x x x

---根据你的发现,它的第8项是 ,

第n 项是 。 例3: ( ) A 10 B 20 C 55 D 50

例4:当x=_______时,分式x -51与x

3210

-互为相反数.

例5:在正数范围内定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则x ☆2

3

)1(=+x 的

解为

( ?) A .3

2

=x ?B .1=x C .3

2-=x 或1 ?D.32

=x 或1-

例6:已知

4

)4(422+++=+x C

Bx x A x x ,则___________,_____,===C B A ;

例7: 已知

37(1)(2)12

y A B

y y y y +=+----,则( )

A.10,13A B =-=

B.10,13A B == C .10,13A B ==- D.10,13A B =-=- 例8:已知y x 32=,求2

2

2

22y x y y x xy --+的值; 例9:设mn n m =-,则

n m 11-的值是( ) A.

mn

1

B .0 C.1 D.1-

例10:请从下列三个代数式中任选两个构成一个分式,并化简该分式

x2-4xy+4y2 x2-4y2 x-2y

例11:先填空后计算:

①111+-n n = 。2111+-

+n n = 。3

1

21+-

+n n = 。(3分) ②(本小题4分)计算:)

2008)(2007(1

)3)(2(1)2)(1(1)1(1+++++++++++n n n n n n n n

解:)2008)(2007(1

)3)(2(1)2)(1(1)1(1+++++++++++n n n n n n n n

=

12、化为一元一次的分式方程:

(1)分式方程:含分式,并且分母中含未知数的方程——分式方程。 (2)解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

(3)解分式方程的步骤 :(1)能化简的先化简; (2)方程两边同乘以最简公分母,化为整式方程;

(3)解整式方程; (4)验根.

例1:如果分式121

+-x x 的值为-1,则x 的值是 ;

例2:要使2

415--x x 与的值相等,则x =__________。 例3:当m=_____时,方程21mx m x

+-=2的根为1

2.

例4:如果方程3)

1(2

=-x a 的解是x =5,则a= 。

例5:(1)

132+=x x (2) 131

32=-+--x x x

例6:解方程:2

2

416222-+=

--+-x x x x x 例7:已知:关于x 的方程x x x a --=

-+34

31无解,求a 的值。 例8:已知关于x 的方程12

-=-+x a

x 的根是正数,求a 的取值范围。

例9:若分式21+x 与3

2

--x x 的2倍互为相反数,则所列方程为______________________

_____;

例10:当m 为何值时间?关于x 的方程2

1

122---

+=--x x x x x x m 的解为负数? 例11:解关于x 的方程)0(2≠-=

+-a a

b x a

x b

例12:解关于x的方程:)0(2112

2≠-=--+++a b

a a

b a x b a x 例13:当a 为何值时,

)

1)(2(21221+-+=+----x x a

x x x x x 的解是负数? 例14:先化简,再求值:22

2)(222--+++-?-y x x y x y x y x x ,其中x,y 满足方程组??

?-=-=+232y x y x 例15知关于x 的方程

)

1)(2(121-+=--+-x x m

x x x x 的解为负值,求m 的取值范围。 练习题: (1) 16

4

412-=-x x (2)

0)

1(213=-+--x x x x (3)

X X X

+--=-15

13112

(4)625+-=-x x x x (5)2

1

63524245--+=--x x x x (6)11112-=-x x (7) x x x --=+-21321 (8)21212339x x x -=+-- (9) 311

223=-+-x

x 13、分式方程的增根问题:

(1)增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方

程的根。

(2)分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

《分式》典型例题分析

《分式》典型例题分析

《分式》复习提纲 考点1. 分式的概念 1、下列各有理式 π y y x y x y x x y xy y x x x ,31),(23,,53,81,4, 23,822++-+---中,分式的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个 考点2. 分式的意义 分式: B A (A ,B 都是整式,且B 中含有字母,B ≠0) ① 分式有意义? ;② 分式无意义? ;③ 分式值为零? 1、若分式 3 2 -x 有意义,则x__________ 2、 要使分式 ) 5)(32(23-+-x x x 有意义,则( ) A. x ≠2 3 - B. x ≠5 C. x ≠23-且x ≠5 D. x ≠2 3 -或x ≠5 3、 当a 为任意有理数时,下列分式一定有意义的是( ) A . 112++a a B. 12+a a C. 112++a a D. 21 a a + 4、分式 3 24 x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。 5、当x 时,分式2 5 2++x x 的值是零;当x 时,分式242--x x 的值是零; 当x 时,分式 x x -+22 的值是零 考点3、最简公分母、最简分式 1、分式 ac b bc a ab c 3,2,2 --的最简公分母是 ;分式1 3x ,11x x +-,225(1)xy x -的最简公分母为________ 2、下列分式中是最简分式的是( ) A. 122+x x B. x 24 C. 1 12 --x x D. 11--x x

