当前位置:文档之家› 高光谱遥感技术在农林植被调查方面的应用

高光谱遥感技术在农林植被调查方面的应用

高光谱遥感技术在农林植被调查方面的应用
高光谱遥感技术在农林植被调查方面的应用

高光谱遥感技术在农林植被调查方面的应用

高光谱分辨率遥感(简称高光谱遥感),是20世纪末迅速发展起来的一项集探测器技术、精密光学机械、微弱信号检测、计算机和信息处理技术于一体的全新遥感技术。它能够获得地物的连续光谱信息,实现地物图像信息与光谱信息的同步获取,因而在地质、林业、农业、生态环境、海洋、军事等领域具有巨大的应用价值和广阔的发展前景。

植被作为遥感观测和记录的第一表层,是遥感数据反映的最直接信息。目前,多光谱遥感已被广泛应用于植被的长势研究、沙漠化研究、气候演变规律分析等方面,但传统的多波段遥感数据对于植被的研究和应用仍仅限于一般性的红光吸收特征与近红外的反射特征及中红外的水吸收特征波段,由于受波段宽度和波段数以及波长位置的限制,往往对植被类型不敏感,对植被长势反映不理想,而高光谱遥感在对目标的空间特征成像的同时,对每个像元可在更宽范围上,形成几十个乃至几百个窄波段连续的光谱覆盖,使更深入地考察植被光谱的响应机制和物理机制成为可能,因此成为植被和林业方面监测的强有力工具。

1. 高光谱遥感在植被调查方面的优势

高光谱遥感在光谱分辨率方面的提高,使地物目标的属性信息探测能力有所增强,因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势:

(1)成像光谱仪所获取的地物连续光谱比较真实,能全面反映自然界各种植被所固有的光谱特征以及其间的细节差异性,从而大大提高地物分类的精细程度和准确性,使得高光谱图像数据与光谱仪地面实测光谱曲线数据之间的直接匹配成为可能。

(2)高光谱图像数据提高了根据混合光谱模型进行混合像元分解的能力,减少了土壤等植被生长背景地物的影响,从而能够获取最终光谱端元的真实光谱特性曲线数据。

(3)高光谱分辨率的植被图像数据将对传统的植被指数运算予以改进,大大提高了植被指数所能反演的信息量,使人们可以直接收获诸如植被叶面积指数、生物量、光合有效吸收系数等植被生物物理参量。

(4)提高遥感高定量分析的精度和可靠性,基于高光谱分辨率的光谱吸收特征信息提取可以完成部分植被生物化学成分(如植被干物质和水分含量等)定量填图。

2. 高光谱植被参量的反演

植被生理、生化参量的精确估算对于生物多样性评价、陆地覆盖表征、生物量建模以及碳通量估算都具有非常重要的意义,应用遥感技术估测叶片和冠层水平上生化参量的时空变

化规律有助于了解植物生产率、凋落物分解速率以及营养成分有效性,提高资源管理的效率。高光谱遥感获取的连续的精细的光谱浓缩了植被冠层结构和生化参量,从而为植被的生理、生化参量的精确估测提供可能和条件。

2.1植被遥感有关的生化物理参量

生物物理参量主要指用于陆地生态系统研究的一些关键变量,包括叶面积指数(LAI)、光合有效辐射吸收率(FAPAR)、生物量、植被覆盖度等。植被生化参量的估算主要集中于色素(主要是叶绿素)、各种营养元素(特别是氮)以及纤维素、木质素、可溶性糖、淀粉和蛋白质等。

植物的营养元素状况能影响到叶面积、冠层形态、内在生理特征,从而与光谱特征密切相关。不仅使快速、简易地诊断植被的营养状况成为可能,而且高光谱遥感技术的发展还使得大面积监测植物的营养状况(营养胁迫)和长势也取得了极大的进展。

2.2植被参量的高光谱遥感反演

植被生物物理和生物化学参量反演的方法大致有三种类型:

(1)传统的多元统计分析方法

通常是利用逐步回归分析方法筛选出反射率光谱或其变换形式(导数光谱、对数光谱等)与某个生物物理或生物化学参量的关系密切相关的若干个波段,建立统计回归方程,然后利用该方程对未知样本的参量进行预测、估算精度。优点:简单易行,对可控条件下测得的光谱应用时,结果较好。缺点:应用野外测量数据或遥感图像时,由于受到大气、冠层几何条件、结构、土壤背景等因素影响,所建立的回归方程往往对所使用的数据依赖性很强,使用不同的数据集所选的波段差异性较大。因此,先对反射率光谱去包络,然后利用吸收深度(和吸收面积)进行归一化,在此基础上建立的逐步多元回归方法对植被的氮、木质素和纤维素含量进行估测,效果较好。

(2)基于光谱特征分析方法

该方法主要是基于单个特征参量或两个(或多个)特征波段组合的光谱指数,建立它们与某个生理或生化参量的经验方程,即特征参量法和光谱指数法。

特征参量法:将光谱上某个吸收特征(谷)或反射峰特征参量化,建立关联方程。应用最广的是植被特有的“红边”,定义为反射率光谱在680-750nm波长之间的一阶导数最大值对应的波长位置。并且由此派生出来的红边斜率等参量,对植被的叶绿素、生物量、氮、物候等变化敏感。

光谱指数法:将两个或多个特征经线性或非线性组合,构成对某个生理生化参量敏感的光谱指数。例如我们熟知的NDVI,可用于估算植被覆盖度、叶绿素含量、生物量等参数。优点:简单易用,且高光谱遥感数据的诸多窄波段为发展一个对植被参量敏感,且最大程度抑制大气、土壤等影响的光谱指数提供了更多选择空间。缺点:此种反演模型属于经验或者半经验的统计模型,对植被参量的反演缺乏普适性和可移植性,特别是针对不同的植被类型(或数据源)需要重新拟合模型参数或调整波段。

(3)物理模型方法

物理模型反演方法的基础是辐射传输理论,对于某一特定时间的植被冠层而言,一般辐射传输模型可简化为:

S=F(λ,θS,λS,ΨV,C)

其中,λ为波长,θS,λS为太阳的天顶角和方位角,观测天顶角和方位角,C关于植被的特性参数,包括叶倾角、叶面积指数、叶片层数、叶绿素含量、水和干物质含量等。

物理模型又分为叶片模型和冠层模型。叶片模型又分为N流模型、Ray tracing模型、随机模型、平板模型和针状模型,目前应用最多的为PROSPECT模型(基于Allen等开发的平板模型的辐射传输模型)。冠层模型可归纳为四种:辐射传输模型、几何光学模型、混合模型和计算机模拟模型。大量研究表明,直接利用物理模型对植被参数进行反演相当困难,且就生化参量反演目前仅限于叶绿素含量和水分含量。物理模型更多的被用于大范围的多种可能条件下的植被光谱,基于这些光谱检验现在光谱指数的精度,并发展相应的光谱指数。

3. 高光谱遥感在植被方面的具体应用

3.1高光谱遥感在农业中的应用

高光谱遥感在农业中的应用,主要表现在快速、精确地进行作物生长信息的提取、作物长势监测、作物胁迫监测、估算植被(作物)初级生产力与生物量、估算光能利用率和蒸散量以及作物品质遥感监测预报。从而相应调整投入物资的投入量,达到减少浪费,增加产量,改善品质,保护农业资源和环境质量的目的。高光谱遥感凭借其极高的光谱分辨率为精细农业的发展提供了技术保障和数据来源。

(1)作物的精细分类和识别

农业遥感应用中,作物精准分类与识别是进行农业灾害监测和产量评估的重要环节。多时相高光谱数据能区分作物更细微的光谱差异,探测作物在更窄波谱范围内的变化,从而能够准确地对作物进行详细分类与信息提取。目前最流行、应用最广的高光谱作物分类方法有

光谱角分类(SAM)、决策树分层分类等。

中科院遥感所熊桢(2000)基于PHI航空高光谱影像对常州水稻生长期进行监测,利用混合决策树法对水稻的品种进行了高光谱图像的精细分类,该决策树分为三层、五个子集,通过4次最大似然法和一次最小距离完成了11种地物,其中包括6个水稻品种的划分,其测试样本的分类精度达到94.9%。张兵(2002)充分考虑自然界地物分布的一般性规律,针对高光谱遥感海量数据的特征,利用光谱特征优化的专家决策分类方法,用PHI航空高光谱影像对日本南牧农作物进行精细分类。结果表明,这种分类模式一方面可以提高像元分类精度,另一方面也大大减少了分类结果图像上的误判噪声。

