当前位置:文档之家› HAZOP技术在炼油火炬系统工艺危害分析中的应用_白永忠

HAZOP技术在炼油火炬系统工艺危害分析中的应用_白永忠

HAZOP技术在炼油火炬系统工艺危害分析中的应用_白永忠
HAZOP技术在炼油火炬系统工艺危害分析中的应用_白永忠

垃圾焚烧工艺流程图讲解学习

本系统从垃圾投入开始到最后的出灰,整个系统全部自动程序控制。这不仅减少了操作人员,而且保障了系统安全稳定运行,达到最好的垃圾处理效果。 The system is mainly about the disposal of urban household garbage and non-toxic&harmless industrial trashthrough the advanced, reliable, mature production technology and technical equipment. After the comprehensive implementation, we can realize the purpose of changing the reduced garbage into resources in a harmless way. Also,the heat energy generated out of garbage incineration can be used in heating and power supply. The chemical equilibrium and fludic analysis of gas as well as the precise equipment selection and temperature enaction shall be executed according to garbage contents at the design stage. From primary garbage input to final ash output , the whole system is controlled by automatic program, which not only cuts the workforce, but also ensures the system safety and steady operation, thus achieving the best garbage disposal effect.

工艺危害分析(PHA)程序

工艺危害分析(PHA)程序WHYT/ CX-36-2011

目录 1. 目的 (1) 2. 适用范围 (1) 3. 名词解释 (1) 4. 组织与职责 (1) 5. PHA流程 (2) 5.1计划和准备 (2) 5.2 PHA分析 (3) 5.3建议详细讨论 (3) 5.4建议措施反馈 (3) 5.5组长撰写报告 (3) 5.6分发沟通 (3) 5.7跟踪确认 (3) 6. 培训 (3) 7. 审计 (4) 8. 附件 (4)

1.目的 为规范、统一在项目各阶段开展工艺危害分析(以下简称PHA)的方法,辨识、评估和控制设计、生产过程中的危害,预防工艺事故的发生,特制定本程序。 2.适用范围 本程序适用于万华烟台工业园工程(一期)项目所有生产活动,包括工艺、产品的开发过程及其生命周期的各阶段。 3.名词解释 3.1.工艺危害:有可能造成危害性物质或能量的非正常释放,导致人员伤害、 财产损失或环境污染的情况。 3.2.工艺危害分析:工艺危害分析是对工艺过程进行研究,用科学、系统的方 法来辨识、评估和控制工艺危害。它包含下列活动:危害辨识、后果分析、危害评估、人为因素评估、装置定点评估、本质安全的工艺评估、风险分析和提出改进建议。 3.3.基础设计(软件包开发)阶段:基础设计是一个完整的技术软件包开发过 程,应完成:工艺流程说明、物料流程图与物流表、带控制点管道流程图、设备名称表和设备规格说明书、对工程设计的要求、设备布置建议图、装置操作说明、三废的排放点、排放量、主要成分及处理方法、自控设计方案、消耗定额、有关的技术资料、物料数据等、安全技术与劳动保护说明。 政府机关(或委托单位)根据基础设计审查该项目是否先进和可靠。 3.4.详细设计阶段:设计院各专业进行绘制和编写工程建设和生产所需的一切 施工图和文件,编制精确的投资估算,根据设备规格说明书的要求落实设备制造单位或者直接订购设备。 3.5.正常生产阶段:装置生产能力达到设计要求,生产出合格产品,装置持续 稳定运行。 3.6.封存与拆除:工艺过程或重要的操作工段处于一种不发挥作用、长时间闲 置、或长期保护性贮存的情况,以便将来可能使用或作为储备。 4.组织与职责 PHA是一项系统工程,涉及多个专业和各项目部,各项目部应根据自己的