3、下列分式中是最简分式的是( ) A. 2 2 2) (y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x 考点4、分式的基本性质 1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。 (1)y x y x 3 22132 21-+; (2)b a b a -+2.05.03.0 2、把分式xy y x +中的分子、分母的x 、y 同时扩大2倍,那么分式的值( ) A. 扩大2倍 B. 缩小为原来的2 1 C. 不变 D. 缩小为原来的4 1 3、约分(1)4 3 22016xy y x -= ;(2)4 4422+--x x x = 4、通分(1)b a 21,2 1ab ; (2)y x -1,y x +1; (3)221y x -,xy x +21. 考点5、计算 1、(1)222222x b yz a z b xy a ÷= ;(2)49 3222--?+-x x x x = ;(3)43222)1.().()( ab a b b a --= (4) x x x x x x 36299622 2+-÷-+- (5)ab a b a a b a b a --+-2224. (6) 22212(1)441x x x x x x x -+÷+?++-

分式知识点总结和练习题讲义

分式知识点总结和题型归纳 (一)分式定义及有关题型 题型一:考查分式的定义: 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子 B A 叫做分式,A 为分子,B 为分母。 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件 分式有意义:分母不为0(0B ≠) 分式无意义:分母为0(0B =) 【例1】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)1 2 2-x (4) 3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件 分式值为0:分子为0且分母不为0(?? ?≠=0 B A ) 【例1】当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2)4 2||2--x x (3)6 53222----x x x x 【例2】当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 6252 2+--x x x 题型四:考查分式的值为正、负的条件 分式值为正或大于0:分子分母同号(???>>00B A 或???<<00B A ) 分式值为负或小于0:分子分母异号(???<>00B A 或???><0 B A ) (1)当x 为何值时,分式x -84 为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负; (2)当x 为何值时,分式32 +-x x 为非负数.

题型五:考查分式的值为1,-1的条件 分式值为1:分子分母值相等(A=B ) 分式值为-1:分子分母值互为相反数(A+B=0) 【例1】若 2 2 ||+-x x 的值为1,-1,则x 的取值分别为 (二)分式的基本性质及有关题型 1.分式的基本性质: M B M A M B M A B A ÷÷= ??= 2.分式的变号法则:b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0 题型二:分数的系数变号 【例1】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)y x y x --+- (2)b a a --- (3)b a --- 题型三:化简求值题 【例1】 已知:511=+y x ,求y xy x y xy x +++-2232的值 【例2】 已知:21=-x x ,求2 21 x x +的值. 【例3】 若0)32(|1|2=-++-x y x ,求y x 241 -的值. 【例4】 已知:311=-b a ,求a ab b b ab a ---+232的值.

新人教版八年级数学分式典型例题(供参考)

分式的知识点及典型例题分析 1、分式的定义: 例:下列式子中,y x +15、8a 2 b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、πxy 3、 y x +3、m a 1 +中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 . ⑴275x x -+; ⑵ 123 x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹22 2xy x y +. (2)下列式子,哪些是分式? 5a -; 234x +;3 y y ; 78x π+;2x xy x y +-;145b -+. 2、分式有,无意义,总有意义: 例1:当x 时,分式 51 -x 有意义; 例2:分式x x -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。 例4:当x 时,分式1 2+x x 有意义 例5:x ,y 满足关系 时,分式 x y x y -+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A . 122+x x B.12+x x C.133+x x D.2 5 x x - 例7:使分式2 +x x 有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2

分式的乘除法典型例题

《分式的乘除法》典型例题 例1 下列分式中是最简分式的是() A .264a b B .b a a b --2)(2 C .y x y x ++22 D .y x y x --2 2 例2 约分 (1)36)(12)(3a b a b a ab -- (2)44422 -+-x x x (3)b b 2213432-+ 例3 计算(分式的乘除) (1)22563ab cd c b a -?- (2)42 2 643mn n m ÷- (3)2 33344222++-?+--a a a a a a (4)2 22 22222b ab a b ab b ab b ab a +-+÷-++ 例4 计算 (1))()()(432 2xy x y y x -÷-?- (2)x x x x x x x --+?+÷+--36)3(446222 例5 化简求值 22232232b ab b a b b a ab a b a b +-÷-+?-,其中3 2=a ,3-=b . 例6 约分 (1)3286b ab ; (2)2 22322xy y x y x x --

