当前位置:文档之家› 同轴双绞光纤特性

同轴双绞光纤特性

同轴双绞光纤特性
同轴双绞光纤特性

同轴电缆、双绞线及光纤的特点和传输特性分析

1、同轴电缆

一般在小范围的监控系统中,由于传输距离很近,使用同轴电缆

直接传送监控图象对图象质量的损伤不大,能满足实际要求。但是,根据对同轴电缆自身特性的分析,当信号在同轴电缆内传输时其受

到的衰减与传输距离和信号本身的频率有关。一般来讲,信号频率

越高,衰减越大。所以,同轴电缆只适合于近距离传输图象信号,

当传输距离达到200米左右时,图象质量将会明显下降,特别是色

彩变得暗淡,有失真感。

在工程实际中,为了延长传输距离,要使用同轴放大器。同轴放

大器对视频信号具有一定的放大,并且还能通过均衡调整对不同频

率成分分别进行不同大小的补偿,以使接收端输出的视频信号失真

尽量些 但是,同轴放大器并不能无限制级联,一般在一个点到点

系统中同轴放大器最多只能级联2到3个,否则无法保证视频传输

质量,并且调整起来也很困难。因此,在监控系统中使用同轴电缆时,为了保证有较好的图象质量,一般将传输距离范围限制在四、

五百米左右。

另外,同轴电缆在监控系统中传输图象信号还存在着一些缺点:

1)同轴电缆本身受气候变化影响大,图象质量受到一定影响;

2)同轴电缆较粗,在密集监控应用时布线不太方便;

3)同轴电缆一般只能传视频信号,如果系统中需要同时传输控制

数据、音频等信号时,则需要另外布线;

4)同轴电缆抗干扰能力有限,无法应用于强干扰环境;

5)同轴放大器还存在着调整困难的缺点。

2、双绞线

双绞线的使用由来已久,在很多工业控制系统中和干扰较大的场

所以及远距离传输中都使用了双绞线,我们今天广泛使用的局域网

也是使用双绞线对。双绞线之所以使用如此广泛,是因为它具有抗

干扰能力强、传输距离远、布线容易、价格低廉等许多优点。双绞

线对信号也存在着较大的衰减,视频信号如果直接在双绞线内传输,也会衰减很大,所以视频信号在双绞线上要实现远距离传输,必须

进行放大和补偿,双绞线视频传输设备就是完成这种功能。加上一

对双绞线视频收发设备后,可以将图象传输到1至2km。双绞线和

双绞线视频传输设备价格都很便宜,不但没有增加系统造价,反而

在距离增加时其造价与同轴电缆相比下降了许多。所以,监控系统

中用双绞线进行传输具有明显的优势:

1)传输距离远、传输质量高。由于在双绞线收发器中采用了先进

的处理技术,极好地补偿了双绞线对视频信号幅度的衰减以及不同

频率间的衰减差,保持了原始图象的亮度和色彩以及实时性,在传

输距离达到1km或更远时,图象信号基本无失真。如果采用中继方式,传输距离会更远。

2)布线方便、线缆利用率高。一对普通电话线就可以用来传送视

频信号。另外,楼宇大厦内广泛铺设的5类非屏蔽双绞线中任取一

对就可以传送一路视频信号,无须另外布线,即使是重新布线,5

类缆也比同轴缆容易。此外,一根5类缆内有4对双绞线,如果使

用一对线传送视频信号,另外的几对线还可以用来传输音频信号、

控制信号、供电电源或其它信号,提高了线缆利用率,同时避免了

各种信号单独布线带来的麻烦,减少了工程造价。

3)抗干扰能力强。双绞线能有效抑制共模干扰,即使在强干扰环

境下,双绞线也能传送极好的图象信号。而且,使用一根缆内的几

对双绞线分别传送不同的信号,相互之间不会发生干扰。

4)可靠性高、使用方便。利用双绞线传输视频信号,在前端要接

入专用发射机,在控制中心要接入专用接收机。这种双绞线传输设

备价格便宜,使用起来也很简单,无需专业知识,也无太多的操作,一次安装,长期稳定工作。

5)价格便宜,取材方便。由于使用的是目前广泛使用的普通5类非屏蔽电缆或普通电话线,购买容易,而且价格也很便宜,给工程应用带来极大的方便。

3、光纤

光纤和光端机应用在监控领域里主要是为了解决两个问题:一是传输距离,一是环境干扰。双绞线和同轴电缆只能解决短距离、小范围内的监控图象传输问题,如果需要传输数公里甚至上百公里距离的图象信号则需要采用光纤传输方式。另外,对一些超强干扰场所,为了不受环境干扰影响,也要采用光纤传输方式。因为光纤具有传输带宽宽、容量大、不受电磁干扰、受外界环境影响小等诸多优点,一根光纤就可以传送监控系统中需要的所有信号,传输距离可以达到上百公里。光端机为监控系统提供了灵活的传输和组网方式,信号质量好、稳定性高。

不过,使用光纤和光端机需要一定的专业知识和专用设备,这给工程施工和用户使用带来了一定的困难。另外,对于短距离、小规模的监控系统来说,使用光纤传输也显得不够经济。

比较双绞线、同轴电缆、光纤和无线介质之间的优缺点

一、双绞线视频传输设备:使用价格便宜、取材方便的五类或五类以上的非屏

蔽双绞线四对线中的一对线传输一路高质量的视频信号,其余双绞线线对可以

用来传输音频信号或控制台数据等,也可以传输更多的视频信号。双绞线视频

传输设备具有超强的干扰抑制能力,对于干扰较大的环境。

二、同轴电缆(有粗缆和细缆):优点:安装费用低,维护成本低,安装简单,扩充方便。

缺点:速度太慢。

三、光纤:优点:不受杂讯、串音、电磁波等之干扰。频宽高,信号损益低,

传输距离远。机密性高,不易被窃听。重量轻、柔性佳,体积小。对环境的容

忍性较大。

缺点:价位高。需由专业人员安装,且新节点安装不易。

一个通信系统不论采用并行或串行传输方式,数据最终要通过某种

介质和接口才能从发送设备传送到接收设备。在通信系统中,可以

将通信介质比做输送数据信息的管道,管道的好坏以及畅通的程度,决定了通信的质量和能力。PLC对通信介质的基本要求是具有传输

效率高、能量损耗小、抗干扰能力强、性价比高等特性。

目前PLC通信大多数采用有线介质,例如双绞线、同轴电缆、光纤等。由于工业环境中存在各种各样的干扰,因此对于PLC网络通信来讲,要求通信介质必须具备较高的抗干扰能力,所以双绞线