图1 高光谱农作物精细分类识别结果

(2)作物长势的监测与产量预测

作物长势是作物生长发育状况评价的综合参数,长势监测是对作物苗情、生长状况与变化的宏观监测。构建时空信息辅助下的高光谱遥感信息与作物生理特性及作物长势之间的关系模型便于作物长势监测,高光谱监测作物长势可分为植被指数以及结合GIS技术动态监测等方法。高光光谱遥感可以利用植被指数(NDVI、DVI等)进行农田地表覆盖类型分类和作物长势监测分析。例如,可以利用高光谱数据,通过分析NDVI和DVI,建立农田区域性覆盖指数模型,反映出区域性作物覆盖分异状况和随季节变化规律。此外,海量高光谱遥感数据,结合GIS技术、GPS技术、网络技术和计算机技术,建立服务于农业领域的农情监测系统,对作物长势实现动态的监测,对农情灾害以及粮食产量进行快速预报。

作物高光谱遥感产量预测是通过搭载在卫星上的高光谱遥感器,来获取作物各生长时期光谱特征数据,对其反映的产量进行预测。多数研究集中于作物种植面积遥感预测和单产预测。作物种植面积遥感预测算法分为直接算法和间接算法两种。直接算法一般是通过建立作

物指数与面积之间回归模型进行求解,如目前单产估算应用较多的是回归分析法,其基本原理为:

y=b0+b1x1+b2x2+b3x3+…+bixi+e

式中,y为作物产量;xi为经过平滑的光谱反射率或NDVI指数。结合水稻的生长发育规律,对水稻抽穗后冠层、叶片和穗进行了高光谱反射率测定,根据光谱曲线特征构建了新的高光谱植被指数,利用相关分析方法分析水稻理论产量和实际产量与这些植被指数及冠层红边参数的相关关系,建立了水稻高光谱单产估算模型。

而间接算法是利用绿度-麦土比模式求出麦土比值作为已知值,然后利用土地面积乘上已知值求解作物种植面积。

(3)农业干旱监测

在农作物生产中,水肥是影响作物生长的最主要因素之一,水分是作物的主要组成成分,水分亏缺将直接影响作物的生理生化过程和形态结构,从而影响作物生长。因此,及时准确地监测作物的水分状况对提高作物水分管理水平、指导节水农业生产具有重要意义。利用高光谱成像技术对作物矿质营养和水分胁迫进行监测,进而估算作物的营养和需水状况,从而指导施肥灌溉,是近年来发展起来的一门新技术。

常用的遥感农业干旱监测方法分为植被指数-地表温度法、热惯量法等。植被指数-地表温度法是综合利用可见光、近红外和热红外波段信息提取表征农业干旱的生态物理参数如植被指数、地表温度等,构建这些参数组成的光谱特征空间模型监测干旱,其中Sandholt 提出的温度植被干旱指数(TVDI)就是基于此方法构建的。刘良云、张兵等利用OMIS图像数据中8个热红外波段和归一化发射率反演地表温度(LST),以高光谱导数植被指数(DVI)表征植被覆盖度,在DVI-LST二维空间中反映了地物覆盖度和水分含量差异:土壤含水量较低、需要灌溉的旺盛小麦地和稀疏小麦地位于DVI-LST三角形右侧;而水分充足、生长旺盛的小麦位于三角形左侧。植被指数-地表温度法虽然简单、灵活,但是经验性太强,监测精度受到一定的限制。

图2 高光谱农田地物覆盖和水分含量图

热惯量法利用不同物质之间热惯量不同的特性,以土壤水分与土壤温度变化的关系为指导思路建立干旱监测模型。早在1986年Carlson等利用遥感数据得到热惯量计算土壤有效水分,可以方便用于干旱监测。田国良等提出用表观热惯量(A TI)代替真实热惯量,使模型简化,得到了广泛的应用。热惯量法虽然精度较高,但是所需参数较多,只能适用于裸土或者很低植被覆盖区域。并且作物缺水指数(CWSI)等方法在农田干旱监测中也越来越得到重视。

利用高光谱成像技术可以对作物的营养状况和水分含量进行比较准确的分析和检测,为变量施肥和灌溉提供参考,从而节省农业资源的投入。高光谱水分诊断模型在农业生产中具有较高的应用价值和广阔的应用前景。

(4)农业病虫害监测

通过高光谱信息监测植物病虫害。植物病虫害监测是通过监测叶片的生物化学成分来实现的,病虫害感染导致叶片叶肉细胞的结构发生变化,进而使叶片的光谱反射率发生变化。同种健康小麦和发生条锈病的小麦植株(包括病害处于潜伏期的植株)的光谱特征存在明显差异,而这些差异主要体现在某个或某几个光的光谱吸收带上。通过对不同病情指数下小麦冠层的光谱进行研究,发现小麦条锈病冠层反射率随小麦病情指数的变化呈明显而有规律的变化。不同严重度小麦白粉病冠层光谱反射率及病情指数表明,灌浆期地面光谱测量冠层光谱反射率和低空遥感数字图像反射率与小麦白粉病病情指数存在显著的相关关系。国内外许多学者基于高光谱影像分析了作物病害光谱响应,利用红边参数、迭代自组织、二项式分析等方法开展了小麦等作物条锈病光谱信息探测与识别研究,病虫害识别效果较好。随着海量高光谱遥感数据的获取,区域性农业病虫害监测研究也越来越完善。

(5)估算植被(作物)初级生产力NPP与生物量

冠层的理化特性在一定程度上控制着森林(或作物)的初级生产力(NPP)。比如叶面积和氮含量通过控制光合作用和传输速率来影响NPP。张良培利用样本NDVI和测量所得的生物量数据进行回归分析,相关系数在0.7以上,黄熟期叶绿素的损失会在可见光波段表现出来,在出穗期的R1100和R1200可用于生物量估算。

(6)估算光能利用率和蒸散量

高光谱遥感所得的APAR(光合有效辐射)比LAI(叶面积指数)能更可靠地估计作物生物量,因为作物的光合作用过程直接把APAR能量转换成干物质,因此APAR是作物初级生产力的一个较好的指标。张良培等通过分析光通过分析光合背景物质土壤光谱信号的特点,利用对光谱信号一阶导数的运算就能对混合光谱中的土壤信号进行压缩,由此计算APAR(在波长726. 3 nm处)能更客观地反映实际。Hall等基于反射率曲线的二阶导数与光合有效辐射APAR的相关关系,对陆地植被的APAR进行了估计。

(7)作物品质遥感监测预报

中国对优质农作物有巨大需求,部分优质农作物产品供不应求或依赖进口。通过监测作物生长过程而进行调优栽培,优化作物分类收获、分级收购加工体制,提高作物品质监控水平是保证作物品质的重要组成部分。遥感技术的发展为作物品质信息的监测和预报提供了快捷、低廉、无损检测的手段。近期研究重点是区域性的遥感模型与农学模型链接,农作物品质遥感-农学监测复合模型研制。综合考虑土壤因子、气象因子等,通过监测作物干旱、过量施氮、病虫害、倒伏等作物品质的限制性因子,监测作物的生长和营养状况,链接遥感数据和作物模型,利用光学、热红外、雷达数据相互补充,充分考虑遥感数据和非遥感数据结合,有望建成实用化和商业化的作物品质监测预报系统,以指导作物分类收获,分级收购、加工或贮藏;对农作物产品实现优质优价,为粮食期货和参与国际粮食贸易提供决策信息,大大缩短粮食加工企业的检测化验时间并降低成本。在现阶段采用/遥感粗分级筛选+实验室精测试可能成为定单农业中质量控制和降低成本的重要模式,受到粮食收购、加工等部门和企业用户的重视和期待。

3.2 高光谱遥感在林业中的应用

高光谱遥感森林应用一直是植被遥感的主要领域,近年来,国内外相继开展了森林类型识别、郁闭度和叶面积指数估测以及森林生物化学参数提取等方面的研究。

(1)森林物种识别

植被光谱不仅具有高度相似性和高空间变异性,更具有时间动态性强的特点,充分发挥高光谱遥感的独特性能,将大大提高物种识别和分类精度。森林物种识别是高光谱植被特征识别研究中备受瞩目的应用领域。森林树种类型识别的主要目的是提取森林树种的专题信息,为划分森林类型、绘制林相图和清查森林资源提供基础和依据。