石油化工工艺流程识图知识

补充:基础理论知识 1、石油化工工艺流程识图知识 在石油化工等连续性生产设备上,配备一些自动化装置,代替操作人员的部分直接劳动,使生产在不同程度上自动地进行,称为石油化工自动化。 实现化工自动化的目的是: ●加快生产速度,降低生产成本,提高产品数量和质量。 ●降低劳动强度,改善劳动成本。 ●确保生产安全。 对于石化行业的管理人员、技术人员和操作人员必须要能够看懂石油化工工艺流程图,了解和掌握本行业、本装置的工艺技术、工艺流程、工艺设备及仪表控制等,才能更好的指导和指挥生产,平稳操作,正确分析和处理事故等。 1.1石油化工工艺流程图的一般包括的内容 石油化工工艺流程图主要包括:工艺流程图(PFD),公用物料流程图(UFD),工艺管道及仪表流程图(PID、UID)。 1.1.1工艺流程图(PFD)中应该包括:工艺设备及其位号、名称;主要工艺管道;特殊阀门位置;物流的编号、操作条件(温度、压力、流量);工业炉、换热器的热负荷;公用物料的名称、操作条件、流量;主要控制、联锁方案。 1.1.2公用物料流程图(UFD)中应该包括:物料类别编制,需要和产生公用物料的主要设备、主要公用物料干线、控制方案、流量和技术参数等,标注设备位号和名称。 1.1.3工艺管道及仪表流程图(PID)需表示如下内容: 1.1.3.1设备 1) 全部编有位号的设备(包括备用设备),设备位号和名称,必要时要表示其主要规格; 2) 成套供应的机组制造厂的初步供货范围; 3) 全部设备管口; 4) 非定型设备的内件应适当表示,如塔板形式、与进出口管道有关的塔板序号、折流板、除雾器、加热或冷却盘管等; 5) 如有工艺要求时,应注明设备的安装高度以及设备之间的相对高度; 6) 泵、压缩机、鼓风机等转动设备的驱动型式。 1.1.3.2管道 1) 与设备相连接的所有工艺和公用物料管道(包括开、停车及事故处理管道),并在管道上标有管道号(包括物流代号、管道编号、管径、管道等级、绝热要求等)和用箭头表示出流体流动方向; 2) 所有阀门及其类型(仪表阀门除外); 3) 管道上管道等级变化时,要用分界线标明分界; 4) 容易引起振动的两相流管道上应注明“两相流、易振动”;有特殊要求的重力流管道上应注明“重力流”;有坡向和液封要求的管道应表示出坡度要求和液封高度;如果不能有“袋形”的管道也应注明; 5) 为开车或试运转需要而设置的放空、放净、吹扫及冲洗接头; 6) 蒸汽、热水或其它类型的伴热管、夹套管,及其绝热要求; 7) 所有管道附件,如补偿器、挠性软管、过滤器、视镜、疏水器、限流孔板、盲板、可拆卸短管和其它非标准管件;

垃圾焚烧发电工艺流程

垃圾焚烧发电工艺流程图

工艺流程简述: 1、垃圾接收、贮存及运输系统 垃圾接收、储存及输送系统是指垃圾进厂到垃圾焚烧炉给料斗入口之间的所有工艺和设备。系统流程:满载垃圾运输车进厂“时经检视、称重,按指定路线和信号灯指示驶向垃圾倾卸平台卸料。运输车倒行至指定的垃圾卸料门前,从开启的卸料门处,在重力作用下将垃圾卸入垃圾储坑。垃圾经过垃圾起重机搅拌、充分混合、脱除一定的渗滤液之后,送入垃圾焚烧炉给料斗。系统主要包括以下设施:电子汽车衡、垃圾卸料大厅(垃圾卸料平台)、垃圾卸料门、垃圾贮坑、垃圾起重机。 (1)垃圾接收 车辆入厂称重前,由厂内专职人员根据《垃圾供应与运输协议》要求进行车辆检查,车辆需符合要求才能引导称重。 经称量后的垃圾运输车按指定路线和信号灯指示通过栈桥驶入卸料大厅,运输栈桥起于厂外,顶部采用弧形顶棚,由于栈桥为卸料大厅及垃圾坑补风入口,栈桥可自然维持负压。垃圾卸料大厅供垃圾车辆的驶入、倒车、卸料和驶出,以及车辆的临时抢修。垃圾卸料大厅为密闭式布置,卸料区为室内布置了气幕机,以防止卸料区臭气外逸以及苍蝇飞虫进入。为了保障安全,在垃圾卸料口设置阻位拦坎,以防垃圾车翻入垃圾池。卸车平台在宽度方向有1%坡度,坡向垃圾仓侧,垃圾运输车洒落的渗沥液,流至垃圾仓门前的地漏,汇集到管道中,导入渗沥液收集池。 垃圾卸料平台设垃圾卸料门,卸料门前装有红绿灯的操作信号,指示垃圾车卸料,为保证卸料门开启与垃圾抓斗作业相协调,卸料门]的开启信号传至垃圾抓斗操作室。卸料门可防止有害噪音、臭气及粉尘从垃圾池扩散至大气。 在卸料平台的相应部位设置供水栓,以利于清洗卸料时污染的地面,卸料平台设计有一定的坡度使之易于排出清洗污水;在卸料大厅进、出口处设置空气幕,以防臭气外逸。在停炉检修时,设置除臭风机抽取垃圾贮坑臭气,经活性炭除臭装置处理达标后经排气简排入大气。 (2)垃圾贮存 垃圾贮存设施主要是垃圾贮坑,为半地下结构,它不仅能贮存垃圾,而且能