例7 判断下列分式,哪些是最简分式?不是最简分式的,化成最简分式或整式. (1)44422-+-x x x ; (2)36 ) (4)(3a b b a a --; (3)22 2y y x -; (4)882122++++x x x x 例8 通分: (1)223c a b , ab c 2-,cb a 5 (2)a 392 -, a a a 2312---,652+-a a a

参考答案 例1 分析:(用排除法)4和6有公因式2,排除A .2)(a b -与)(b a -有公因式)(b a -,排除B ,22y x -分解因式为))((y x y x -+与)(y x -有公因式)(y x -,排除D. 故选择C. 解 C 例2 分析(1)中分子、分母都是单项式可直接约分.(2)中分子、分母是多项式,应该先分解因式,再约分.(3)中应该先把分子、分母的各项系数都化为整数,把分子、分母中的最高次项系数化为正整数,再约分. 解:(1)36)(12)(3a b a b a ab --)4()(3)()(3333-?--?-=b a a b b a b a a 3)(4 1b a b --= (2)4 4422-+-x x x )2)(2()2(2-+-=x x x 22+-=x x (3)原式2123486)22 1(6)3432(b b b b -+=?-?+=312482-+-=b b b b b b 634)12)(12(3)12(4-=-++-= 例3 分析(1)可以根据分式乘法法则直接相乘,但要注意符号.(2)中的除式是整式,可以把它看成1 64 mn .然后再颠倒相乘,(3)(4)两题都需要先分解因式,再计算. 解:(1)22563ab cd c b a -?-2253)6(ab c cd b a ?--=b ad 52= (2)422643mn n m ÷-7 43286143n m mn n m -=?-= (3)原式)2)(1)(3)(1()3)(2)(2(++----+=a a a a a a a 1 22--=a a (4)原式)()()()(2b a b a b b a b b a -+÷-+=2 2 22))((b b a b b a b a -=-+= 说明:(1)运算的结果一定要化成最简分式;(2)乘除法混合运算,可将除

人教版初中数学专题复习---分式知识点和典型例习题

第十六章分式知识点和典型例习题 【知识网络】 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法:b d bd a c ac ?=,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n; am ÷ a n =am -n 6.积的乘方与幂的乘方:(ab)m = am b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b )(a-b )= a 2 - b 2 ;(a±b )2= a 2±2a b+b2 (一)、分式定义及有关题型 题型一:考查分式的定义 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x ?(2)2 32+x x (3) 1 22-x (4) 3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件

【例3】当x 取何值时,下列分式的值为0. (1)3 1+-x x (2) 4 2 ||2--x x ?(3)653 222----x x x x 题型四:考查分式的值为正、负的条件 【例4】(1)当x 为何值时,分式 x -84 为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负; (3)当x 为何值时,分式 3 2 +-x x 为非负数. 练习: 1.当x 取何值时,下列分式有意义: (1) 3 ||61 -x (2) 1 )1(32++-x x ??(3) x 111+ 2.当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 6252 2+--x x x 3.解下列不等式 (1) 01 2 ||≤+-x x (2) 03 252 >+++x x x (二)分式的基本性质及有关题型 1.分式的基本性质: M B M A M B M A B A ÷÷=??= 2.分式的变号法则: b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0 题型二:分数的系数变号 【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)y x y x --+-? (2)b a a --- ?(3)b a --- 题型三:化简求值题 【例3】已知: 511=+y x ,求 y xy x y xy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出 y x 1 1+.