目前研究多集中在河湖、盐沼、海岸滩等湿地生境的植被识别及制图,即群落尺度的区分,由于受光谱数据库不健全的限制,一般要结合地面调查来提取不同物种典型的特征光谱曲线。数据源多采用A VIRIS,CASI、Hyprion等航空航天反射光谱数据,或高分辨率光谱仪实地测得的数据,通过波段组合、Logistic回归、建立光谱信息模型等方法,实现对主要物种、森林类型乃至具体树种的识别。也有学者借此对植被空间分布制图、植被变化监测进行研究,均取得了与地面数据相当好的一致性。

(混合决策树、专家决策树法常用于农作物的精细分类,由于农田、草原等生境物种组成相对简单,高光谱遥感与普通遥感手段相比优势并不明显。因此在这些领域,高光谱更多应用于草原生物量估算、农作物理化信息提取等方面。)

图3 高光谱影像(CASI和SASI)森林树种识别结果

(2)冠层结构特征识别

这方面工作的重点主要是针对混交林冠层,以及在区分藤蔓植物和树种基础上的冠层描绘。对于混交林而言,多样化的尺度和反射特征、多层树冠结构以及冠层内、冠层间的树荫

交错都给准确描绘树冠带来重重困难。研究者试图通过混合光谱分解、高光谱双向反射分布函数等方法获得植被冠层结构特征,并取得了一些成果。但是,高光谱遥感对于密集的、多冠层区域的冠层结构识别,精度还不是特别理想。在植被冠层结构识别研究中,高光谱遥感还需要进一步的研究。

(3)生理生化特征识别

高光谱遥感在植被自动识别、植被长势及其空间分布定量化、冠层植被营养诊断、植被胁迫监测与诊断等方面均得到了广泛应用。在森林树种的生理生化特征识别中,主要涉及叶面积指数、生物量、水分含量、郁闭度、光合有效辐射、叶绿素、各种营养成分(N、P、K 等),(半)纤维、木质素、淀粉和蛋白质等。Zaroc2Tejada等通过不同尺度下冠层光谱模拟,获得了随叶绿素含量变化的一些规律。发现MCARI/OSA VI能有效去除土壤背景对植被叶绿素含量估测的影响,利用MCARI/OSA VI植被指数进行叶绿素(a+b)含量的估测可达到预想的效果。Dury等的研究中,使用包络线去除HYMAP遥感数据对桉树进行监测,发现利用高光谱数据反演的氮含量估测值与同步实测冠层叶片的氮含量具有一致性。宫鹏等利用CASI高光谱数据对美国俄勒冈州针叶树的LAI进行了估测实验。结果发现LAI与归一化植被指数(NDVI)之间的双曲线关系是估计LAI最合适的方法。张良培等利用进行一阶导数运算处理后的高光谱数据对生物量进行估计,其结果很好地反映了地面的实际情况。此外,我们还可以通过森林生理生化特性的识别得到不同森林树种间的差异信息,利用这些差异信息进行树种类型识别研究,可以更为有效地提高树种类型识别的精度。如Martin结合不同森林树种之间特有的生化特性,将高光谱数据A VIRIS(航空可见光/红外成像光谱仪)与簇叶化学成分之间建立关系,成功鉴别了10种森林类型(红枫、红栎、阔叶混交林、白松、铁杉、针叶混交林、挪威云杉、红松、云杉沼泽林及落叶阔叶沼泽林)。

4. 农林业部门对高光谱遥感的指标要求

在遥感农林业应用中,人们最关心的是遥感数据能够制作多高精度的作物/森林分布图、作物/森林植被的内容能够解析到多细的程度,以及植被参量反演的精度等。同时人们考虑最多的是应用遥感数据的成本如何、实用化的可能性有多大?后一个问题如能解决,遥感数据才可能真正实用化。因此,在遥感技术林业应用时存在的一个问题是遥感能够提供怎样的数据,能够满足何种水平的农林业信息需求;另一个问题则是需求与成本之间的矛盾。

在以往的研究中,各国学者针对植被生物物理信息和生物化学信息提取展开了大量的研究,得出了一些有意义的结果和结论,可为农林业高光谱传感器的研制提供科学依据和指导

作用。

4.1高光谱遥感在农业部门应用中的重要特征谱段

(1)在高光谱作物水分监测中,ShibayamaM等发现在400-1900nm之间,近红外/中红外波段反射率及其一阶微分导数变化可以探测早期水稻冠层水分胁迫影响;Michio等研究指出在波段960 nm处的光谱微分导数可以监测水稻水分亏缺状况;田庆久等研究了小麦叶片水分含量与光谱反射率在1450 nm附近水的特征吸收峰深度和面积之间的关系是正相关,得出了利用光谱反射率可以定量测定作物含水量和诊断小麦缺水状况。Ceccato等利用1600 nm和820 nm波段的反射率比(R1600/R820)估算单位叶面积水分含量。同时植被光谱波段特征中,1530 nm和1720 nm波段适合对植被水分的估算。

(2)在植被生化生理参量反演研究中,国外Cho等从高光谱数据中提取红边位置,研究显示在波长680,694,724 和760 nm红边特征参数与叶绿素相关性高达0.86,减少了背景光谱噪音的影响。蒋金豹、陈云浩等建立了微分光谱与小麦全氮含量之间的回归模型。研究表明随病情加重,小麦全氮含量逐渐降低,并与一阶微分光谱在430~518、534~608、660~762 nm以及783~893 nm区域具有极显著相关性。Jain等利用高光谱数据和实测数据对马铃薯氮含量与特定波段比值(R750/R710)建立回归模型,两者相关系数达到0.7以上,波谱特征比值对养分变化较敏感。

(3)作物长势和估产研究中,高光谱遥感可以利用植被指数(NDVI、DVI等)进行农田地表覆盖类型分类和作物长势监测分析。刘良云、王纪华等利用高光谱数据近红外波段890 nm反射峰、980 nm和1200 nm两个弱水汽吸收谷、短波红外1650 nm和2200 nm反射峰设计新型光谱指数与冬小麦产量进行相关分析,相关水平较为显著。

4.2高光谱遥感在林业部门应用中的重要特征谱段

(1) 在森林叶面积指数估算方面,Gong等得出的结论是:中心波长为820,1040,1200,1250, 1650,2100和2260nm 的波段估测LAI最有潜力。

(2) Matson等发现中心波长在1525~1564nm的一阶微分光谱数据可用来描述冠层中氮(N)量的变化。

(3) 对于叶绿素,最佳的R2值来自二阶微分光谱的三项式回归方程(R2=0.944),此方程包含的中心波长分别为748nm、507nm和735nm;对于全氮的最佳R2值来自一阶微分光谱的三项式方程(R2=0.933),中心波长分别为780 nm、764 nm和566 nm。Datt等有人认为波长710nm处的反射光谱对叶绿素含量具有最高灵敏度。Gitelson and Merzlyak (1996)

发现R700/R750和R550/R750与糖旗树和栗子树的叶绿素含量密切相关。

(4) Jerred指出燃烧着的植被的光谱信号有大约767nm的细小脉冲,这对林火监测十分有利。

(5) 在高光谱遥感数据中,光谱范围1356~1417nm、1820~1932nm和大于2395nm的波段受水汽的影响较大,在这些波段中,极少包含地面信息。考虑到大气的影响,一些光谱范围中受水汽影响较重的波段需要剔除。

5. 高光谱农林业遥感方面存在的问题

(1)机载高光谱传感器的高成本和覆盖范围的局限性,是机载高光谱用于更大尺度、更广范围的应用的主要障碍之一。且随着高光谱传感器通道数的增加,其与空间平台数据传输资源之间的矛盾日益突出,也严重地阻碍了机载高光谱数据在森林树种识别中的发展。

(2)星载高光谱数据受空间分辨率的限制,很难满足那些农林植被精细研究的应用要求,再加上星载高光谱数据还需要编程订购,时间周期长,数据量大,遥感作业效率较低,也在一定程度上限制了它的广泛应用。