工艺危害分析PHA---易安-安全从业-安全生产-安全

工艺危害分析(PHA ) 工艺危害分析是PSM 的核心要素,它是有组织的、系统的对工艺装置或设施进行危害辨识,为消除和减少工艺过程中的危害、减轻事故后果提供必要的决策依据。 工艺危害分析关注设备、仪表、公用工程、人为因素及外部因素对于工艺过程的影响,着重分析着火、爆炸、有毒物泄漏和危险化学品泄漏的原因和后果。 工艺危害分析方法有很多种,PSM 推荐的危害分析方法有: 1)如果……,会怎么样?”提问法; 2)安全检查表; 3)“如果…… ,会怎么样?”提问法结合安全检查表; 4)危险性与可操作性研究; 5)故障模式与后果分析; 6)故障树分析; 7)或者等效的其他方法。 工艺危害分析是件很耗费时间的工作,但是意义重大。工厂需要根据自身工艺的特点选择适当的危害分析方法。对于化工厂和石化工厂,目前最普遍采用的危害分析方法是HAZOP ,同时辅助采用安全检查表法弥补HAZOP 方法的某些不足。 HAZOP 是20 世纪70 年代由帝国化学公司(ICI)发明的一种定性危害分析方法,也是针对工艺过程最系统、有效的危害分析方法之一。 在进行工程设计时,主要是依靠各种标准、规范、设计指南以及设计人员的经验和知识来实现工艺系统的安全与可靠性。上述标准、规范或设计指南主要反映的是“正常工况下工艺系统需要满足的情况。由于设备故障、人为错误或外部影响等原因,工艺系统在运行过程中可能偏离正常工况,导致工艺安全事故。此外,在项目工期紧张的情况下,设计人员的压力很大,容易犯错误,需要在工艺设计阶段就进行周全的考虑。 HAZOP 可以应用于不同行业、不同规模和复杂程度各异的工艺系统,只要是包含工艺流程的系统。对新建项目的工艺设计、现有工艺系统的变更以及当前正在运行的装置都可以应用。 利用HAZOP 方法进行危害分析是有组织的头脑风暴活动,通常需要由一个包括不同专业人员所组成的分析小组来完成。将复杂的工艺系统划分成不同的部分,称为节点(Node),然后针对每个节点进行具体的分析。 HAZOP 使用一系列的“参数”和“引导词”(见表2和表3)搭配,设想工艺过程偏离正常工况的各种情形,并分析造成这些非正常工况的原因,对应的后果及当前的安全保障措施,必要时提出消除或控制危害的改进措施。所完成的分析报告可以作为编制操作程序的指导文件,也是编写培训材料的有益参考。 根据统计,在运用HAZOP 方法进行危害分析的过程中,所提出的改进措施中40%是为了提升系统的安全,另外60%是为了改善系统的可操作性或者为了便于维修。

石油化工催化裂化装置工艺流程图.docx

炼油生产安全技术一催化裂化的装置简介类型及工艺流程 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应?再生系统、分馏系统和吸收稳定系统。其中反应--再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: ㈠反应--再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370 C左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650 C ~700C )催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化 剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催 化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650 C ~68 0 C )。再生器维持0.15MPa~0?25MPa (表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后的催化剂经 淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部 分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10%CO 为了利用其热量,不少装置设有Co锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的 装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电 能。 ㈡分馏系统 分馏系统的作用是将反应?再生系统的产物进行分离,得到部分产品和半成品。 由反应?再生系统来的高温油气进入催化分馏塔下部,经装有挡板的脱过热段脱热后进入分 馏段,经分馏后得到富气、粗汽油、轻柴油、重柴油、回炼油和油浆。富气和粗汽油去吸收稳定系统;轻、重柴油经汽提、换热或冷却后出装置,回炼油返回反应--再生系统进 行回炼。油浆的一部分送反应再生系统回炼,另一部分经换热后循环回分馏塔。为了取走 分馏塔的过剩热量以使塔内气、液相负荷分布均匀,在塔的不同位置分别设有4个循环回流:顶循环回流,一中段回流、二中段回流和油浆循环回流。 催化裂化分馏塔底部的脱过热段装有约十块人字形挡板。由于进料是460 C以上的带有催化 剂粉末的过热油气,因此必须先把油气冷却到饱和状态并洗下夹带的粉尘以便进行分馏和避免堵塞塔盘。因此由塔底抽出的油浆经冷却后返回人字形挡板的上方与由塔底上来的油 气逆流接触,一方面使油气冷却至饱和状态,另一方面也洗下油气夹带的粉尘。 ㈢吸收--稳定系统: 从分馏塔顶油气分离器出来的富气中带有汽油组分,而粗汽油中则溶解有C3 C4甚至C2 组分。吸收--稳定系统的作用就是利用吸收和精馏的方法将富气和粗汽油分离成干气 (≤ C2)、液化气(C3、C4)和蒸汽压合格的稳定汽油。 一、装置简介 (一)装置发展及其类型