初二数学分式典型例题复习和考点总结

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?= ,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义 2、当分子为零且分母不为零时,分式值为零。 【例3】当x 取何值时,下列分式的值为0. (1)31+-x x (2)4 2||2--x x

《分式》典型例题分析

《分式》复习提纲 考点1. 分式的概念 1、下列各有理式 π y y x y x y x x y xy y x x x ,31),(23,,53,81,4,23,822++-+---中,分式的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个 考点2. 分式的意义 分式:B A (A , B 都是整式,且B 中含有字母,B ≠0) ① 分式有意义? ;② 分式无意义? ;③ 分式值为零? 1、若分式3 2-x 有意义,则x__________ 2、 要使分式) 5)(32(23-+-x x x 有意义,则( ) A. x ≠23- B. x ≠5 C. x ≠23-且x ≠5 D. x ≠2 3-或x ≠5 ? 3、 当a 为任意有理数时,下列分式一定有意义的是( ) A . 112++a a B. 12+a a C. 112++a a D. 21a a + 4、分式324 x x +-当x 时有意义;当x 时分式没有意义;当x 时分式的值为零。 5、当x 时,分式2 52++x x 的值是零;当x 时,分式242--x x 的值是零; 当x 时,分式x x -+22 的值是零 考点3、最简公分母、最简分式 1、分式ac b b c a ab c 3,2,2--的最简公分母是 ;分式13x ,11x x +-,225(1)xy x -的最简公分母为________ 2、下列分式中是最简分式的是( ) A. 122+x x B. x 24 C. 1 12--x x D. 11--x x 3、下列分式中是最简分式的是( ) { A. 2 2 2)(y x y x -- B. 2x xy - C. xy x y x ++2 D. 22-+x x 考点4、分式的基本性质 1. 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数。

分式知识点及例题

分式 知识点一:分式的定义 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子 B A 叫做分式,A 为分子, B 为分母。 知识点二:与分式有关的条件 1、分式有意义:分母不为0(0B ≠) 2、分式值为0:分子为0且分母不为0(???≠=0 0B A ) 3、分式无意义:分母为0(0B =) 4、分式值为正或大于0:分子分母同号(?? ?>>00 B A 或? ??<<00B A ) 5、分式值为负或小于0:分子分母异号(?? ?<>00B A 或???><00B A ) 知识点三:分式的基本性质 分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。 字母表示:C B C ??=A B A ,C B C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。 拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即 B B A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意 C ≠0这个限制条件和隐含条件B ≠0。 知识点四:分式的约分 定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。 步骤:把分式分子分母因式分解,然后约去分子与分母的公因。 注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然

后约去分子分母相同因式的最低次幂。 ②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。 知识点四:最简分式的定义 一个分式的分子与分母没有公因式时,叫做最简分式。 知识点五:分式的通分 ① 分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的 同分母分式,叫做分式的通分。 ② 分式的通分最主要的步骤是最简公分母的确定。 最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。 确定最简公分母的一般步骤: Ⅰ 取各分母系数的最小公倍数; Ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式; Ⅲ 相同字母(或含有字母的式子)的幂的因式取指数最大的。 Ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。 注意:分式的分母为多项式时,一般应先因式分解。 知识点六:分式的四则运算与分式的乘方 1、分式的乘除法法则: 分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:d b c a d c b a ??=? 分式除以分式:式子表示为 c c ??=?=÷b d a d b a d c b a 2、分式的乘方:把分子、分母分别乘方。式子n n n b a b a =?? ? ?? 3、 分式的加减法则:

分式考点及典型例题分析(最全面)

分式考点及典型例题分析 1、分式的定义: 例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、π xy 3、y x +3、m a 1+中分式的个数为( ) (A ) 2 (B ) 3 (C ) 4 (D) 5 练习题:(1)下列式子中,是分式的有 . ⑴275x x -+; ⑵ 123 x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +. (2)下列式子,哪些是分式? 5a -; 234x +;3y y ; 78x π+;2x xy x y +-;145 b -+. 2、分式有,无意义,总有意义: (1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12 +x ≠0) 例1:当x 时,分式 51-x 有意义; 例2:分式x x -+212中,当____=x 时,分式没有意义 例3:当x 时,分式112-x 有意义。 例4:当x 时,分式12+x x 有意义 例5:x ,y 满足关系 时,分式x y x y -+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A . 122+x x B.12+x x C.133+x x D.2 5x x - 例7:使分式2+x x 有意义的x 的取值围为( )A .2≠x B .2-≠x C .2->x D .2

分式知识点总结和题型归纳

分式知识点总结和题型归纳 (一)分式定义及有关题型 题型一:考查分式的定义: 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子 B A 叫做分式,A 为分子,B 为分母。【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 分式有意义:分母不为0(0B ≠) 分式无意义:分母为0(0B =) 【例1】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- (2)使分式 53-+x x ÷79 -+x x 有意义的x 应满足 . (3)若分式3 21 +-x x 无意义,则x= . 题型三:考查分式的值为0的条件 分式值为0:分子为0且分母不为0(? ??≠=00 B A ) 【例1】当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2) 4 2 ||2 --x x (3) 6 5322 2----x x x x 【例2】当x 为何值时,下列分式的值为零: (1)4 |1|5+--x x (2) 5 62522+--x x x 题型四:考查分式的值为正、负的条件 分式值为正或大于0:分子分母同号(?? ?>>00B A 或???<<00 B A ) 分式值为负或小于0:分子分母异号(???<>00B A 或? ??><00 B A ) (1)当x 为何值时,分式x -84为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负;