(3)高光谱数据量大和信息的冗余性,也面临着如何处理这些高光谱数据的难题,数据处理效果是影响高光谱应用的决定性因素。目前的遥感识别算法多是基于统计分析进行的,利用这些传统的模式识别算法进行高光谱农林植被识别具有很多难以克服的困难,如运算量太大,样本需求很多,会遇到维数灾难,难以获取合适的类型特征等。高光谱遥感信息的提取及解译还需要进一步提高,为应用领域的扩展提供理论基础。

(4)高光谱遥感植被信息提取模型虽多,但很难找到一种通用的方法,每种模型和方法都有其适用条件,模型经验性强,规律性和可移植性差,而且许多模型仅仅处于试验研究阶段,需要大规模实地观测数据来修正。

(5)混合像元普遍存在于高光谱遥感数据中。农业方面,田间组分混合光谱分解模型和端元提取方法研究多种田间组分(作物、土壤等)混合光谱分解模型,特别是作物不同生长阶段,作物、土壤等组成的混合光谱具有复杂的机制,需要加强研究。林业方面,目前绝大部分混合光谱分解都只采用了高光谱数据中很有限的光谱段信息。

(6)高光谱用于农林植被调查还需地面辅助调查,尤其是对于森林类型复杂、森林树种混交程度较高的山区,由于缺乏垂直空间信息和训练样本的支持,大大限制了其应用的深度与广度。目前,森林树种识别研究主要集中在那些生境条件较为理想的区域,并且研究的对象也仅局限于为数不多的几种树种类型。

6. 高光谱遥感在农林植被应用方面展望

随着高光谱研究的深入,结合高光谱数据特点研究一些基于光谱和光谱模型的识别算法将是未来高光谱识别的重点。另外,进行自动识别端元,提取端元光谱信息,自适应滤波完成混合光谱的分解,最小人工参与数据的自动处理等都是高光谱遥感植被识别研究中急需解决的问题。且随着数据挖掘技术的不断发展,重点开展混合光谱分解研究,充分挖掘光谱空间中的光谱变化,将会有效地解决混合光谱分解的难题。

森林资源二类调查

森林资源调查技术规程 森林资源调查技术大体相同,不同的是因调查目的不同而调查精度要求不一,其主要调查技术规程为: A、土地利用现状分类 a、分类系统 主要依据土地的现实利用状况和覆盖特征进行四级分类,图示如下。 b、分类定义

土地(不含海域)分为陆地(含滩涂)和内陆水域两大一级地类。 ㈠陆地:常年露出水面的土地和滩涂(包括河流、湖泊的常水位至洪水位之间的滩地,时令湖、河洪水位以下的滩地,水库、坑塘的正常蓄水位与最大洪水位之间的面积)。 1)、林地:包括森林、疏林地、灌木林地、无立木林地和苗圃地。 (1)森林:由乔木树种构成,郁闭度0.20以上(含0.20)的林地或冠幅连续宽度10米(面积0.1公顷)以上的林带,包括针叶林、阔叶林、针阔混交林和竹林。乔木树种定义包含乔木经济林树种,例如油桐、乌桕、杜仲、厚朴、漆树、板栗、栓皮栎、黑荆树、桑树等。 ①针叶林:针叶树蓄积占65%以上的森林。 ②阔叶林:阔叶树蓄积占65%以上的森林。 ③针阔混交林:针叶树或阔叶树蓄积均占65%?以下的森林。 ④竹林:由竹类构成的森林,不包括胸径2?厘米以下的小杂竹丛。当毛竹为纯林时,每公顷株数不低于?225株(新造毛竹188株)即可划为毛竹林,否则划为荒地。当林木郁闭度不低于0.2,毛竹与林木混交,且毛竹株数每公顷不低于625株时,划为毛竹林;低于625株划为乔木林分。当林木郁闭度为0.10~0.19,毛竹与林木混交时,毛竹株数每公顷不低于225株划为毛竹林,低于?225株划为疏林地。 (2)疏林地:由乔木树种构成,郁闭度0.10~0.19的林地。竹林和灌木经济林不划疏林地。 (3)灌木林地:由灌木树种或因生境恶劣矮化成灌木型的乔木树种或胸径小于2?厘米的小杂竹丛构成,且覆盖度不低于30%的林地。

植被指数计算方法

2.1 归一化植被指数(NDVI ) 归一化植被指数(Normalized Difference Vegetation Index ,即N D V I )的计算公式为: NIR RED NIR RED NDVI ρρρρ-=+ 其中:NIR ρ和RED ρ分别代表近红外波段和红光波段的反射率NDVI 的值介于-1和1之间。 2.2 增强型植被指数(EVI ) 增强型植被指数(Enhanced Vegetation Index ,即EVI )计算公式为: 2.5 6.07.51 NIR RED NIR RED BLUE EVI ρρρρρ-=?+-+ NIR ρ、RED ρ和BLUE ρ分别代表近红外波段、红光波段和蓝光波段的反射率。 2.3 高光谱归一化植被指数(Hyp_NDVI ) 对于环境与灾害监测预报小卫星高光谱载荷,选取中心波长分别位于近红外和红光的谱段进行归一化植被指数计算: _____Hyp NIR Hyp RED Hyp NDVI Hyp NIR Hyp RED -=+ 2.4 其他植被指数 (1) 比值植被指数(Ratio Vegetation Index ——RVI ) NIR RED RVI ρρ= 该植被指数能够充分表现植被在红光和近红外波段反射率的差异,能增强植被与土壤背景之间的辐射差异。但是RVI 对大气状况很敏感,而且当植被覆盖小于50%时,它的分辨能力显著下降。 (2) 差值植被指数(Difference Vegetation Index ——DVI ) NIR RED DVI ρρ=- 该植被指数对土壤背景的变化极为敏感,有利于对植被生态环境的监测,因此又被称为环境植被指数(EVI )。 (3) 土壤调整植被指数(Soil-Adjusted Vegetation Index ——SA VI )

光谱分析方法

光谱分析方法

第一章绪论 一、填空题 1仪器分析方法分为()、()、色谱法、质谱法、电泳法、热分析法和放射化学分析法。 2 光学分析法一般可分为()、()。 3仪器分析的分离分析法主要包括()、()、()。 4仪器分析较化学分析的优点()、()、操作简便分析速度快。 答案 1光学分析法、电化学分析法 2光谱法、非光谱法 3色谱法、质谱法、电泳法 4灵敏度高检出限低、选择性好 第二章光学分析法导论 一、选择题 1 电磁辐射的粒子性主要表现在哪些方面()A能量B频率C波长D波数

2 当辐射从一种介质传播到另一种介质时,下列哪种参量不变() A波长B速度C频率D方向 3 电磁辐射的二象性是指: A.电磁辐射是由电矢量和磁矢量组成;B.电磁辐射具有波动性和电磁性; C.电磁辐射具有微粒性和光电效应;D.电磁辐射具有波动性和粒子性 4 可见区、紫外区、红外光区、无线电波四个电磁波区域中,能量最大和最小的区域分别为:A.紫外区和无线电波区;B.可见光区和无线电波区; C.紫外区和红外区;D.波数越大。 5 有机化合物成键电子的能级间隔越小,受激跃迁时吸收电磁辐射的 A.能量越大;B.频率越高;C.波长越长;D.波数越大。 6 波长为0.0100nm的电磁辐射的能量是多少eV? A.0.124;B.12.4eV;C.124eV;D.1240 eV。 7 受激物质从高能态回到低能态时,如果以光辐

射形式辐射多余的能量,这种现象称为()A光的吸收B光的发射C光的散射D 光的衍射 8 利用光栅的()作用,可以进行色散分光A散射B衍射和干涉C折射D发射9 棱镜是利用其()来分光的 A散射作用B衍射作用C折射作用D 旋光作用 10 光谱分析仪通常由以下()四个基本部分组成 A光源、样品池、检测器、计算机 B信息发生系统、色散系统、检测系统、信息处理系统 C激发源、样品池、光电二级管、显示系统 D光源、棱镜、光栅、光电池 二、填空题 1. 不同波长的光具有不同的能量,波长越长,频率、波数越(),能量越(),反之,波长越短,能量越()。 2. 在光谱分析中,常常采用色散元件获得()来作为分析手段。 3. 物质对光的折射率随着光的频率变化而变