和同轴电缆适用于PLC的通信。

光纤接头详解

ST、SC、FC、LC光纤接头区别 ST、SC、FC、LC光纤接头区别 ST、SC、FC光纤接头是早期不同企业开发形成的标准,使用效果一样,各有优缺点。 ST、SC连接器接头常用于一般网络。ST头插入后旋转半周有一卡口固定,缺点是容易折断;SC连接头直接插拔,使用很方便,缺点是容易掉出来;FC连接头一般电信网络采用,有一螺帽拧到适配器上,优点是牢靠、防灰尘,缺点是安装时间稍长。 MTRJ 型光纤跳线由两个高精度塑胶成型的连接器和光缆组成。连接器外部件为精密塑胶件,包含推拉式插拔卡紧机构。适用于在电信和数据网络系统中的室内应用。 光纤接口连接器的种类 光纤连接器,也就是接入光模块的光纤接头,也有好多种,且相互之间不可以互用。不是经常接触光纤的人可能会误以为GBIC和SFP模块的光纤连接器是同一种,其实不是的。SFP模块接LC光纤连接器,而GBIC接的是SC光纤光纤连接器。下面对网络工程中几种常用的光纤连接器进行详细的说明: ① FC型光纤连接器:外部加强方式是采用金属套,紧固方式为螺丝扣。一般在ODF侧采用(配线架上用的最多) ② SC型光纤连接器:连接GBIC光模块的连接器,它的外壳呈矩形,紧固方式是采用插拔销闩式,不须旋转。(路由器交换机上用的最多) ③ ST型光纤连接器:常用于光纤配线架,外壳呈圆形,紧固方式为螺丝扣。(对于10Base-F连接来说,连接器通常是ST类型。常用于光纤配线架) ④ LC型光纤连接器:连接SFP模块的连接器,它采用操作方便的模块化插孔(RJ)

闩锁机理制成。(路由器常用) ⑤ MT-RJ:收发一体的方形光纤连接器,一头双纤收发一体常见的几种光纤线 光纤接口大全

光纤的分类 特性 优缺点 详解

光纤的分类特性优缺点详解 单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。 多模光纤:中心玻璃芯较粗(50或μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。传输距离较近,最多几公里。 我只是知道有单模和多模的,单模就是波长在1310NM上,多模就是850NM的,还有就是接口也不同,分LC ,SC ,FC,因本人专业知识有限,其他的是我在网上查找的!请参考!一,光纤的分类些特种光纤如晶体光纤并未列出 光纤是光导纤维(OF:Optical Fiber)的简称。但光通信系统中常常将Opti cal Fibe(光纤)又简化为Fiber,例如:光纤放大器(Fiber Amplifier)或光 纤干线(Fiber Backbone)等等。有人忽略了Fiber虽有纤维的含义,但在光系统 中却是指光纤而言的。因此,有些光产品的说明中,把fiber直译成“纤维”,显然 是不可取的。 光纤实际是指由透明材料作成的纤芯和在它周围采用比纤芯的折射率稍低的材 料作成的包层所被覆,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯 中传播前进的媒体。 光纤的种类很多,根据用途不同,所需要的功能和性能也有所差异。但对于有 线电视和通信用的光纤,其设计和制造的原则基本相同,诸如:①损耗小;②有一 定带宽且色散小;③接线容易;④易于成统;⑤可靠性高;⑥制造比较简单;⑦价 廉等。 光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上

光纤通信-重要知识点总结

光纤通信重要知识点总结 第一章 1.任何通信系统追求的最终技术目标都是要可靠地实现最大可能的信息传输容量和传输距离。通信系统的传输容量取决于对载波调制的频带宽度,载波频率越高,频带宽度越宽。 2.光纤:由绝缘的石英(SiO2)材料制成的,通过提高材料纯度和改进制造工艺,可以在宽波长范围内获得很小的损耗。 3.光纤通信系统的基本组成:以光纤为传输媒介、光波为载波的通信系统,主要由光发送机、光纤光缆、中继器和光接收机组成。光纤通信系统既可传输数字信号也可传输模拟信号。输入到光发射机的带有信息的电信号,通过调制转换为光信号。光载波经过光纤线路传输到接收端,再由光接收机把光信号转换为电信号。系统中光发送机的作用是将电信号转换为光信号,并将生成的光信号注入光纤。光发送机一般由驱动电路、光源和调制器构成,如果是直接强度调制,可以省去调制器。 光接收机的作用是将光纤送来的光信号还原成原始的电信号。它一般由光电检测器和解调器组成。光纤的作用是为光信号的传送提供传送媒介,将光信号由一处送到另一处。中继器分为电中继器和光中继器(光放大器)两种,其主要作用就是延长光信号的传输距离。为提高传输质量,通常把模拟基带信号转换为频率调制、脉冲频率调制或脉冲宽度调制信号,最后把这种已调信号输入光发射机。还可以采用频分复用技术,用来自不同信息源的视频模拟基带信号(或数字基带信号)分别调制指定的不同频率的射频电波,然后把多个这种带有信息的RF信号组合成多路宽带信号,最后输入光发射机,由光载波进行传输。在这个过程中,受调制的RF 电波称为副载波,这种采用频分复用的多路电视传输技术,称为副载波复用技术。目前大都采用强度调制与直接检波方式。又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。 数字光纤通信系统基本上由光发送机、光纤与光接收机组成。发送端的电端机把信息进行模数转换,用转换后的数字信号去调制发送机中的光源器件LD,则LD就会发出携带信息的光波,即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”。光波经低衰耗光纤传输后到达接收端。在接收端,光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数模转换,恢复成原来的信息。这样就完成了一次通信的全过程。 4.光纤通信的优点:1通信容量大,一根仅头发丝粗细的光纤可同时传输1000亿个话路2中继距离长,光纤具有极低的衰耗系数,配以适当的光发送与光接收设备,可使其中继距离达数百千米以上,因此光纤通信特别适用于长途一、二级干线通信。3.保密性能好4.适应能力强5.体积小、重量轻、便于施工维护6.原材料资源丰富,节约有色金属和能源,潜在价格低廉,制造石英光纤的原材料是二氧化硅(砂子),而砂子在自然界中几乎是取之不尽、用之不竭的 5.光发射机:功能是把输入的电信号转换为光信号,并用耦合技术把光信号最大限度地注入光纤线路。光发射机由光源、驱动器和调制器组成。光源是光发射机的核心。光发射机的性能基本上取决于光源的特性,对光源的要求是输出光功率足够大,调制频率足够高,谱线宽度和光束发散角尽可能小,输出功率和波长稳定,器件寿命长。 6.实现光源调制的方法:直接调制和外调制。直接调制是用电信号直接调制半导体激光器或发光二极管的驱动电流,使输出光随电信号变化而实现的。这种方案技术简单,成本较低,容易实现,但调制速率受激光器的频率特性所限制。外调制是把激光的产生和调制分开,用独立的调制器调制激光器的输出光而实现的。外调制的优点是调制速率高,缺点是技术复杂,成本较高,因此只有在大容量的波分复用和相干光通信系统中使用。 6.光纤线路:光纤线路的功能是把来自光发射机的光信号,以尽可能小的畸变(失真)和衰减传输到光接收机。光纤线路由光纤、光纤接头和光纤连接器组成。光纤是光纤线路的主体,接头和连接器是不可缺少