分式运算的几种技巧

分式运算的几种技巧 分式运算的一般方法就是按分式运算法则和运算顺序进行运算。但对某些较复杂的题目,使用一般方法有时计算量太大,导致出错,有时甚至算不出来,下面列举几例介绍分式运算的几点技巧。 一、 整体通分法 例1 计算:2 11 ---a a a 【分析】本题是一个分式与整式的加减运算.如能把(-a -1)看作一个整体,并提取“-”后在通分会使运算更加简便.通常我们把整式看作分母是1的分式. 【解】2222(1)(1)(1)(1)11(1)111111 +--+---=-+=-==------a a a a a a a a a a a a a a a a 二、 先约分后通分法 例2 计算2221 2324+-++-+x x x x x x 分析:直接通分,极其繁琐,不过,各个分式并非最简分式,有化简的余地,显然,化简后再通分计算会方便许多。 解:原式=)2)(1(1+++x x x +)2)(2()2(+--x x x x =21 +x +2+x x =21++x x 三、 分组加减法 例3计算21-a +12 +a -12-a -21+a 分析:本题项数较多,分母不相同.因此,在进行加减时,可考虑分组.分组的原则是使各组运算后的结果能出现分子为常数、相同或倍数关系,这样才能使运算简便。 解:原式=(21-a -21+a )+(12 +a -12-a ) =44 2-a +142--a =)1)(4(1222--a a 四、 分离整数法 例4 计算 3 x 4x 4x 5x 2x 3x 1x 2x -----+++-++ 方法:当算式中各分式的分子次数与分母次数相同次数时,一般要先利用分裂整数法对分子降次后再通分;在解某些分式方程中,也可使用分裂整数法。 解:原式= (1)1(2)1(4)1(3)11243 ++++-----+-++--x x x x x x x x =1111(1)(1)(1)(1)1243 +-++---++--x x x x =11111243--+++--x x x x =。。。 五、 逐项通分法

分式的基本性质-经典例题及答案

讲义编号: ______________ 副校长/组长签字:签字日期: 【考纲说明】 掌握分式的基本性质,灵活运用分式的基本性质进行约分和通分,本部分在中考中通常会以选择题的形式出现,占3--4分。 【趣味链接】 甲、乙两人分别从A、B两地同时出发相向而行,3小时后相遇. 尔后两人都用原来速度继续前进,结果甲达到B地比乙达到A地早1小时21分.已知甲每小时比乙多走1千米,求甲、乙两人的速度。 【知识梳理】 分式 1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.其中,A叫分式的分子,B叫分式的分母. 2.分式有意义的条件:因为两式相除的除式不能为零,即分式的分母不能为零,所以,分式有意义的条件是:分式的分母必须不等于零,即B≠0,分式有意义.

3.分式的值为零的条件:分子等于0,分母不等于0,二者缺一不可. 有理式 有理式的分类:有理式 分式的基本性质 分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为:(其中M≠0) 约分和通分 1.分式的约分:把一个分式的分子与分母中的公因式约去叫约分. 2.分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分. 最简分式与最简公分母: 约分后,分式的分子与分母不再有公因式,我们称这样的分式为最简分式.取各分母所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母. 【经典例题】 【例1】不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以(? ) A.10 B.9 C.45 D.90 【例2】下列等式:①=-;②=;③=-; ④=-中,成立的是() A.①② B.③④ C.①③ D.②④ 【例3】不改变分式的值,使分子、分母最高次项的系数为正数,正确的是(? ) A. B. C. D. 【例4】分式,,,中是最简分式的有() A.1个 B.2个 C.3个 D.4个