李坑生活垃圾焚烧发电厂实习报告

李坑生活垃圾焚烧发电厂实习报告 一、实习时间:2011年5月16日上午(通过观看视频) 二、实习对象:广州市李坑生活垃圾焚烧发电厂 广州市白云区太和镇永兴村 三、实习目的 了解目前广州市生活垃圾的处理与处置情况,明确李坑生活垃圾焚烧发电厂的垃圾接收系统、垃圾焚烧系统、余热发电系统、烟气处理系统、灰渣处理系统、污水收集系统、自动控制系统以及飞灰的处理技术。 四、实习内容 1.李坑生活垃圾焚烧发电厂简介 广州市为有效解决日益严重的城市生活垃圾污染问题,引进国际先进环保技术建设而成的一项现代化生活垃圾焚烧发电工程——李坑生活垃圾焚烧发电厂 广州市李坑生活垃 圾焚烧发电厂位于白云 区太和镇永兴村,距市 区中心23km。厂区面积 101778平方米(其中包 含二期用地),设计处理 能力为1040吨/日,配 置520吨/日的焚烧炉 两台,22MW的发电机一 台,发电量为13100万度 /年,总投资7.25亿元。 主要负责处理广州市荔 湾区,白云区,越秀区 的生活垃圾。 2.主要工艺流程 ①固体废物焚烧处理 固体废物焚烧处理就是将固体废物进行高温分解和深度氧化的处理过程。在燃烧过程中,具有强烈的放热效应,有基态和激发态自由基生成,并伴随着光辐射。由于焚烧法处理固体废物,具有减量化效果显著、无害化程度彻底等优点,焚烧处理早已成为城市生活垃圾和危险废物处理的基本方法。 ②焚烧原理 可燃物质燃烧,特别是生活垃圾的焚烧过程,是一系列十分复杂的物理变化和化学反应过程,通常可将焚烧过程划分为干燥、热分解、燃烧三个阶段。焚烧过程实际上是干燥脱水、热化学分解、氧化还原反应的综合作用过程。

李坑生活垃圾焚烧发电厂主要由垃圾接收系统、垃圾焚烧系统、余热锅炉及其辅助设备、汽轮发电机组及其辅助设备、烟气处理系统、灰渣处理系统、污水收集处理系统、辅助燃油系统以及自动控制系统等九大系统组成。 其工艺流程如下: 垃圾车经过地磅计量后进入卸料大厅,将垃圾倾卸至垃圾贮存坑内。垃圾贮存坑为密封负压设计,垃圾抓斗吊将贮存坑内的垃圾送入焚烧炉的进料漏斗,同时经过基础破碎处理,通过推料器进入焚烧炉内焚烧。在焚烧炉内于850℃高温下,停留超过2秒钟,产生的高温烟气进入余热锅炉,热能转变为过热蒸汽,进入汽轮发电机组发电。从余热锅炉出来的烟气,进入半干式喷雾反应吸收塔,去除酸性气体成分;再喷入活性碳粉,引入布袋除尘器,吸收烟气中的重金属、二恶英和粉尘,经过引风机由烟囱排出。 垃圾在炉排上经干燥、着火、燃烧、燃烬四个阶段后产生炉渣,经炉底除渣机、带式输送机送往灰渣贮存坑。炉渣所含的化学物质性质稳定,可用于铺路和建筑材料。其中的废钢铁经磁选机分拣后送钢厂回收。 ①焚烧炉系统 焚烧炉系统是整个工艺系统的核心系统,是固体废物进行蒸发、干燥、热分解和燃烧的场所。焚烧炉系统的核心装置就是焚烧炉。 ②空气系统 空气系统,即助燃空气系统,是焚烧炉非常重要的组成部分。空气系统除了为固体废物的正常焚烧提供必需的助燃氧气外,还有冷却炉排、混合炉料和控制烟气气流等作用。 ③烟气系统