光纤接头说明图(全)

全光纤及光纤连接器图示说明.doc 光纤接头图片.doc 光纤接头说明图.doc ST、SC、FC、LC光纤接头区别 2008-10-13 21:33:01 作者:来源:文字大小:【】【】【】 简介:ST、SC、FC光纤接头是早期不同企业开发形成的标准,使用效果一样,各有优缺点。 ST、SC连接器接头常用于一般网络。ST 头插入后旋转半周有一卡口固定,缺点是容易折断;SC连接头直接插拔,使用很方便,缺点是容易 ... ST、SC、FC光纤接头是早期不同企业开发形成的标准,使用效果一样,各有优缺点。 ST、SC连接器接头常用于一般网络。ST头插入后旋转半周有一卡口固定,缺点是容易折断;SC连接头直接插拔,使用很方便,缺点是容易掉出来;FC连接头一般电信网络采用,有一螺帽拧到适配器上,优点是牢靠、防灰尘,缺点是安装时间稍长。 MTRJ 型光纤跳线由两个高精度塑胶成型的连接器和光缆组成。连接器外部件为精密塑胶件,包含推拉式插拔卡紧机构。适用于在电信和数据网络系统中的室内应用。

光纤接口连接器的种类 光纤连接器,也就是接入光模块的光纤接头,也有好多种,且相互之间不可以互用。不是经常接触光纤的人可能会误以为GBIC和SFP模块的光纤连接器是同一种,其实不是的。SFP模块接LC光纤连接器,而GBIC接的是SC光纤光纤连接器。下面对网络工程中几种常用的光纤连接器进行详细的说明:

① FC型光纤连接器:外部加强方式是采用金属套,紧固方式为螺丝扣。一般在ODF侧采用(配线架上用的最多) ② SC型光纤连接器:连接GBIC光模块的连接器,它的外壳呈矩形,紧固方式是采用插拔销闩式,不须旋转。(路由器交换机上用的最多) ③ ST型光纤连接器:常用于光纤配线架,外壳呈圆形,紧固方式为螺丝扣。(对于10Base-F连接来说,连接器通常是ST类型。常用于光纤配线架) ④ LC型光纤连接器:连接SFP模块的连接器,它采用操作方便的模块化插孔(RJ)闩锁机理制成。(路由器常用) ⑤ MT-RJ:收发一体的方形光纤连接器,一头双纤收发一体 常见的几种光纤线 光纤接口大全

光纤种类及特点

光纤类型及特点G652光纤纤芯图片 G657光纤纤芯图片

多模光纤纤芯图片 我们常用的光纤有G652B(蓝、橙、绿、棕、灰、白、红、黑)和G657A(蓝、橙、绿、棕、灰、黄、红、紫),两种光纤主要特性的区别是光纤的弯曲半径,G652B 是R30(光纤弯曲半径不可以小于30mm),G657A是R10(光纤弯曲半径不可以小于10mm)

G652光纤的排列顺序 G657光纤的排列顺序 光纤类型知识: ITU—T建议规范分类:G.651、G.652、G.653、G.654、G.655、G.656、G.657 MMF(Multi Mode Fiber多模光纤) - OM1光纤(62.5?125um) - OM2?OM3光纤(G.651光纤)其中:OM2—50?125um;OM3—新一代多模光纤。 SMF(Single Mode Fiber单模光纤) - G.652(色散非位移单模光纤) - G.653(色散位移光纤) - G.654(截止波长位移光纤) - G.655(非零色散位移光纤) - G.656(低斜率非零色散位移光纤) - G.657(耐弯光纤) ◆G.651:长波长多模光纤(ITU-T G.651)50/125μm梯度多模光纤工业标准。70年代末到80年代初建立。ITU-T G.651即OM2?OM3光纤或多模光纤(50?125)。

ITU-T推荐光纤中并没有OM1光纤或多模光(62.5?125),但它们在美国的使用仍非常普遍。主要应用于局域网,不适用于长距离传输,但在300至500米的范围内,G.651是成本较低的多模传输光纤。 ◆G.652:常规单模光纤(色散非位移单模光纤),截止波长最短,既可用于1550NM,又可用于1310NM。其特点在设计和制造时的波长在1310nm附近时的色散为零,1550nm波长时损耗最小,但色散最大。(1310nm窗口的衰减在0.3~0.4dB/km,色散系数在0~3.5ps/nm.km。1550nm窗口的衰减在0.19~ 0.25dB/km,色散系数在15~18ps/nm.km。)主要缺点是在1550波段色散系数较大,不适于2.5Gb/s以上的长距离应用。 G.652A?B是基本的单模光纤,G.652C?D是低水峰单模光纤。 ◆G.653:色散位移单模光纤。在1550nm波长左右的色散降至最低,从而使光损失降至最低。 ◆G..654:截止波长位移光纤。1550nm下衰耗系数最低(比G.652,G.653,G.655光纤约低15%),因此称为低衰耗光纤, 色散系数与G.652相同, 实际使用最少的一种光纤。主要应用于海底或地面长距离传输,比如400千米无转发器的线路。 ◆G.655:非零色散位移光纤(NZ-DSF: Non zero-Dispersion-Shifted Fiber)。G.653光纤在1550nm波长时色散为零,而G.655光纤则具有集中的或正或负的色散,这样就减少了DWDM系统中与相邻波长相互干扰的非线性现象的不良影响。 第一代非零色散位移光纤,如PureMetro 光纤具有每千米色散等于或低于5ps?nm 的优点,从而使色散补偿更为简便。 第二代非零色散位移光纤,如PureGuide 色散达到每千米10ps?nm左右,使DWDM系统的容量提高了一倍。 ◆G.656:低斜率非零色散位移光纤。非零色散位移光纤的一种,对于色散的速度有严格的要求,确保了DWDM系统中更大波长范围内的传输性能。