森林资源调查常用术语18条

森林资源调查常用术语18条 1 森林 Forest 植被类型之一。以乔木为主体的,包括灌木、草本植物、其他生物及林中土壤在的自然综合体。 2 森林类型 Forest Types 森林按其自然历史地理条件、外貌、树种组成与结构的不同所划分的类别。 3 优势树种 Dominant Species 简称优势种。在主林层中,数量最多,盖度最大,对森林环境作用最明显,并对森林生态环境起指示作用的树种。 4 龄级 Age Class 对林木年龄的分级。是经营上计算林龄的单位。各龄级所包括的年数称为龄级期限。根据林木主伐年龄的长短和起源的不同,通常天然起源的针叶树和硬阔叶树以20年为一个龄级,软阔叶树以10年为一个龄级;人工林的龄级年限要短些。我国有些速生树种,如杉木、檫木、树、泡桐等人工林,多以5年为一个龄级;竹林和灌木树种,根据经济用途不同,又常以1年或2年为一个龄级。龄级由小到大以罗马数字1、Ⅱ、Ⅲ、Ⅳ……等表示。 5 地位级 Site Class 反映一定树种立地条件的优劣或林分生产能力的一种指标,一般分为五级,由高到低以符号Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ表示。地位级越高,说明立地条件越好,其自然生产力也越高。任一林分的地位级可根据其平均树高和年龄在地位级表中查得。地位级是组织作业级的主要依据之一。对地位级不同的林分应采取不同的经营利用措施。 6 树种组成 Species Composition 又叫林分组成。它说明某一林分中各个树种所占的比重。比重的大小以各树种的蓄积量为准。如各树种的直径相差不大,也可以其株数多少为准。林木组成以各树种所占的十分比表示,叫组成式。如十分之六是落叶松、十分之四是桦树,其组成式为6落4桦。凡比重不到一成,但在0.5成以上则算做一成。比重不到0.5但在0.2成以上时,则以“+”号代之。不到0.2成者,则以“—”代之。如6落4桦+云-冷(落是落叶松,桦是桦树,云是云杉,冷是冷杉)。在组成式里,按树种比重大小排列。如遇比重相同,则经济价值较高树种排在前头。 7 国家森林资源连续清查 National Forest Continues Inventory 简称一类清查。国家森林资源连续清查是全国森林资源监测体系的重要组成部分,是掌握宏观森林资源现状及其消长动态,制定和调整林业方针政策、规划、计划,监督检查领导干部实行森林资源消长任期目标责任制的重要依据。以省(区、市)为单位,每五年复查一次。 8 森林资源规划设计调查 Forest Management Inventory 简称二类调查,也称森林经理调查。森林资源规划设计调查是以国有林业局、林场、自然保护区、县(旗)为单位,以满足森林经营、编制森林经营方案、总体设计和县级林业区划、规划等需要进行的森林资源清查,其成果亦是建立或更新森林资源档案,制定森林采伐限额,实行森林资源资产化管理,指导和规林业基层单位科学经营的重要依据。森林资源规划设计调查周期一般为10年。 9 作业设计调查 Forest Operating Investigation 简称三类调查。查清一个伐区,或者一个抚育、改造林分围的森林资源数量、出材量、生长状况、结构规律等,据以确定采伐或抚育、改造的方式、采伐强度、预估出材量以及更新措施、工艺设计等。一类调查是企业经营利用的手段,应在二类调查的基础上,根据规划设计的要求逐年进行,森林资源应落实到具体的伐区或一定围的作业地块上。 10 林种 Sorts of Forest 按经营目的不同而划分的森林类别。如防护林、用材林、经济林、薪炭林、特种用途林。 11 生态公益林 Ecological Forest 生态公益林是以保护和改善人类生存环境、保持生态平衡、保存物种资源、科学实验、森林旅游、国土保安等需要为主要经营目标的森林和灌木林。生态公益林涉及到防护林和特种用途林两个林种,相应包括水源涵

植被光谱分析与植被指数计算

植被光谱分析与植被指数计算 在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation i ndices ——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁 迫性相关的色素、植被冠层中水分含量等。 包括以下内容: ? ?●植被光谱特征 ? ?●植被指数 ? ?●HJ-1-HSI植被指数计算 1.植被光谱特征 植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。 研究植被的波长范围一般为400 nm t o 2500 nm,这也是传感器设计选择的波长范围。这个波长范围可范围以下四个部分: ??●可见光(Visible):400 nm to 700 nm ??●近红外(Near-infrared——NIR):700 nm to 1300 nm ??●短波红外1(Shortwave infrared 1—— SWIR-1):1300 nm to 1900 nm ??●短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm 其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。 SWIR-1 和SWIR-2的过渡区(1900nm附近)也是大气水的强吸收范围。 植被可分为三个部分组成: ??●植物叶片(Plant Foliage) ??●植被冠层(Plant Canopies) ??●非光合作用植被(Non-Photosynthetic Vegetation) 这三个部分是植被分析的基础,下面对他们详细介绍。 1.1植物叶片(Plant Foliage) 植物叶片包括叶、叶柄以及其他绿色物质,不同种类的叶片具有不同的形状和化学成份。对波谱特征产生重要影响

高光谱遥感在农作物病虫害监测上的应用

高光谱遥感在农作物病虫害监测上的应用高光谱遥感在农作物病虫害监测上的应用高光谱遥感用于病虫害监测的原因高光谱遥感监测农作物病虫害原理和方法 当前遥感监测农作物病虫害的缺陷 未来的展望 农作物病虫害是农业生产上的重要生物灾害,是制约高产、优质、高效益农业持续发展的主导因素之一。据联合国粮农组织估计,世界粮食生产因病虫害常年损失24%;棉花因病虫害常年损失28%。中国是农业大国,每年因病虫害造成的损失与上述统计大致相当。 为了有效地防治病虫害,首先必须及时、准确掌握病虫的发生发展情况。在人类历史的很长时间内,受当时生产条件和科技水平的限制,人们只能在实地用目测手查的方法观察有无病虫害发生及其危害程度,或用捕捉虫蛾等办法判断病虫害爆发的可能性。这些传统的监测方法费时费力不说,其获取信息的滞后性还严重影响病虫预报准确率。为了提高病虫害监测的精度和水平,采用高科技手段,特别是遥感监测已成为病虫害监测的重要研究方向。 高光谱遥感监测农作物病虫害的原理 健康绿色植物的光谱特征主要取决于它的叶子。在可见光谱波段内,植物的光谱特性主要受叶绿素的影响。由于在以450nm为中心的蓝波段以及670nm为中心的红波段的叶绿素强烈吸收辐射能而成吸收谷。叶片的反射率和透射率很低, 在两谷之间吸收相对减少,形成绿色反射峰, 简称“绿峰”,在视觉表现为绿色。当植物生长健康, 处于生长期高峰, 叶绿素含量高时,“绿峰”向蓝光方向偏移, 而植物因病虫危害或缺素而“失绿”时,“绿峰”则向红光方向偏移。

在近红外波段绿色植物的光谱作用取决于叶片内部的细胞结构。当植物受病害侵害时, 叶片组织的水分代谢受到阻碍,此后随着病虫害危害的加重,植物细胞结构遭到破坏,各种色素的含量也随之减少,导致叶片对近红外辐射的反射能力减少。在光谱特征上表现为可见光区(400~700nm)反射率升高而近红外区(720~1100nm)反射率降低。近红外区研究的重点是“红边”。“红边”的定义是反射光谱的一阶微分的最大值对应的光谱位置(波长),通常位于(680~750)之间。“红边”位置依据叶绿素含量、生物量和物候变化, 沿波长轴方向移动。当叶绿素含量高、生长活力旺盛时“红边”会向红外方向偏移;当植物由于感染病虫害或因污染、物候变化而“失绿”时, 则“红边”会向蓝光方向移动。 研究发现近红外部分反射率的改变是发生在可见光部分的反射率发生改变之前的。这是因为在这段时间内,细胞组织中的叶绿素的数量和质量还没有发生改变。 由此可见红外波段的光谱特征的变化早于人用肉眼观测到的病虫危害, 这对于病虫害的早期调查和预报具有极其重大的意义。 高光谱遥感监测农作物病虫害的技术流程 ? 地面光谱获取加农学采样 ? 分析生化参量,农学参量和光谱特征 ? 病虫害光谱诊断模型的建立,验证 ? 高光谱影像的病虫害反演 ? 病虫害波谱库数据 ? 建立病虫害诊断专家系统,发布信息 以冬小麦为例 一( 首先建立试验组和对照组,给试验组采取喷雾法接种条锈病菌。 二( 显症后我们在小麦挑旗期、抽穗期、灌浆期和成熟期分别测量冠层光谱参数、色素含量、病情指数。从而获取高光谱变量特征参数。