分式方程学习知识点及典型例题.doc

第二讲分式方程 【知识要点】 1.分式方程的概念以及解法 ; 2.分式方程产生增根的原因 3.分式方程的应用题 【主要方法】 1. 分式方程主要是看分母是否有外未知数; 2.解分式方程的关健是化分式方程为整式方程; 方程两边同乘以最简公分母 3.解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 题型一:用常规方法解分式方程 解下列分式方程 ( 1) 1 3 ( 2) 2 1 x 1 x x 3 x ( 3)x 1 4 1 ( 4) 5 x x 5 x 1 x2 1 x 3 4 x 题型二:特殊方法解分式方程解下列方程 (1)x4x 4 4 ;(2)x 7 x 9 x 10 x 6 x 1 x x 6 x 8 x 9 x 5 (3) 1 1 1 1 x 2 x 5 x 3 x 4 1

题型三:求待定字母的值 ( 1)若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3 ( 2)若分式方程 2 x a 1 的解是正数,求 a 的取值范围 . x 2 ( 3)若分式方程 x 1 m 无解,求 m 的值。 x 2 2 x ( 4)若关于 x 的方程 x k 2 x 不会产生增根,求 k 的值。 x 1 x 2 1 x 1 ( 5)若关于 x 分式方程 1 k x 2 3 有增根,求 k 的值。 x 2 x 2 4 题型四:解含有字母系数的方程 解关于 x 的方程 (1 ) x a c (c d 0) (2) 1 1 2 (b 2a) ; b x d a x b 2

1a1 b ( 3)(a b) . 题型五:列分式方程解应用题 一、工程类应用性问题 1、一项工程,甲、乙、丙三队合做 4 天可以完成,甲队单独做 15 天可以完成,乙队单独做 12 天可以完成,丙队单独做几天可以完成? 2、某市为治理污水,需要铺设一段全长3000 米的污水输送管道,为了尽量减少施工对城 市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30 天完成了任务,实际每天铺设多长管道? 二、行程中的应用性问题 2、甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车 的平均速度是普通快车平均速度的 1.5 倍.直达快车比普通快车晚出发2h,比普通快车早 4h 到达乙地,求两车的平均速度. 3

南通市初中数学分式经典测试题

南通市初中数学分式经典测试题 一、选择题 1.化简22 a b b a +-的结果是( ) A .1a b - B .1b a - C .a ﹣b D .b ﹣a 【答案】B 【解析】 【分析】 原式分子分母提取公因式变形后,约分即可得到结果. 【详解】 原式= a+b )()b a b a +-(= 1b a - 故答案选B. 【点睛】 本题考查的知识点是约分,解题的关键是熟练的掌握约分. 2.下列运算中,正确的是( ) A .2+= B .632x x x ÷= C .122-=- D .325a a a ?= 【答案】D 【解析】 【分析】 根据实数的加法对A 进行判断;根据同底数幂的乘法对B 进行判断;根据负整数指数幂的意义对C 进行判断;根据同底数幂的除法对D 进行判断. 【详解】 解:A 、2不能合并,所以A 选项错误; B 、x 6÷x 3=x 3,所以B 选项错误; C 、2-1=12 ,所以C 选项错误; D 、a 3?a 2=a 5,所以D 选项正确. 故选:D . 【点睛】 此题考查实数的运算,负整数指数幂,同底数幂的乘法与除法,解题关键在于掌握先算乘方,再算乘除,然后进行加减运算;有括号先算括号. 3.关于分式 25x x -,下列说法不正确的是( ) A .当x=0时,分式没有意义

B .当x >5时,分式的值为正数 C .当x <5时,分式的值为负数 D .当x=5时,分式的值为0 【答案】C 【解析】 【分析】 此题可化转化为分别求当分式等于0、大于0、小于0、无意义时的x 的取值范围,分别计算即可求得解. 【详解】 A .当x=0时,分母为0,分式没有意义;正确,但不符合题意. B .当x>5时,分式的值为正数;正确,但不符合题意 C .当0<x <5时,分式的值为负数;当x=0是分式没有意义,当x <0时,分式的值为负数,原说法错误,符合题意. D .当x=5时,分式的值为0;正确,但不符合题意. 故选:C . 【点睛】 本题主要考查分式的性质的运用,注意分式中分母不为0的隐性条件. 4.要使分式 81x -有意义,x 应满足的条件是( ) A .1x ≠- B .0x ≠ C .1x ≠ D .2x ≠ 【答案】C 【解析】 【分析】 直接利用分式有意义的条件得出答案. 【详解】 要使分式81 x -有意义, 则x-1≠0, 解得:x≠1. 故选:C . 【点睛】 此题考查分式有意义的条件,正确把握分式的定义是解题关键. 5.若分式 12x x +-在实数范围内有意义,则x 的取值范围是( ) A .2x > B .2x < C .1x ≠- D .2x ≠ 【答案】D 【解析】