实验一 光纤的几何特性测试实验

实验一光纤的几特性测试实验 姓名:学号: 一、实验的目的和意义 1、了解光纤的基本结构 2、学习光纤的处理法,包括光纤的剥线、端面切割和清洗等等法 3、利用显微镜并结合探测器放大分别观察单模和多模光纤端面结构 4、学会Matlab处理实验数据 5、掌握光学实验注意事项和实验室安全隐患及事故处理法 光纤的应用越来越广泛,了解光纤的机构、性能具有十分重要的意义。光学主要有纤芯和包层组成,纤芯由高度透明的介质组成,包层是折射率低于纤芯折射率的介质,并经过格的工艺制成光纤,光纤还要由多层保护层保护,起着增强机械性能、保护光纤的作用。 光纤的结构特性影响光纤的特性,并决定着光纤的用途,低损耗、高效率一直都是光纤的发展目标,光纤的各种特性参数(保护几参数、传光特性、加载特性、微弯特性等)的测量时光纤应用的重要依据,同时也促进各种测量技术的发展。[1]光纤按折射率分布可以分为阶跃型光纤和渐变型光纤,按模式可以分为单模光纤和多模光纤。 光纤的损耗因素众多,包括传输损耗、连接损耗、弯曲损耗、色散吸收损耗等等,光纤损耗可以用光时域反射技术等测量。[2]

本实验希望通过观测光纤的结构参数来测试光纤的性能,并更好的理解光纤的特性,观察光纤结构分析其带来的损耗影响。因为光纤较脆弱,所以日常使用的光纤有多层保护,所以首先要获取只有包层和纤芯的裸纤,然后采用显微镜结合电子探测器探测放大得到光纤的端面图像,从而分析其性能等。[3] 二、实验的系统结构和实验步骤 1、实验的系统结构 实验主要包括制作裸纤端面样本和观察端面结构两个部分,需借助剥线器得到裸纤,并进行端面处理,将得到的样本放在显微镜—探测器放大系统下观察,并利用计算机获取处理数据。 实验系统的基本结构图如下: 2、实验仪器 光纤、剥线钳、剪刀、棉球、酒精、光纤切割机、基片、双面胶、显微镜、探测器、电脑 3、实验步骤

通信各类常用接头介绍

各类常用接头介绍 --广移分公司技术部 (射频篇) 一、馈线接头(连接器) 馈线与设备以及不同类型线缆之间一般采用可拆卸的射频连接器进行连接。连接器俗称接头。 常见的射频连接器有以下几种: 1、DIN型连接器 适用的频率范围为0~11GHz,一般用于宏基站射频输出口。 2、N型连接器 适用的频率范围为0~11GHz,用于中小功率的具有螺纹连接机构的同轴电缆连接器。 这是室内分布中应用最为广泛的一种连接器,具备良好的力学性能,可以配合大部分的馈线使用。

3、BNC/TNC连接器 BNC连接器 适用的频率范围为0~4GHz,是用于低功率的具有卡口连接机构的同轴电缆连接器。这种连接器可以快速连接和分离,具有连接可靠、抗振性好、连接和分离方便等特点,适合频繁连接和分离的场合,广泛 应用于无线电设备和测试仪表中连接同轴射频电缆。 TNC连接器 TNC连接器是BNC连接器的变形,采用螺纹连接机构,用于无线电设备和测试仪表中连接同轴电缆。 其适用的频率范围为0~11GHz。

4、SMA连接器 适用的频率范围为0~18GHz,是超小型的、适合半硬或者柔软射频同轴电缆的连接,具有尺寸小、性能优越、可靠性高、使用寿命长等特点。较长应用于AP、设备modem中的小天线中以及主机内部连线。 但是超小型的接头在工程中容易被损坏,适合要求高性能的微波应用场合,如微波设备的内部连接。 5、反型连接器 通常是一对连接器:阳连接器采用内螺纹联接,阴连接器采用外螺纹联接,但有些连接器与之相反,即阳连接器采用外螺纹联接,阴连接器采用内螺纹联接,这些都统称为反型连接器。 例如某些WLAN的AP设备的外接天线接口就采用了反型SMA连接器。 二、转接头(转接器) 用于连接不同类型接头,常用的有双阴头(用于两根馈线的对接等)、直角转接头(用于施工中避免转弯造成馈线损坏)、7/16转接头(用于基放等设备中DIN接头和N型头的对接)。部分图解如下:

光纤知识点归纳

1、光纤通信的基本概念:利用光导纤维传输光波信号的通信方式。 光纤通信工作波长在于近红外区:0.8~1.8μm 的波长区,对应频率: 167~ 375THz 。 对于SiO2光纤,在上述波长区内的三个低损耗窗口,是目前光纤通信的实用工 作波长,即0.85μm 、1.31μm 及1.55μm 。 2、光纤通信系统的基本组成:(P2图1-3) 目前采用比较多的系统形式是强度调制/直接检波(IM/DD )的光纤数字通信系 统。该系统主要由光发射机、光纤、光接收机以及长途干线上必须设置的光中继 器组成。 接 收发 射 1)在点对点的光纤通信系统中,信号的传输过程:由电发射机输出的脉码调制 信号送入光接收机,光接收机将电信号转换成光信号耦合进光纤,光接收机将光纤送过来的光信号转换成电信号,然后经过对电信号的处理以后,使其恢复为原 来的脉码调制信号送入电接收机,最后由信息宿恢复用户信息。 2)光发射机中的重要器件是能够完成电-光转换的半导体光源,目前主要采用半 导体发光二极管(LED)和半导体激光二极管(LD)。 3)光接收机中的重要部件是能够完成光-电转换的光电检测器,目前主要采用光 电二极管(PIN )和雪崩光电二极管(APD )。特性参数:灵敏度 4)一般地,大容量、长距离光纤传输 : 单模光纤+半导体激光器LD 小容量、短距离光纤传输 : 多模光纤+半导体发光二极管LED 5)光纤线路系统: 功能:把来自光发射机的光信号,以尽可能小的畸变和衰减传输到光接收机。 组成:光纤、光纤接头和光纤连接器 要求:较小的损耗和色散参数 3、光纤通信的特点: 优点:(1),传输频带宽,通信容量大。(2)传输损耗小,中继距离长:石英光 纤损耗低达0.19 dB/km ,用光纤比用同轴电缆或波导管的中继距离长得多。 (3)保密性能好:光波仅在纤芯中传输,基本无泄露。 (4)抗电磁干扰能力强:光纤由电绝缘的石英材料制成,不受电磁场干扰。 (5)体积小、重量轻。(6)原材料来源丰富、价格低廉。 缺点:1)不能远距离传输;2)传输过程易发生色散。 4、(1)光纤通信在通信网中的未来发展趋势:GFP 、ASON 、全光网 (? 波分复用技术(WDM )? 相干光通信? 超长波长光纤通信 ? 光集成技术 ? 光孤子通信) (2)相应技术手段:时分复用 TDM ;波分复用 WDM ;光时分复用 OTDM ; 光放大技术;色散补偿技术。 (3)技术现状:PDH 、SDH 、WDM 、光电收发器、EPON 超高速度、超大容量以及超长距离传输的光纤通信一直是人们追求的目标,光纤