几种常见植被指数精编WORD版

几种常见植被指数精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。在学习和使用植被指数时必须由一些基本的认识: 1、健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的; 2、建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息 3、植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响 一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。 1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。植被的RVI通常大于2; 2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量; 3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显着降低; 4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。 二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。 1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等;

2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大; 3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度; 4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关; 三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。 1、对土壤背景的变化极为敏感;? 四、SAVI\TSAVI\MSAVI——调整土壤亮度的植被指数:SAVI=((NIR- R)/(NIR+R+L))(1+L),或两个波段反射率的计算。 1、目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。 L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。 2、SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI 3、SAVI4等改进模型。 五、GVI——绿度植被指数,k-t变换后表示绿度的分量。

高光谱遥感技术及发展

遥感技术与系统概论 结课作业 高光谱遥感技术及发展

高光谱遥感技术及发展 摘要:经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的 发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技 术为主的时代。本文系统地阐述了高光谱遥感技术在分析技 术及应用方面的发展概况,并简要介绍了高光谱遥感技术主 要航空/卫星数据的参数及特点。 关键词:高光谱,遥感,现状,进展,应用 一、高光谱遥感的概念及特点 遥感是20 世纪60 年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通 常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可

探测的物质,在高光谱中能被探测。 同其它传统遥感相比,高光谱遥感具有以下特点: ⑴波段多。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。 ⑵光谱分辨率高。成像谱仪采样的间隔小,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。 ⑶数据量大。随着波段数的增加,数据量呈指数增加[2]。 ⑷信息冗余增加。由于相邻波段的相关性高,信息冗余度增加。 ⑸可提供空间域信息和光谱域信息,即“图谱合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。近二十年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术。 二、发展过程 自80 年代以来,美国已经研制了三代高光谱成像光谱仪。1983 年,第一幅由航空成像光谱仪

森林资源调查常用术语18条

森林资源调查常用术语18条 1 森林Forest 植被类型之一。以乔木为主体的,包括灌木、草本植物、其他生物及林中土壤在内的自然综合体。 2 森林类型Forest Types 森林按其自然历史地理条件、外貌、树种组成与结构的不同所划分的类别。 3 优势树种Dominant Species 简称优势种。在主林层中,数量最多,盖度最大,对森林环境作用最明显,并对森林生态环境起指示作用的树种。 4 龄级Age Class 对林木年龄的分级。是经营上计算林龄的单位。各龄级所包括的年数称为龄级期限。根据林木主伐年龄的长短和起源的不同,通常天然起源的针叶树和硬阔叶树以20年为一个龄级,软阔叶树以10年为一个龄级;人工林的龄级年限要短些。我国有些速生树种,如杉木、檫木、杨树、泡桐等人工林,多以5年为一个龄级;竹林和灌木树种,根据经济用途不同,又常以1年或2年为一个龄级。龄级由小到大以罗马数字1、Ⅱ、Ⅲ、Ⅳ……等表示。 5 地位级Site Class 反映一定树种立地条件的优劣或林分生产能力的一种指标,一般分为五级,由高到低以符号Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ表示。地位级越高,说明立地条件越好,其自然生产力也越高。任一林分的地位级可根据其平均树高和年龄在地位级表中查得。地位级是组织作业级的主要依据之一。对地位级不同的林分应采取不同的经营利用措施。 6 树种组成Species Composition 又叫林分组成。它说明某一林分中各个树种所占的比重。比重的大小以各树种的蓄积量为准。如各树种的直径相差不大,也可以其株数多少为准。林木组成以各树种所占的十分比表示,叫组成式。如十分之六是落叶松、十分之四是桦树,其组成式为6落4桦。凡比重不到一成,但在0.5成以上则算做一成。比重不到0.5但在0.2成以上时,则以“+”号代之。不到0.2成者,则以“—”代之。如6落4桦+云-冷(落是落叶松,桦是桦树,云是云杉,冷是冷杉)。在组成式里,按树种比重大小排列。如遇比重相同,则经济价值较高树种排在前头。 7 国家森林资源连续清查National Forest Continues Inventory 简称一类清查。国家森林资源连续清查是全国森林资源监测体系的重要组成部分,是掌握宏观森林资源现状及其消长动态,制定和调整林业方针政策、规划、计划,监督检查领导干部实行森林资源消长任期目标责任制的重要依据。以省(区、市)为单位,每五年复查一次。 8 森林资源规划设计调查Forest Management Inventory 简称二类调查,也称森林经理调查。森林资源规划设计调查是以国有林业局、林场、自然保护区、县(旗)为单位,以满足森林经营、编制森林经营方案、总体设计和县级林业区划、规划等需要进行的森林资源清查,其成果亦是建立或更新森林资源档案,制定森林采伐限额,实行森林资源资产化管理,指导和规范林业基层单位科学经营的重要依据。森林资源规划设计调查周期一般为10年。 9 作业设计调查Forest Operating Investigation 简称三类调查。查清一个伐区内,或者一个抚育、改造林分范围内的森林资源数量、出材量、生长状况、结构规律等,据以确定采伐或抚育、改造的方式、采伐强度、预估出材量以及更新措施、工艺设计等。一类调查是企业经营利用的手段,应在二类调查的基础上,根据规划设计的要求逐年进行,森林资源应落实到具体的伐区或一定范围的作业地块上。 10 林种Sorts of Forest 按经营目的不同而划分的森林类别。如防护林、用材林、经济林、薪炭林、特种用途林。 11 生态公益林Ecological Forest 生态公益林是以保护和改善人类生存环境、保持生态平衡、保存物种资源、科学实验、森林旅游、国土保安等需要为主要经营目标的森林和灌木林。生态公益林涉及到防护林和特种用途林两个林种,相应包括水源涵养林、水土保持林、防风固沙林、农田牧场防护林、护岸林、护路林、国防林、实验林、母树林、环境保护林、风景林、名胜古迹和革命纪念地林、自然保护区林等13个二级林种。 12 商品林Commercial Forest 以生产木材、薪炭、干鲜果品及其他工业原料等为主要经营目标的森林和灌木林。商品林涉及用材林、薪炭林和经济林三个林种,相应包括一般用材林、短轮伐期用材林、薪炭林、油料林、特种经济林、果树林、其他经济林等7个二级林种。

植被指数计算方法

2.1归一化植被指数(NDVI ) 归一化植被指数(Normalized Differenee Vegetation Index 即 NDVI )的计算 公式为: 其中:NIR 和RED 分别代表近红外波段和红光波段的反射率 NDVI 的值介于-1和 1之间。 2.2增强型植被指数(EVI ) 增强型植被指数(En ha need Vegetation In dex 即EVI )计算公式为: NIR 、 RED 和BLUE 分别代表近红外波段、红光波段和蓝光波段的反射率。 2.3高光谱归一化植被指数(Hyp_NDVI ) 对于环境与灾害监测预报小卫星高光谱载荷,选取中心波长分别位于近红外 和红光的谱段进行归一化植被指数计算: .. Hyp NIR Hyp RED Hyp NDVI ----------- ------------ 一 Hyp _ NIR Hyp _ RED 2.4其他植被指数 (1) 比值植被指数(Ratio Vegetation Index ------ RVI ) RVI 3 RED 该植被指数能够充分表现植被在红光和近红外波段反射率的差异,能增强植 被与土壤背景之间的辐射差异。但是 RVI 对大气状况很敏感,而且当植被覆盖 小于50%时,它的分辨能力显著下降。 (2) 差值植被指数(Differenee Vegetation Index -------- DVI ) DVI NIR RED 该植被指数对土壤背景的变化极为敏感,有利于对植被生态环境的监测,因 此又被称为环境植被指数(EVI )。 (3) 土壤调整植被指数(Soil-Adjusted Vegetation Index --------- S AVI ) NDVI NIR RED NIR RED EVI 2.5 NIR RED NIR 6.° RED 7.5 BLUE