工艺危险性分析报告

山东天泰钢塑有限公司 工艺危险性分析报告 一、产品及工艺简介 1)1、3、4号线生产工艺:将硫磺块放入燃硫炉内燃烧,产生二氧化硫气体,经引风机引入旋风除尘器进行净化,再进入风冷器和水冷器降温冷却,然后进入吸收塔,自吸收塔塔顶喷淋氨水或循环液进行二氧化硫的吸收。该项目吸收采用三级吸收,一级吸收塔吸收约85%,可得到成品液,二级吸收塔吸收约12%,三级吸收塔吸收约3%,经调和后,制得成品亚硫酸铵溶液。 2)2号线生产工艺:将硫磺块放入溶硫池中,再经泵打入焚硫炉内,同时鼓风机向焚硫炉内鼓入空气,液体硫磺与空气在焚硫炉内燃烧,产生二氧化硫气体,吹入旋风除尘器进行净化,再进入余热锅炉、水冷器降温冷却,然后进入吸收塔,自吸收塔塔顶喷淋氨水或循环液进行二氧化硫的吸收。该项目吸收采用三级吸收,一级吸收塔吸收约85%,可得到成品液,二级吸收塔吸收约12%,三级吸收塔吸收约3%,经调和后,制得成品亚硫酸铵溶液。本生产线在焚硫炉后设置的余热锅炉产生的蒸汽,输送回粗硫池和精馏池熔化硫磺,可达到节能降耗的目的。 3)5号线生产工艺:将硫磺块放入粗硫池内用蒸汽熔化,经过过滤器滤去杂质,打入精硫池中,再经泵打入焚硫炉内,同时鼓风机向焚硫炉内鼓入空气,液体硫磺与空气在焚硫炉内燃烧,产生二氧化硫气体,吹入旋风除尘器进行净化,再进入余热锅炉、水冷器降温冷却,然后进入吸收塔,自吸收塔塔顶喷淋氨水或循环液进行二氧化硫

的吸收。该项目吸收采用三级吸收,一级吸收塔吸收约85%,可得到成品液,二级吸收塔吸收约12%,三级吸收塔吸收约3%,经调和后,制得成品亚硫酸铵溶液。本生产线在焚硫炉后设置的余热锅炉产生的蒸汽,输送回粗硫池和精馏池熔化硫磺,可达到节能降耗的目的。 反应方程式为: S+O 2=SO 2 2NH 3·H 2 O+SO 2 =(NH 4 ) 2 SO 3 +H 2 O 3)生产工流程简图如下图所示。 二、工艺的危险性分析及处置措施 1生产装置 1.1生产过程危险因素分析 ①管路输送物料过程中,系统密封不严,发生物料泄漏,可能发生火灾、爆炸、中毒窒息事故。 ②设备、设施防静电设施不合格,物料流速过快,有可能产生静电火花引发火灾爆炸事故。 ③设备、法兰、管道密封不严或锈蚀穿孔,发生高温物料喷溅,可能发生中毒、灼烫事故。 ④作业场所通风不良,可能发生中毒和窒息事故。 ⑤操作人员劳动防护用品穿戴不齐或失效,也可能发生意外事故。 ⑥开停车前后,检修过程系统没有整体置换或置换不完全,系统内物料和空气形成爆炸性混合气体,遇明火、火花有引发火灾爆炸的

工艺危害分析PHA)管理规范

工艺危害分析(PHA)管理规范 编制人:______________ 审核人:______________ 批准人:______________ 修订日期:______________ 发布日期:______________ 实施日期:______________

目录 1范围和应用领域1 1.1 目的1 1.2 适用范围1 1.3 应用领域1 2参考文件1 3术语和定义1 3.1 共因失效(CCF)2 3.2 高危害工艺(HHP)2 4职责2 4.1 集团公司安全环保部错误!未定义书签。 4.2 集团公司所属科研和设计单位2 4.3 企业HSE管理委员会2 4.4 PHA项目负责人2 4.5 PHA工作组2 4.6 PHA专业支持组3 5管理要求3 5.1 应用类型3 5.2 PHA实施步骤4 5.3 计划和准备4 5.4 危害辨识5 5.5 后果分析5 5.6 危害分析6 5.7 风险评估8 5.8 建议的提出、回复和关闭8 5.9 PHA报告9 5.10 建议的追踪9 6管理系统9 6.1 资源支持9 6.2 管理记录9 6.3 审核要求9 6.4 复核与更新10 6.5 偏离管理10 6.6 培训和沟通10 6.7 解释10 附录 A PHA再确认方法10 A.1 概述10 A.2 程序11 附录 B PHA实施时机示意图12 附录 C PHA流程图14 附录 D 定性风险评估规则15 D.1 概述15 D.2 声明15 D.3 评估程序15

D.4 定性风险评估方法15 附录E:PHA报告编制指南19 E.1 封面19 E.2 目次19 E.3 工作组成员的签名页19 E.4 直线组织管理层对建议措施的回复19 E.5 工作组的成员和资格19 E.6 分析结论19 E.7 分析过程19 附录F:相关记录编制基本要求21 F.1 工作任务书21 F.2 PHA工作计划21 F.3 化学品相互反应矩阵21 F.4 通用危害检查表21 F.5 封闭性失效检查表22 F.6 人为因素检查表22 F.7 本质安全工艺检查表22 F.8 What If/Checklist 检查表23 F.9 PHA《再确认检查表》23