光纤接口连接器的种类

光纤接头 FC 圆型带螺纹(配线架上用的最多) ST 卡接式圆型 SC 卡接式方型(路由器交换机上用的最多) PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体( 华为8850上有用) 光纤模块:一般都支持热插拔, GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型 SFP 小型封装GBIC,使用的光纤为LC型 使用的光纤: 单模: L ,波长1310 单模长距LH 波长1310,1550 多模:SM 波长850 SX/LH表示可以使用单模或多模光纤 -------------------------------------------------------------------------------- 在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下 “/”前面部分表示尾纤的连接器型号 “SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头 “LC”接头与SC接头形状相似,较SC接头小一些。 “FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下 “/”后面表明光纤接头截面工艺,即研磨方式。 “PC”在电信运营商的设备中应用得最为广泛,其接头截面是平的。 “SC”表示尾纤接头型号为SC接头,业界传输设备侧光接口一般用用SC接头,SC接头是工程塑料的,具有耐高温,不容易氧化优点;ODF侧光接口一般用FC接头,FC是金属接头,但ODF不会有高温问题,同时金属接头的可插拔次数比塑料要多,维护ODF尾纤比光板尾纤要多。其它常见的接头型号为:ST、DIN 、FDDI。 “PC”表示光纤接头截面工艺,PC是最普遍的。在广电和早期的CATV中应用较多的是APC型号。尾纤头采用了带倾角的端面,斜度一般看不出来,可以改善电视信号的质量,主要原因是电视信号是模拟光调制,当接头耦合面是垂直的时候,反射光沿原路径返回。由于光纤折射率分布的不均匀会再度返回耦合面,此时虽然能量很小但由于模拟信号是无法彻底消除噪声的,所以相当于在原来的清晰信号上叠加了一个带时延的微弱信号。表现在画面上就是重影。尾纤头带倾角可使反射光不沿原路径返回。一般数字信号一般不存在此问题。 还有一种“UPC”的工艺,它的衰耗比PC要小,一般有特殊需求的设备其珐琅盘一般为FC/UPC。国外厂家ODF架内部跳纤用的就是FC/UPC,提高ODF设备自身的指标。 光纤接口 光纤接口是用来连接光纤线缆的物理接口。通常有SC、ST、FC等几种类型,它们由日本NTT公司开发。FC是Ferrule Connector的缩写,其外部加强方式是采用金属套,紧固方式为螺丝扣。ST接口通常用于10Base-F,SC接口通常用于100Base-FX。

光纤的分类与特点

光纤的分类与特点 姓名:吴卉班级:国际学院09级08班学号:09212965 光纤的简介 光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。在通讯中,光纤指由透明材料作成的纤芯和在它周围采用比纤芯的折射率稍低的材料作成的包层所被覆,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进的媒体。 利用光导纤维进行的通信叫光纤通信。一对金属电话线至多只能同时传送一千多路电话,而根据理论计算,一对细如蛛丝的光导纤维可以同时通一百亿路电话!铺设1000公里的同轴电缆大约需要500吨铜,改用光纤通信只需几公斤石英就可以了。沙石中就含有石英,几乎是取之不尽的。 另外,利用光导纤维制成的内窥镜,可以帮助医生检查胃、食道、十二指肠等的疾病。光导纤维胃镜是由上千根玻璃纤维组成的软管,它有输送光线、传导图像的本领,又有柔软、灵活,可以任意弯曲等优点,可以通过食道插入胃里。光导纤维把胃里的图像传出来,医生就可以窥见胃里的情形,然后根据情况进行诊断和治疗。 就在刚刚公布的2009年度诺贝尔物理学奖获得者中,有“光纤之父”的华裔科学家高锟,凭借在光纤领域的卓著研究而获得此殊荣。 光纤的分类及其特点 光纤主要是从工作波长、折射率分布、传输模式、原材料和制造方法上进行分类的。 (1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85pm、1.3pm、1.55pm)。 红外光纤主要用于光能传送。例如有:温度计量、热图像传输、激光手术刀医疗、热能加工等等,普及率尚低。 (2)折射率分布:突变型和渐变型光纤。 突变型:光纤中心芯到玻璃包层的折射率是突变的。其成本低,模间色散高。适用于短途低速通讯,如:工控。但单模光纤由于模间色散很小,所以单模光纤都采用突变型。

光纤基本特性测试实验报告

实验报告 课程名称: 光通信技术实验 指导老师: 成绩:__________________ 实验名称:光纤基本特性测试(一)实验类型: 基础型 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验1-2 光纤数值孔径性质和测量 一、实验目的和要求 1、熟悉光纤数值孔径的定义和物理意义 2、掌握测量光纤数值孔径的基本方法 二、实验内容和原理 光纤数值孔径(NA )是光纤能接收光辐射角度范围的参数,同时它也是表征光纤和光源、光检测器及其它光纤耦合时的耦合效率的重要参数。图一表示阶梯多模光纤可接收的光锥范围。因此光纤数值孔径就代表光纤能传输光能的大小,光纤的NA 大,传输能量本领大。 NA 的定义式是: 式中n0 为光纤周围介质的折射率,θ为最大接受角。n1和n2分别为光纤纤芯和包层的折射率。光纤在均匀光场下,其远场功率角分布与理论数值孔径NAm 有如下关系: 其中θ是远场辐射角,Ka 是比例因子,由下式给出: 专业: 姓名: 学号: 日期: 地点: 装 订 线