分式经典题型分类练习题

分式的运算 (一)、分式定义及有关题型 题型一:考查分式的定义 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的有: . 题型二:考查分式有意义的条件 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 1- 题型三:考查分式的值为0的条件 【例3】当x 取何值时,下列分式的值为0. (1)3 1 +-x x (2) 4 2||2--x x (3) 6 53222----x x x x 题型四:考查分式的值为正、负的条件 【例4】(1)当x 为何值时,分式 x -84 为正; (2)当x 为何值时,分式2 )1(35-+-x x 为负; (3)当x 为何值时,分式 3 2 +-x x 为非负数. 练习: 1.当x 取何值时,下列分式有意义: (1) 3 ||61 -x (2) 1 )1(32++-x x (3) x 111+ 2.当x 为何值时,下列分式的值为零: (1)4 | 1|5+--x x (2) 5 62522+--x x x 3.解下列不等式 (1) 01 2 ||≤+-x x (2) 03 252 >+++x x x (二)分式的基本性质及有关题型 1.分式的基本性质:M B M A M B M A B A ÷÷= ??= 2.分式的变号法则: b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+- (2) b a b a +-04.003.02.0

分式经典题型分类例题及练习题

分式的运算 (一)、分式定义及有关题型 题型一:考查分式的定义 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,2 2 π,是分式的 有: ?. 题型二:考查分式有意义的条件 【例2】当x 有何值时,下列分式有意义 (1) 4 4+-x x (2) 2 32+x x (3) 1 22-x (4) 3 ||6--x x (5) x x 11- 题型三:考查分式的值为0的条件 【例3】当x 取何值时,下列分式的值为0. (1) 3 1 +-x x ? (2) 4 2||2 --x x ?(3) 6 5322 2----x x x x 题型四:考查分式的值为正、负的条件 【例4】(1)当x 为何值时,分式 x -84 为正; (2)当x 为何值时,分式 2 )1(35-+-x x 为负; (3)当x 为何值时,分式3 2 +-x x 为非负数. 练习: 1.当x 取何值时,下列分式有意义: (1) 3 ||61 -x ?(2) 1 )1(32++-x x (3) x 111+ 2.当x 为何值时,下列分式的值为零: (1)4 | 1|5+--x x ?(2) 5 62522+--x x x 3.解下列不等式 (1)01 2 ||≤+-x x (2) 03 252 >+++x x x

(二)分式的基本性质及有关题型 1.分式的基本性质: M B M A M B M A B A ÷÷=??= 2.分式的变号法则:b a b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数 【例1】不改变分式的值,把分子、分母的系数化为整数. (1)y x y x 4 1313221+-? (2)b a b a +-04.003.02.0 题型二:分数的系数变号 【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1) y x y x --+-? (2)b a a ---??(3)b a --- 题型三:化简求值题 【例3】已知:511=+y x ,求 y xy x y xy x +++-2232的值. 【例4】已知:21=-x x ,求221 x x +的值. 【例5】若0)32(|1|2=-++-x y x ,求y x 241 -的值. 练习:

(完整版)分式混合运算练习题(30题).doc

分式精华练习题 一.解答题 1.计算: ( 1) (2)(﹣ 2m 2 ﹣ 2 2 ﹣ 1 3 ﹣ 3 n ) ?( 3m n ) 2.计算: 3.化简: . 4.化简: 5. 计算: . 6.化简 ?( x 2 ﹣ 9) 7.计算: . 8.计算: + . 9.计算:(1) ; (2) . 10. . 11.计算: 12.计算: ﹣ a ﹣ 1. 13.计算: ( 1) (2) 14.计算: a ﹣ 2+ 15.计算: . 16.化简: ,并指出 x 的取值范围. 17. 17.已知 ab=1,试求分式: 的值. 18.计算: ﹣ 19.计算: 20.化简 21.计算: 22.化简: 23.计算:( 1) ; ( 2) . 24.化简: 25.化简: . 26 化简: 27.计算: 28.计算:( ) ÷ . 29.化简 . 30.计算: ﹣x ﹣ 2) 1