工艺危害分析(PHA)

工艺危害分析(PHA) 工艺危害分析是PSM的核心要素,它是有组织的、系统的对工艺装置或设施进行危害辨识,为消除和减少工艺过程中的危害、减轻事故后果提供必要的决策依据。 工艺危害分析关注设备、仪表、公用工程、人为因素及外部因素对于工艺过程的影响,着重分析着火、爆炸、有毒物泄漏和危险化学品泄漏的原因和后果。 工艺危害分析方法有很多种,PSM推荐的危害分析方法有: 1)“如果……,会怎么样?”提问法; 2)安全检查表; 3)“如果……,会怎么样?”提问法结合安全检查表; 4)危险性与可操作性研究; 5)故障模式与后果分析; 6)故障树分析; 7)或者等效的其他方法。 工艺危害分析是件很耗费时间的工作,但是意义重大。工厂需要根据自身工艺的特点选择适当的危害分析方法。对于化工厂和石化工厂,目前最普遍采用的危害分析方法是HAZOP,同时辅助采用安全检查表法弥补HAZOP方法的某些不足。 HAZOP是20世纪70年代由帝国化学公司(ICI)发明的一种定性危害分析方法,也是针对工艺过程最系统、有效的危害分析方法之一。 在进行工程设计时,主要是依靠各种标准、规范、设计指南以及设计人员的经验和知识来实现工艺系统的安全与可靠性。上述标准、规范或设计指南主要反映的是“正常工况下”工艺系统需要满足的情况。由于设备故障、人为错误或外部影响等原因,工艺系统在运行过程中可能偏离正常工况,导致工艺安全事故。此外,在项目工期紧张的情况下,设计人员的压力很大,容易犯错误,需要在工艺设计阶段就进行周全的考虑。 HAZOP可以应用于不同行业、不同规模和复杂程度各异的工艺系统,只要是包含工艺流程的系统。对新建项目的工艺设计、现有工艺系统的变更以及当前正在运行的装置都可以应用。 利用HAZOP方法进行危害分析是有组织的头脑风暴活动,通常需要由一个包括不同专业人员所组成的分析小组来完成。将复杂的工艺系统划分成不同的部分,称为节点(Node),然后针对每个节点进行具体的分析。 HAZOP使用一系列的“参数”和“引导词”(见表2和表3)搭配,设想工艺过程偏离正常工况的各种情形,并分析造成这些非正常工况的原因,对应的后果及当前的安全保障措施,必要时提出消除或控制危害的改进措施。所完成的分析报告可以作为编制操作程序的指导文件,也是编写培训材料的有益参考。 根据统计,在运用HAZOP方法进行危害分析的过程中,所提出的改进措施中40%是为了提升系统的安全,另外60%是为了改善系统的可操作性或者为了便于维修。

垃圾发电厂渗滤液处理工程设计方案

垃圾发电厂渗滤液处理工程设计方案 目录 第一章概述 第二章设计基础 第三章构、建筑物指标表 第四章投资估算 第五章处理成本估算 第六章施工工期说明 第七章调试方案 第八章运行与维护方案 第九章工程移交方案 第十章售后服务 附表:主要设备清单 附图:渗滤液处理流程图 第一章概述 XX垃圾焚烧发电有限公司是已修建好的垃圾发电厂。我公司专业人员根据了解的现场情况和常规参数,完成了其垃圾渗滤液处理工艺设计方案的编写。 按照垃圾发电厂设计单位所提供的数据和资料,垃圾处理设计最高量为350吨每天,渗滤液处理量为70m3/d 考虑,所产生的渗滤液将进入位于发电厂后方的调节池中后

污水将由泵从调节池打入污水处理站。 垃圾发电厂渗滤液是一种组成复杂的高浓度有毒有害废水,其水质受垃圾组成情况、水分、填埋时间、气候条件等因素的影响甚大。 所有垃圾渗滤液都具有共同的特点,主要表现在以下几个方面: 1) 高浓度有机废水,其中包括溶解性有机污染物、胶体类有机污染物,其相对的含量随季节、填埋前垃圾是否分拣、地域不同都有变化; 2) 氨氮含量高; 3) 水中盐份,尤其碱度含量高,酸碱缓冲体系庞大(pH 变化大); 4) 季节性水量变化大,春夏秋冬四季分明,冬季量少,夏季量大。 其中最重要的影响因素是厨房垃圾的含量。从较小的时间尺度上来说,垃圾发电厂渗滤液的月产生量和平均水质随季节的变化幅度很大。因此,垃圾发电厂必须配备足够大的垃圾渗滤液调节池,以储存丰水季一个月以上的垃圾渗滤液。垃圾发电厂渗滤液储存调节池是垃圾发电厂工程的一部分,是设计单位根据当地的降水规律、垃圾成分、水文地质情况等因素事先预测垃圾渗滤液产生量设计,然后与发电厂同时修建。 垃圾渗滤液中的主要污染物包括有机物(通常以COD质量浓度表示)、氨氮、离子态重金属等。 因此在垃圾渗滤液处理工程的技术设计上,我们一般考虑如下几个因素:

石油化工工艺流程识图知识新编

石油化工工艺流程识图知识 在石油化工等连续性生产设备上,配备一些自动化装置,代替操作人员的部分直接劳动,使生产在不同程度上自动地进行,称为石油化工自动化。 实现化工自动化的目的是: 加快生产速度,降低生产成本,。 降低劳动强度,改善劳动成本。 确保生产安全。 对于石化行业的管理人员、技术人员和操作人员必须要能够看懂石油化工工艺流程图,了解和掌握本行业、本装置的工艺技术、工艺流程、工艺设备及仪表控制等,才能更好的指导和指挥生产,平稳操作,正确分析和处理事故等。 1石油化工工艺流程图的一般包括的内容 石油化工工艺流程图主要包括:工艺流程图(PFD),公用物料流程图(UFD),工艺管道及仪表流程图(PID、UID)。 工艺流程图(PFD)中应该包括:工艺设备及其位号、名称;主要工艺管道;特殊阀门位置;物流的编号、操作条件(温度、压力、流量);工业炉、换热器的热负荷;公用物料的名称、操作条件、流量;主要控制、联锁方案。 公用物料流程图(UFD)中应该包括:物料类别编制,需要和产生公用物料的主要设备、主要公用物料干线、控制方案、流量和技术参数等,标注设备位号和名称。 工艺管道及仪表流程图(PID)需表示如下内容: 1.3.1设备 1) 全部编有位号的设备(包括备用设备),设备位号和名称,必要时要表示其主要规格; 2) 成套供应的机组制造厂的初步供货范围; 3) 全部设备管口; 4) 非定型设备的内件应适当表示,如塔板形式、与进出口管道有关的塔板序号、折流板、除雾器、加热或冷却盘管等; 5) 如有工艺要求时,应注明设备的安装高度以及设备之间的相对高度; 6) 泵、压缩机、鼓风机等转动设备的驱动型式。 1.3.2管道 1) 与设备相连接的所有工艺和公用物料管道(包括开、停车及事故处理管道),并在管道上标有管道号(包括物流代号、管道编号、管径、管道等级、绝热要求等)和用箭头表示出流体流动方向; 2) 所有阀门及其类型(仪表阀门除外); 3) 管道上管道等级变化时,要用分界线标明分界; 4) 容易引起振动的两相流管道上应注明“两相流、易振动”;有特殊要求的重力流管道上应注明“重力流”;有坡向和液封要求的管道应表示出坡度要求和液封高度;如果不能有“袋形”的管道也应注明; 5) 为开车或试运转需要而设置的放空、放净、吹扫及冲洗接头; 6) 蒸汽、热水或其它类型的伴热管、夹套管,及其绝热要求; 7) 所有管道附件,如补偿器、挠性软管、过滤器、视镜、疏水器、限流孔板、盲板、可拆卸短管和其它非标准管件; 8) 取样点的编号、位置、形式和结构; 9) 所有安全泄压设施,如安全阀、爆破片、呼吸阀都应编号,并表示清楚设计要求;

工艺危害分析管理规范Q SY 1362-2011

中国石油天然气集团公司企业标准
Q/SY 1362—2011
工艺危害分析管理规范
Specification for process hazards analysis management
2011-03-30 发布
2011-05-01 实施
中国石油天然气集团公司
发 布

Q/SY 1362—2011


前言 ................................................................................ II 1 范围 .............................................................................. 1 2 术语和定义 ........................................................................ 1 3 职责 .............................................................................. 1 4 管理要求 .......................................................................... 1 4.1 应用范围....................................................................... 1 4.2 应用时机....................................................................... 2 4.3 实施步骤....................................................................... 2 4.4 计划和准备..................................................................... 3 4.5 危害辨识....................................................................... 3 4.6 后果分析....................................................................... 3 4.7 危害评价....................................................................... 4 4.8 风险评估....................................................................... 5 4.9 建议的提出和回复............................................................... 5 4.10 PHA 报告 ..................................................................... 5 4.11 建议的追踪.................................................................... 6 5 审核、偏离、培训和沟通 ............................................................ 6 5.1 审核........................................................................... 6 5.2 偏离........................................................................... 6 5.3 培训和沟通..................................................................... 6 附录 A (资料性附录) PHA 再确认方法 .................................................... 7 附录 B (资料性附录) PHA 流程图 ...................................................... 10 附录 C (资料性附录) PHA 检查表示例.................................................... 11 附录 D (资料性附录) 危害分析方法介绍 ................................................. 20 附录 E (资料性附录) 定性风险评估规则 .................................................. 21 附录 F (资料性附录) PHA 报告编制指南 .................................................. 26
I