式中P(0)与P(θ)分别为θ= 0和θ=θ处远场辐射功率,g 为光纤折射率分布参数。计算结果表明,若取P(θ) / P(0) = 5%,在g≥2时Ka的值大于0.975。因此可将P(θ)曲线上光功率下降到 θ的正弦值定义为光纤的数值孔径,称之为有效数值孔径: 中心值的5%处所对应的角度 e 本实验正是根据上述原理和光路可逆原理来进行的。 三、主要仪器设备 He-Ne 激光器、读数旋转台、塑料光纤、光纤微调架、毫米尺、白屏、短波长光功率计一套(功率显示仪1件、短波光探测器1只)。 四、实验步骤 方法一:光斑法测量(如图2) 1、实验系统调整; a.调整He-Ne激光管,使激光束平行于实验平台面; b.调整旋转台,使He-Ne激光束通过旋转轴线; c.放置待测光纤在光纤微调架上,使光纤一端与激光束耦合,另一端与短波光探测器正确连接; d.仔细调节光纤微调架,使光纤端面准确位于旋转台的旋转轴心线上,并辅助调节旋转台使光纤的输出功率最大。 2、测输出数值孔径角θo。 a. 移开光探测器,固定光纤输出端; b. 分别置观察屏于距光纤端面L1、L2 距离处,测量观察屏上的光纤输出圆光斑直径D1、D2,计算两次读数差ΔL和ΔD,得输出孔径角为:θo=arctan[ΔD/(2ΔL)]; c. 多次测量求平均值。(注:如果圆光斑边界不清晰,一般是由于出射光功率太强引起的,适当旋转读数台减小耦合效率,直至得到一个清晰圆光斑为止。)

光纤接头类型

光纤接头类型 FC(Ferrule Connector)圆型带螺纹(配线架上用的最多),金属双重配合螺旋终止型结构 ST 卡接式圆型 SC(smart card)卡接式方型(路由器交换机上用的最多) LC(Lucent Connector)卡接式小方头 PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体( 华为8850上有用) ST接口通常用于10Base-F,SC接口通常用于100Base-FX 光纤模块:一般都支持热插拔,GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型SFP 小型封装GBIC,使用的光纤为LC型 使用的光纤: 单模: L ,波长1310 单模长距LH 波长1310,1550 多模:SM 波长850,工程上要求正常工作接收光功率小于过载光功率3-5dBm,大于接收灵敏度3-5dBm。一般来讲不管单模接口还是多模接口,实际接收功率在-5至-15dBm之间算比较合理的工作范围 多模口接收功率一般在-20dBm到0dBm之间;单模在-23 dBm到0dBm之间 SX/LH表示可以使用单模或多模光纤 在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下“/”前面部分表示尾纤的连接器型号 “SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头 “LC”接头与SC接头形状相似,较SC接头小一些。 “FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。连接器的品种信号较多,除了上面介绍的三种外,还有MTRJ、ST、MU等 “/”后面表明光纤接头截面工艺,即研磨方式。 “PC”在电信运营商的设备中应用得最为广泛,其接头截面是平的。 “UPC”的衰耗比“PC”要小,一般用于有特殊需求的设备,一些国外厂家ODF 架内部跳纤用的就是FC/UPC,主要是为提高ODF设备自身的指标。 另外,在广电和早期的CATV中应用较多的是“APC”型号,其尾纤头采用了带倾角的端面,可以改善电视信号的质量,主要原因是电视信号是模拟光调制,当接头耦合面是垂直的时候,反射光沿原路径返回。由于光纤折射率分布的不均匀会再度返回耦合面,此时虽然能量很小但由于模拟信号是无法彻底消除噪声的,所以相当于在原来的清晰信号上叠加了一个带时延的微弱信号,表现在画面上就是重影。尾纤头带倾角可使反射光不沿原路径返回。一般数字信号一般不存在此问题。 “SC” 表示尾纤接头型号为SC接头,业界传输设备侧光接口一般用用SC 接头,SC接头是工程塑料的,具有耐高温,不容易氧化优点; ODF侧光接口一般用FC接头,FC是金属接头,但ODF不会有高温问题,同时金属接头的可插拔次数比塑料要多,维护ODF尾纤比光板尾纤要多。 其它常见的接头型号为:ST、DIN 、FDDI。

光纤通信的主要特点

光纤通信的主要特点 传输频带宽,通信容量大。 1.传输损耗低。 2.不受电磁干扰 3.线径细,重量轻 4.资源丰富 5.扰信好 6.不怕潮湿,耐高温,抗腐蚀。 7.安全保密。 WLAN本身并不是新概念、新技术,它已存在十多年了。顾名思义,WLAN是用无线通信技术构建的局域网,虽不采用缆线,但也能提供传统有线局域网的所有功能。与有线局域网相比,WLAN具有一定的移动性,灵活性高、建网迅速、管理方便、网络造价低,扩展能力强等特点,但WLAN的网络产品较贵,硬件初始投资比有线局域网高,传输速率较低。WLAN还有一个好处是它使用不需许可证的2.4GHz频段,其运营者不用花钱申请频谱许可证,随时可以建网使用。 WLAN由无线网卡、无线接入点(AP)、计算机和有关设备组成,采用单元称为一个基本服务组(BSS)。BSS的组成方式有集中控制式(每个单元由一个中心站控制)、分布对等式(单元中任意两个终端可直接通信,无须中心站转接)和混合式三种。 一个WLAN可由一个基本服务区(BSA)组成,一个BSA通常包含若干个单元,这些单元通过无线接入点与某骨干网相连。骨干网可以是有线网,也可以是无线网。WLAN可独立使用,也可与有线局域网互连使用。 EPON的优点主要表现在: (1)相对成本低,维护简单,容易扩展,易于升级。EPON结构在传输途中不需电源,没有电子部件,因此容易铺设,基本不用维护,长期运营成本和管理成本的节省很大;EPON 系统对局端资源占用很少,模块化程度高,系统初期投入低,扩展容易,投资回报率高;EPON系统是面向未来的技术,大多数EPON系统都是一个多业务平台,对于向全IP网络过渡是一个很好的选择。 (2)提供非常高的带宽。EPON目前可以提供上下行对称的1.25Gb/s的带宽,并且随着以太技术的发展可以升级到10Gb/s。 (3)服务范围大。EPON作为一种点到多点网络,以一种扇出的结构来节省CO的资源,服务大量用户。 (4)带宽分配灵活,服务有保证。对带宽的分配和保证都有一套完整的体系。EPON可以通过DiffServ、PQ/WFQ、WRED等来实现对每个用户进行带宽分配,并保证每个用户的QoS。 但是作为一种新技术,如何进入市场和被市场所认可,取决于很多方面。EPON产品在严格意义上还没有标准。其次是诸如测距、同步等一些技术难点的解决方案的成熟和突发性光器件成本的进一步降低。 从运营商和服务提供商的角度来看,EPON系统可以带来多方面的好处,包括降低安装、