1.在下列方程中,关于 x 的分式方程的个数( a 为常数)有( ) ① 1 x 2 2 x 4 0 ② . x 4 ③. a 4; ④ . x 2 9 1; ⑤ 1 2 3 a x x 3 x 2 ⑥ x 1 x 1 2 . A.2 个 B.3 个 C.4 个 D.5 个 a a m 2. 关于 x 的分式方程 ) 1,下列说法正确的是( x 5 A .方程的解是 x m 5 B . m 5 时,方程的解是正数 C . m 5 时,方程的解为负数 D .无法确定 3.方程 1 5 3 ) x 2 x 1 1 的根是( 1 x A. x =1 B. x =-1 C. x = 3 D. x =2 8 4.1 4 4 0, 那么 2 的值是( ) A.2 B.1 C.-2 x x 2 x 5.下列分式方程去分母后所得结果正确的是( ) 1 x 2 1 去分母得, x 1 ( x 1)( x 2) 1; A. 1 x 1 x x 5 1 ,去分母得, x 5 2x 5 ; B. 5 5 2x 2x C. x 2 x 2 x x ,去分母得, (x 2) 2 x 2 x(x 2) ; x 2 x 2 4 2 6; D.-1 1 x 1 1 1 A.1- B. 1 C. x D. x x x x x 1 10.使分式 4 与 3 2 的值相等的 x 等于( ) x 6 x 2 x 2 4 x 2 5x 6 A.-4 B.-3 C.1 D.10 二、填空题(每小题 3 分,共 30 分) 11. 满足方程 1 2 的 x 的值是 ___ 12. 当 x=____ 时,分式 1 x 的值等于 1 5 x . x 1 x 2 2 13.分式方程 x 2 2x 0 的增根是 . x 2 14. 一汽车从甲地开往乙地,每小时行驶 v 1 千米, t 小时可到达,如果每小时多行驶 v 2 千米,那么 可提前到达 ________小时 . 15. 农机厂职工到距工厂 15 千米的某地检修农机,一部分人骑自行车先走 40 分钟后,其余人乘汽 车出发,结果他们同时到达,已知汽车速度为自行车速度的 3 倍,若设自行车的速度为 x 千米 /时, 则所列方程为 . 16.已知 x 4 , 则 x 2 y 2 . y 5 x 2 y 2 17. a 时,关于 x 的方程 x 1 2a 3 的解为零 . x 2 a 5 18.飞机从 A 飞到 B 的路程 S ’、速度是 v 1, ,返回的速度是 v 2 ,往返一次的平均速度是 . D. 2 1 , 去分母得, 2 ( x 1) x 3 ; 19.当 m 时,关于 x 的方程 m 2 1 有增根 . x 3 x 1 x 2 9 x 3 x 3 6. .赵强同学借了一本书,共 280 页,要在两周借期内读完 .当他读了一半书时,发现平均每天要多 20. 某市在旧城改造过程中, 需要整修一段全长 2400m 的道路. 为了尽量减少施工对城市交通所造 读 21 页才能在借期内读完 .他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读 x 成的影响,实际工作效率比原计划提高了 20%,结果提前 8 小时完成任务.求原计划每小时修路 页,则下面所列方程中,正确的是 ( ) 的长度.若设原计划每小时修路 x m ,则根据题意可得方程 . 140 140 =14 280 280 140 140 10 10 三、解答题(共 5 大题,共 60 分) A. x x 21 B. x =14 C. x 21 =14 D. =1 21. .解下列方程 x 21 x x x 21 7.若关于 x 的方程 m 1 x 0 ,有增根,则 m 的值是( ) (1) 1 4 x (2) 4 x 3 x 1 x 1 1 x 1 x 1 2 3 x 4 x 2 x 2 ( 3) . x 3 x 2 x 2 x 2 4 A.3 B.2 C.1 D.-1 A B 2 x 1 22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期 3 天完成; 8.若方程 , 那么 A 、 B 的值为( ) 现在先由甲、乙两队合做 2 天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日 x 3 x 4 ( x 3)( x 4) 期多少天? A.2,1 B.1, 2 C.1, 1 D.-1 , -1 24.小兰的妈妈在供销大厦用 12.50 元买了若干瓶酸奶, 但她在百货商场食品自选室内发现, 同样的 9.如果 x a 1,b a b ( ) 酸奶,这里要比供销大厦每瓶便宜 0.2 元钱,因此,当第二次买酸奶时,便到百货商场去买,结果 b 0, 那么 b 3 a 用去 18.40 元钱,买的瓶数比第一次买的瓶数多 倍,问她第一次在供销大厦买了几瓶酸奶? 5 2

相关主题
文本预览
相关文档 最新文档