光谱分析方法

第一章绪论 )、色谱法、质谱法、电泳法、热分析法和放射化 ( )。 )、( )、( )。 )、( )、操作简便分析速度快。 答案 1光学分析法、电化学分析法 2光谱法、非光谱法 3色谱法、质谱法、电泳法 4灵敏度高检出限低、选择性好 第二章光学分析法导论 一、 选择题 1电磁辐射的粒子性主要表现在哪些方面( ) A 能量 B 频率 C 波长 D 波数 2当辐射从一种介质传播到另一种介质时,下列哪种参量不变( ) A 波长 B 速度 C 频率 D 方向 3电磁辐射的二象性是指: A .电磁辐射是由电矢量和磁矢量组成; B .电磁辐射具有波动性和电磁性; C ?电磁辐射具有微粒性和光电效应; D ?电磁辐射具有波动性和粒子性 4可见区、紫外区、红外光区、无线电波四个电磁波区域中, 能量最大和最小的区域分别为: A ?紫外区和无线电波区; B ?可见光区和无线电波区; C .紫外区和红外区; D ?波数越大。 一、 填空题 1仪器分析方法分为( )、( 学分析法。 2光学分析法一般可分为( ) 3仪器分析的分离分析法主要包括(

5有机化合物成键电子的能级间隔越小,受激跃迁时吸收电磁辐射的A .能量越大;B .频率越高;C .波长越长;D .波数越大。

7受激物质从高能态回到低能态时,如果以光辐射形式辐射多余的能量,这种现象称为() A光的吸收B光的发射C光的散射D光的衍射 8利用光栅的()作用,可以进行色散分光 A散射B衍射和干涉C折射D发射 9棱镜是利用其()来分光的 A散射作用B衍射作用C折射作用D旋光作用 10光谱分析仪通常由以下()四个基本部分组成 A光源、样品池、检测器、计算机 B信息发生系统、色散系统、检测系统、信息处理系统 C激发源、样品池、光电二级管、显示系统 D光源、棱镜、光栅、光电池 二、填空题 ),能量越(),反1. 不同波长的光具有不同的能量,波长越长,频率、波数越( 之,波长越短,能量越()。 2. 在光谱分析中,常常采用色散元件获得()来作为分析手段。 3. 物质对光的折射率随着光的频率变化而变化,这中现象称为() 4. 吸收光谱按其产生的本质分为()、()、()等。 5. 由于原子没有振动和转动能级,因此原子光谱的产生主要是()所致。 6?当光与物质作用时,某些频率的光被物质选择性的吸收并使其强度减弱的现象,称为(), 此时,物质中的分子或原子由()状态跃迁到()的状态。 7.原子内层电子跃迁的能量相当于()光,原子外层电子跃迁的能量相当于()和()。 三. 简答题: 1?什么是光学分析法? 2?何谓光谱分析法和非光谱分析法? 3. 简述光学分析法的分类? 4. 简述光学光谱仪器的基本组成。 5. 简述瑞利散射和拉曼散射的不同?

3[1].2《遥感技术及其应用》-教案1(湘教版必修3)

3.2遥感技术及其应用教学设计 一、课标要求:结合实例,了解遥感(RS)在资源普查、环境和灾害监测中的应用。 二、三维目标 (一)知识与技能 1、能够用自己的语言表述遥感的概念 2、能简要说明遥感技术的发展过程。 3、能说出遥感的几种常见分类。 4、能举例说明遥感在资源普查、环境灾害监测中的作用。 (二)方法与过程 1、通过阅读教材中提供的资料并上网搜索遥感信息,归纳遥感的几个发展阶段。 2、通过读图或上网搜索相关资料比较航天遥感、航空遥感、近地遥感使用飞运载工具、主要优缺点及适用范围等方面的差异。 3、通过上网搜索有关遥感技术应用的信息,归纳遥感技术的主要途径。 (三)情感态度与价值观 1、通过遥感技术的迅猛发展的介绍,使学生感悟新兴地理信息技术的生命力,从而初步养成热爱科学、努力学习新兴科学的好习惯。 2、通过迅速发展的中国遥感技术的学习,增强学生的民族自信心和爱国情感。 3、通过遥感技术在农业、军事、环境监测、资源调查等方面的重要作用的学习,产生对遥感技术的好奇感,从而激发学生的探究和创新动力。 三、重点:根据运载工具不同的遥感分类种类。 四、学习方法: 1、多媒体课件演示。 2、读图分析讨论。 3、教师点拨、启发、引导。 4、理论联系实际。 五、课时:1课时

导入:南极考查必须穿越西风带区,这是多年来南极考察的难题。在我国开展的第14次南极考察中,1997年12月10日“雪龙号”科学考察船进入强风带时,与外界中断了联系,“船载气象卫星接收系统”接收到了一张非常清晰的卫星云图,图像上清晰的显示了三个气旋的位置及运动方向。这就是本节我们学习的遥感技术及其应用。 基础层次问题 1、什么是遥感技术? 2、遥感技术经历了怎样的发展过程? 3、遥感技术有哪些特点? 4、遥感技术系统由那些组成? 5、遥感从不同的角度可以分为不同的类型,如何分? 6、航天遥感、航空遥感、近地遥感对比优缺点。 7、遥感在资源普查中的应用有哪些? 8、遥感在环境灾害监测中如何应用? 9、遥感卫星的科学实验功能有哪些? 知识反馈 1、下列遥感类型中,探测范围由大到小依次是 A.近地遥感、航空遥感、航天遥感 B.航天遥感、航空遥感、近地遥感 C.航空遥感、近地遥感、航天遥感 D.航空遥感、航天遥感、近地遥感 2、下列遥感类型中.按照应用领域或专题进行分类的是 A.航天遥感、航空遥感、近地遥感 B.主动式遥感、被动式遥感 C.紫外遥感、可见光遥感、红外遥感、微波遥感、多谱段遥感

高光谱遥感及其发展与应用综述

高光谱遥感及其发展与应用综述 摘要:高光谱遥感是20世纪80年代兴起的新型对地观测技术。文中归纳了高光谱遥感技术波段多、波段宽度窄,光谱分辨率高,数据量大、信息冗余,“图谱合一”等特点,具有近似连续的地物光谱信息、地表覆盖的识别能力极大提高、地形要素分类识别方法灵活多样、地形要素的定量或半定量分类识别成为可能等优势,简单介绍了高光谱遥感在国外及国内的发展情况。在此基础上,概述了高光谱遥感在地质矿产、植被生态、大气科学、海洋、农业等领域的应用。 关键词:高光谱遥感;发展;应用 1高光谱遥感 高光谱分辨率遥感是指利用很多很窄的电磁波波段从感兴趣的物体获取有关数据。它的基础是测谱学。测谱学早在20世纪初就被用于识别分子和原子及其结构,20世纪80年代才开始建立成像光谱学。它是在电磁波谱的紫外、可见光、近红外和中红外区域,获取许多非常窄且光谱连续的图像数据的技术。成像光谱仪为每个象元提供数十至数百个窄波段光谱信息,能产生一条完整而连续的光谱曲线。 1.1高光谱遥感的特点 (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。 (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。(4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2高光谱的优势 高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势: (1)蕴含着近似连续的地物光谱信息。高光谱影像经过光谱反射率重建,能获取