光缆的基本知识及常识

光缆小常识 光缆基本知识介绍 一、光纤的组成与分类 1、光纤按其制造材料的不同可分为石英光纤和塑料光纤,石英光纤即通常使用的光纤,石英光纤按其传输模式的不同分为单模光纤和多模光纤。塑料光纤全部由塑料组成,通常为多模短距离应用,还处于起步阶段,未有大规模应用。 2、石英光纤的结构:石英光纤由纤芯、包层及涂覆层组成,其结构如图: 光纤中光的传输在纤芯中进行,因包层与纤芯石英的折射率不同,使光在纤芯与包层表面产生全反射,使光始终在纤芯中传输,而塑料涂覆层起保护石英光纤及增加光纤强度的作用,因石英很脆,若没有塑料的保护则无法在实际中得到应用,正因为光纤的结构如此,所以光纤易折断,但有一定的抗拉力。 3、石英光纤的分类 单模光纤 G.652A(B1.1简称B1) G.652B(B1.1简称B1) G.652C(B1.3) G.652D(B1.3) G.655A光纤(B4)(长途干线使用) G.655B光纤(B4)(长途干线使用) 多模光纤 50/125(A1a简称A1) 62.5/125(A1b) 二、光缆的结构 1、室外光缆主要有中心管式光缆、层绞式光缆及骨架式光缆三种结构,按使用光纤束与光纤带又可分为普通光缆与光纤带光缆等6种型式。每种光缆的结构特点: ①中心管式光缆(执行标准:YD/T769-2003):光缆中心为松套管,加强构件位于松套管周围的光缆结构型式,如常见的GYXTW型光缆及GYXTW53 型光缆,光缆芯数较小,通常为12芯以下。 ②层绞式光缆(执行标准:YD/T901-2001):加强构件位于光缆的中心,5~12根松套管以绞合的方式绞合在中芯加强件上,绞合通常为SZ绞合。此类光缆如GYTS等,通过对松套管的组合可以得到较大芯数的光缆。绞合层松套管的分色通常采用红、绿领示色谱来分色,用以区分不同的松套管及不同的光纤。层绞式光缆芯数可较大,目前层绞式光缆芯数可达216芯或更高。松套层绞式普通光缆 (GYTA - GYTS - GYTA53 - GYTY53 - GYTA33 - GYTA(Y)533) ③骨架式光缆:加强构件位于光缆中心,在加强构件上由塑料组成的骨架槽,光纤或光纤带位于骨架槽中,光纤或光纤带不易受压,光缆具有良好的抗压扁性能。该种结构光缆在国较少见,所占的比例较小。 ④ 8字型自承式结构,该种结构光缆可以并入中心管式与层绞式光缆中,把它单独列出主要是因为该光缆结构与其它光缆有较大的不同。通常有中心管式与层绞式8字型自承式光缆。 5 煤矿用阻燃光缆(执行标准:Q/M01-2004 企业标准):与普通光缆相比,提高了光缆阻燃性能的要求,并经过特殊的设计使光缆适用于矿井环境下使用,通

常用光纤接头类型

常用光纤接头类型 FC型:金属双重配合螺旋终止型结构; ST型:金属圆型卡口式结构; SC型:矩形塑料插拔式结构,特点是容易拆装。多用于多根光纤与空间紧凑结构的法兰之间的连接。 以上是指接头与法兰之间的连接形式,这些结构主要任务是实现接头与法尘之间的坚固连接,并将两端光纤的轴线引导到一条线上。接头连接的损耗应该是越小越好,因此,对于活动接头的端面的要求标准比较高,以下是针对端面而制定的一些标准形式: PC型:端面呈球形,接触面集中在端面的中央部分,反射损耗35dB,多用于测量仪器; APC型:接触端的中央部分仍保持PC型的球面,介但端面的其它部分加工成斜面,使端面与光纤轴线的夹角小于90度,这样可以增加接触面积,使光耦合更加紧密。当端面与光纤轴线夹角为8度时,插入损耗小于0.5dB。广播电视光纤传输系统中常采用这种结构的接头; UPC型:越平面连接,加工精密,连接方便,反射损耗50dB,常用于广播电视传输网光纤系统中。 此外,光接头的抛光水平也很重要,APC斜面抛光型反射损耗可达68dB,UPC越精度抛光型反射损耗可达55dB。 各种活动连接器性能参数: 活动连接器的型号一般由两部分组成:结构形式/端面形式,如FC/APC表示连接结构是金属双重螺纹终止形式,端面采用斜面、球形连接。每一种光设备性能参数中都说明了该设备采用何种连接形式,在实际使用中一定要注意根据光设备说明书选购配套的连接器。 光纤跳线:光纤跳线是由一段经过加强外封装的光纤和两端已与光纤连接好的接头构成。两端接头的型号可以一样,也可以不一样。如FC/PC--FC/APC,使用于一头连接FC/PC接口法兰,另一头连接FC/AP C接口法兰。 尾纤:尾纤指一端为接头,另一端为光纤的器件。将一根光纤跳线从中间剪断就成为两根尾纤了。 尾缆:将若干尾纤合在一起,加上外护套制作成一端为光纤另一端为若干个接头的器件。 尾纤、跳线通常用于室的设备与设备、设备与光纤之间的连接。尾缆通常用于室外或室多头并联的情况。由于尾缆具有防水、防晒、防尘、防风摇摆等功能,室外光接收机和室外光发射机等都采用尾缆实现连接。 此主题相关图片如下:

常见40种光缆型号图文详解

常见40种光缆型号图文详解 GYTA型光缆 GYTA(金属加强构件、松套层绞填充式、铝-聚乙烯粘结护套通信用室外光缆)光缆的结构是将单模或多模光纤套入由高模量的塑料做成的内填充防水化合物松套管中。缆芯的中心是一根金属加强芯,对于某些芯数的光缆来说,金属加强芯外还挤包一层聚乙烯(PE)。松套管(和填充绳)围绕中心加强芯绞合成紧凑和圆形的缆芯,缆芯内的缝隙充以阻水化合物。铝塑复合带纵包后挤塑聚乙烯护套。 ▲结构示意图 特点 ●精确控制光纤的余长保证了光缆具有很好的抗拉性能和温度特性 ●PBT松套管材料具有良好的耐水解性能,管内充以特种油膏,对光纤进行保护 ●PE护套具有良好的抗太阳辐射性能 ●光滑的外护套使光缆在安装中可以有更小的摩擦系数 ●采用下列措施来确保光缆的防水性能:松套管内填充特种防水化合物;完全缆芯填充;铝塑复合带防潮层 ●铝带侧压指标没有钢带好,但防潮隔锈效果优于钢带,GYTA用于穿管时寿命长。 使用范围: 架空、管道 GYTS型光缆 GYTS(金属加强构件、松套层绞填充式、钢-聚乙烯粘结护套通信用室外光缆)光缆的结构是将单模或多模光纤套入由高模量的塑料做成的内填充防水化合物松套管中。缆芯的中心是一根金属加强芯,对于某些芯数的光缆来说,金属加强芯外还挤包一层聚乙烯(PE)。松套管(和填充绳)围绕中心加强芯绞合成紧凑和圆形的缆芯,缆芯内的缝隙充以阻水化合物。钢塑复合带纵包后挤塑聚乙烯护套。

▲结构示意图 特点: ●精确控制光纤的余长保证了光缆具有很好的抗拉性能和温度特性 ●PBT松套管材料具有良好的耐水解性能,管内充以特种油膏,对光纤进行保护 ●钢-聚乙烯护套具有优良的抗压性能 ●光滑的外护套使光缆在安装中可以有更小的摩擦系数 ●PE护套具有良好的抗太阳辐射性能 ●采用下列措施来确保光缆的防水性能:松套管内填充特种防水化合物;完全缆芯填充、钢塑复合带防潮层。 使用范围: 直埋 GYTY53型光缆 GYTY53(金属加强构件、松套层绞填充式、聚乙烯护套、纵包皱纹钢带铠装、聚乙烯套通信用室外光缆)光缆的结构是将单模或多模光纤套入由高模量的塑料做成的内填充防水化合物松套管中。缆芯的中心是一根金属加强芯,对于某些芯数的光缆来说,金属加强芯外还挤包一层聚乙烯(PE)。松套管(和填充绳)围绕中心加强芯绞合成紧凑和圆形的缆芯,缆芯内的缝隙充以阻水化合物。缆芯外挤一层聚乙烯内护套,双面涂塑钢带纵包后挤塑聚乙烯护套。 ▲结构示意图 特点: ●精确控制光纤的余长保证了光缆具有很好的抗拉性能和温度特性 ●PBT松套管材料具有良好的耐水解性能,管内充以特种油膏,对光纤进行保护 ●具有优良的抗压性 ●光滑的外护套使光缆在安装中可以有更小的摩擦系数 ●采用下列措施来确保光缆的防水性能:松套管内填充特种防水化合物;完全缆芯填充;涂塑钢带防潮层 使用范围: 直埋 GYTA53型光缆 GYTA53(金属加强构件、松套层绞填充式、铝-聚乙烯粘结护套、纵包皱纹钢带铠装、聚乙烯套通信用室外光缆)光缆的结构是将单模或多模光纤套入由高模量的塑料做成的内填充防水化合物松套管中。缆芯的中心是一根金属加强芯,对于某些芯数的光缆来说,金属加强芯外还挤包一层聚乙烯(PE)。松套管(和填充绳)围绕中心加强芯绞合成紧凑和圆形的缆芯,缆芯内的缝隙充以阻水化合物。涂塑铝带纵包后挤一层聚乙烯内护套,双面涂塑钢带纵包后挤塑聚乙烯护套。

光纤基础知识简介

光纤简介 一、光纤概述 光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。通常,光纤一端的发射装臵使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至光纤,光纤另一端的接收装臵使用光敏元件检测脉冲。 二、光纤工作波长 光是一种电磁波。可见光部分波长范围是:390nm—760nm(纳米),大于760nm部分是红外光,小于390nm部分是紫外光。光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。 三、光纤分类 光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,各种分类如下。 (1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85μm、1.3μm、1.55μm)。 (2)折射率分布:阶跃(SI)型光纤、近阶跃型光纤、渐变(GI)型光纤、其它(如三角型、W型、凹陷型等)。 (3)传输模式:单模光纤(含偏振保持光纤、非偏振保持光纤)、多模光纤。 (4)原材料:石英光纤、多成分玻璃光纤、塑料光纤、复合材料光纤(如塑料包层、液体纤芯等)、红外材料等。按被覆材料还可分为无机材料(碳等)、金属材料(铜、镍等)和塑料等。 (5)制造方法:预塑有汽相轴向沉积(VAD)、化学汽相沉积(CVD)等,拉丝法有管律法(Rod intube)和双坩锅法等。

光纤接头类型

光纤接头类型 2010-07-17 20:20 转载自yanghai511 最终编辑yanghai511 光纤接头类型 常用的几种光纤接头: 1. LC到LC的,LC就是路由器常用的SFP,mini GBIC所插的线头:

2. FC转SC,FC一端插光纤不线架,SC一端就是Catalyst也好,其它也好 上面的GBIC所插线缆: 3. ST到FC,对于10Base-F连接来说,连接器通常是ST类型,另一端FC 连的是光纤布线架: 4. SC到SC两头都是GBIC的: 5. SC到LC,一头GBIC,另一头Mini-GBIC: 各种光纤接口类型介绍 光纤接头 FC 圆型带螺纹(配线架上用的最多) ST 卡接式圆型 SC 卡接式方型(路由器交换机上用的最多) PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体( 华为8850上有用) 光纤模块:一般都支持热插拔, GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型SFP 小型封装GBIC,使用的光纤为LC型 使用的光纤: 单模: L ,波长1310 单模长距LH 波长1310,1550 多模:SM 波长850 SX/LH表示可以使用单模或多模光纤 -------------------------------------------------------------------------------- 在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下 “/”前面部分表示尾纤的连接器型号 “SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头 “LC”接头与SC接头形状相似,较SC接头小一些。 “FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。 连接器的品种信号较多,除了上面介绍的三种外,还有MTRJ、ST、MU等,具体的外观参见下图 此主题相关图片如下: “/”后面表明光纤接头截面工艺,即研磨方式。 “PC”在电信运营商的设备中应用得最为广泛,其接头截面是平的。“UPC”的衰耗比“PC”要小,一般用于有特殊需求的设备,一些国外厂家ODF 架内部跳纤用的就是FC/UPC,主要是为提高ODF设备自身的指标。 另外,在广电和早期的CATV中应用较多的是“APC”型号,其尾纤头采用了带倾角的端面,可以改善电视信号的质量,主要原因是电视信号是模拟光调制,当接头耦合面是垂直的时候,反射光沿原路径返回。由于光纤折射率分布的不均匀会

相关主题
文本预览
相关文档 最新文档