高光谱遥感在土壤重金属含量监测中的应用

一、基于高光谱的土壤重金属铜的反演研究 2. 1 土壤样品的采集 选取江西省余江县( 11655E, 2815N)和泰和县( 11504E, 2644N) 采集土壤样本, 该地区属中亚热带典型红壤丘陵区, 气候温和多雨,年平均温度为17. 6 , 年降水量为1 795 mm。研究共采集0~ 20 cm 土层土壤样品34 个, 其中余江县采集不同作物条件下样品22 个, 泰和县采集样品12 个。采集的土壤样品覆盖了林地、草地、花生地、油菜地、果园等典型农业土地利用类型。土壤样品经风干、磨碎, 而后过20 目筛。研究将每个样品分成两份, 分别用于化学分析和光谱测量。 2. 2 土壤光谱的测定 采用ASD Field SpecPro FR 型地物光谱仪, 室内光谱测试条件为: 光源为1 000 W 的卤素灯, 5视场角, 光源照射方向与垂直方向夹角为15, 光源距离为30 cm, 探头距离为15 cm, 置于土壤表面的垂直上方。测试之前先以白板进行定标, 获取绝对反射率。每个土样测得10 条 土壤光谱数据预处理可以消减光谱中因受随机因素影响而产生的误差部分。因此, 可利用光谱重采样、一阶微分、光谱倒数的对数等方法对原始反射光谱进行处理。 2. 3. 1 光谱重采样 由于光谱仪在数据输出时对350~ 2 500 nm 的光谱数据进行了1 nm 为间隔的重采样, 总共2 151个波段, 使得原始光谱曲线中相邻波段之间存在信息重合, 导致整个光谱数据冗余, 给分析、处理带来一定困难, 影响处理的效率和结果。因此, 在尽可能维持光谱原有基本特征的前提下, 对光谱数据以10 nm 为间隔进行算术平均运算[ 9] , 处理后的光谱曲线更加平滑的同时仍然维持了原光谱的形状特征( 图2) 。 2. 3. 2 一阶微分 光谱测量容易受观测角度、照度、样品表面粗糙度等诸多因素的影响, 使得光谱数据的信噪

森林资源二类调查报告范文

森林资源二类调查报告范文 发布时间:2019-10-27 来源:调查报告 为全面摸清全市森林资源家底,掌握资源现状,科学考核全市造林绿化一大四小工程建设成效,根据xx文件要求,决定从今年xx月起,在全市开展第七次县级森林资源二类调查。为确保顺利圆满完成本次调查任务,特制定本工作方案。 一、调查目的与任务 森林资源二类调查是以县级行政区域为单位,以满足森林经营方案编制、规划设计、森林分类经营和编制森林采伐限额等需要而进行的森林资源调查,是林业生态建设的一项重要基础性和公益性工作。搞好森林资源二类调查,对准确掌握全市森林资源状况,建立林业管理信息系统平台,及时、快捷进行信息交流和科学实施林业生态工程具有重大意义。 调查的目的是掌握全市森林资源分布状况,森林覆盖率指标现状,建立或更新森林资源档案,为调整我市林业发展方针政策,制定林业和国民经济发展规划,实施林业分类经营,编制森林采伐限额和林地保护利用规划,科学指导森林经营提供依据。 调查的任务是查清区域内森林、林地和林木资源的种类、数量、质量与分布及其消长变化,客观反映调查区域自然、社会经济条件和经营管理状况,综合分析评价森林资源与经营管理现状,提出森林资源培育、保护、利用意见,并逐步建立森林资源管理信息系统,为科学考核造林绿化一大四小工程建设完成情况提供依据。以本次二类资源数据为基础,组织完成全市xx森林采伐限额编制工作,加快推动各类森林经营方案的编制实施和森林资源管理信息系统的推广应

用。 二、调查范围 全面完成xx四县以及xx的森林资源二类调查任务,总面积约740236公顷。各县(区)区划面积为:xx区1723公顷、xx区1897公顷、xx谱区1204公顷、 三、技术方法 调查方法采取地面调查为主、地面调查与遥感判读相结合的方法进行。地面调查采用小班调查和固定样地调查相结合的方法进行。通过固定样地调查(复查),估算总体蓄积、计算间隔期内森林资源消长变化,并控制和平差小班蓄积;通过小班区划调查,把森林资源落实到山头地块。遥感判读作为补充调查,利用卫星遥感影像资料,辅助判读森林地类、林种和树种等重要因子,提高小班调查精度。 四、组织领导 (一)成立领导小组 本次森林资源二类调查和编制xx森林采伐限额工作时间紧、任务重、要求高、涉及面广,为切实抓好调查、编限工作,市林业局成立xx局长为组长,xx 副局长、xx副调研员为副组长,xx为成员的二类调查工作领导小组。领导小组下设办公室,办公室设在林政资源管理处,xx兼任办公室主任,xx为副主任,工作人员有xx。领导小组全面负责全市县级森林资源二类调查工作,审查调查工作方案,安排筹措调查经费并监督使用,接待上级来人检查,组织专家鉴定调查成果及其他重大问题的决策。办公室负责处理日常事务,做好上传下达工作;制定全市森林资源二类调查工作方案、技术方案、外业调查操作细则以及质量管理办法;组织全市调查队伍技术培训,统一标准和工作程序;组织完成全市质量检查

几种常见植被指数

常用的植被指数,土壤指数,水体指数有哪些? 植被指数与土壤指数 一、RVI——比值植被指数:RVI=NIR/R,或两个波段反射率的比值。 1、绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。植被的RVI通常大于2; 2、RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量; 3、植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低; 4、RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。 二、NDVI——归一化植被指数:NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。 1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差等; 2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;

3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度; 4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、粗超度等,且与植被覆盖有关; 三、DVI\EVI——差值\环境植被指数:DVI=NIR-R,或两个波段反射率的计算。 1、对土壤背景的变化极为敏感; 四、SAVI\TSAVI\MSAVI——调整土壤亮度的植被指数: SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。 1、目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。 2、SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI 3、SAVI4等改进模型。 五、GVI——绿度植被指数,k-t变换后表示绿度的分量。

乡镇林业资源调查报告

乡镇林业资源调查报告 镇林业用地面积17.2万亩,其中竹山5.7万亩,生态公益林7.52万亩,森林覆盖率88.6%,森林蓄积量83.7万立方米,立竹859万根。近3年来每年木材采伐量 在2万立方米以上,毛竹32万根。如果25年一个经营周期(别个县的一般在20年)能够实现资源永续利用,能够确保生态安全。 一、森林资源好,木材指标较少,矛盾突出。 虽然我镇现在每年的采伐量2万立方米以上。因88年至90年造的人工杉木较多,还剩1万亩左右,蓄积量在10万立方米。今年仍在砍伐87年,少量88年的人工 杉木林,也就是林龄在27年的杉木林(我们现在安排木材指标都按抽签的方法, 序号前的优先安排)如按现有的采伐量,88年至90年的杉木林还要5年才能采伐完,也就是有的杉木林要将近30年才能安排主伐,林农对此意见很大。 建议:增加木材指标,镇近几年安排3万立方米,缓解木材指标矛盾,缩短林业 采伐周期,增加林农收入。 二、毛竹销售价低,成本上涨,采伐量减少。 镇竹山面积5.7万亩,立竹量859万根。20**年雪灾前每年立竹采伐量在120万 根以上,去年的采伐量只有32万根,采伐面积1.9万多亩,还有近3.8万亩未砍伐,其原因是毛竹销售价格低,镇毛竹加工厂现在每吨收购价是560元,每吨折 合毛竹45根左右,平均每根毛竹销价在12.4元左右。毛竹成本:①砍伐工资225 元每吨,折合每根毛竹5元;②运费每根1.5元;③育林费每根1元;④竹山租金每年每亩80元,以每亩每年产竹25根计算,每根毛竹年租金3.2元;⑤斩山抚育 2年一次每次70元,折毛竹1.4元每根。五项合计成本12.1元,还不包括道路维修、新开道路和管理成本。 建议:县里加大毛竹林的投入,对立地条件好,生产条件好的毛竹林培育笋竹两 用丰产林,对边远山区的毛竹林新开公路实行财政补贴。 三、林改后,税费降低,林木、林地价格上涨,导致林权纠纷增多。 林改后,林木每立方米销价在1300左右,每亩林木销价在7000元以上,的林地 一次性付租每亩在1800元以上,高的2300元,而且主伐时还要交3立方米的木 材给林权单位,按年付租的最低每亩220元,最高的399元。如按25年一个周期,最低的每亩林地在5000元,高的上万元。价格上涨,矛盾凸现,主要纠纷有:林 木权属纠纷、林地权属纠纷、林木流转合同纠纷。镇经过近几年对纠纷的调处, 调处率在96%,还剩8起纠纷,其中4起林农与林农纠纷,2起组与组纠纷,2起 镇与镇纠纷,涉及面积1300亩。山林纠纷都涉及到集体、个人的切身利益。特别 是组与组、林农与林农的纠纷难以处理,影响社会稳定,更有个别林农不讲法律、不讲政策,同一宗纠纷我们答复和处理了多次,但还是到处告状,反复上访。

相关主题
文本预览
相关文档 最新文档