生活垃圾焚烧处理方式和流程

生活垃圾焚烧处理方式和流程 随着生活垃圾处理主流从卫生填埋逐步向垃圾焚烧转移,“十三五”期间,填埋处置比例将持续下降,原生垃圾填埋量将显著减少垃圾,填埋场将主要作为填埋焚烧残渣和应急使用。目前,在全国范围内仍有大量的填埋场,特别是简易堆场,已进入封场阶段,填埋工作的重点转为封场修复和二次污染控制,以及存量垃圾的综合整治等内容。 根据“十三五”规划,到2020年底,将建立较为完善的城镇生活垃圾处理监管体系。表明未来政府对垃圾填埋过程、二次污染控制、封场修复等环节的监管程度日趋严格,垃圾焚烧发电技术逐渐在我国发展成为垃圾处理的主流方式。 一般而言,不同生活垃圾焚烧厂、不同企业、不同研究机构开发的生活垃圾焚烧技术与城市生活垃圾焚烧工艺流程不尽相同。 图为城市生活垃圾焚烧发电系统的一般工艺流程。

生活垃圾焚烧常用炉型 目前最常用的几种焚烧炉类型分别为炉排炉型焚烧炉、流化床型焚烧炉、回转窑型焚烧炉。 一、炉排炉型焚烧炉 对于炉排炉型焚烧炉而言,是机械炉排炉的一种,通过机械炉排行程炉床,在垃圾处理的过程中,依靠炉排的运动是垃圾在整个机械系统中不断翻动,并实现向前或是向后的推行。通常状态下,垃圾燃烧中其基本的流程可以分为三个阶段,分别是干燥阶段、燃烧阶段以及燃尽阶段。 在整个焚烧工艺流程运行中,通过一次风机在垃圾储坑的上部将垃圾发酵堆积所产生的臭气引出,然后经过蒸汽(空气)预热器的加热处理,将其作为助燃空气送入到焚烧炉之中,保证垃圾在较短的时间内得到干燥处理。在燃烧阶段中,为了保证垃圾得到充分的燃烧,需要在燃烧炉的上方通入二次风,主要是为了加强氧气气流的干扰,增强助燃的空气量,实现垃圾的一次性燃烧。 在炉排炉型焚烧炉技术运用的过程中,其存在着一定的优势及缺陷因素:第一,优势分析。在炉排炉型焚烧炉技术使用的过程中,不需要添加煤或是其他辅助性的燃料,所以产生的煤渣也就相对较少。而且,在单台焚烧炉垃圾处理的过程中,其容量相对较大,在处理中不需要对垃圾进行分类处理。通过炉排的机械运用,可以保证炉内垃圾的稳定燃烧,而且燃烧的过程较为完全,炉渣的热灼现象逐渐降低。

石油化工 催化裂化装置工艺流程演示教学

石油化工催化裂化装置工艺流程

炼油生产安全技术—催化裂化的装置简介类型及工艺流程催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应?再生系统、分馏系统和吸收稳定系统。其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: ㈠反应––再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650℃~700℃)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650℃~68 0℃)。再生器维持0.15MPa~0.25MPa (表)的顶部压力,床层线

速约0.7米/秒~1.0米/秒。再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10% CO,为了利用其热量,不少装置设有CO 锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。 ㈡分馏系统 分馏系统的作用是将反应?再生系统的产物进行分离,得到部分产品和半成品。 由反应?再生系统来的高温油气进入催化分馏塔下部,经装有挡板的脱过热段脱热后进入分馏段,经分馏后得到富气、粗汽油、轻柴油、重柴油、回炼油和油浆。富气和粗汽油去吸收稳定系统;轻、重柴油经汽提、换热或冷却后出装置,回炼油返回反应––再生系统进行回炼。油浆的一部分送反应再生系统回炼,另一部分经换热后循环回分馏塔。为了取走分馏塔的过剩热量以使塔内气、液相负荷分布均匀,在塔的不同位置分别设有4 个循环回流:顶循环回流,一中段回流、二中段回流和油浆循环回流。 催化裂化分馏塔底部的脱过热段装有约十块人字形挡板。由于进料是460℃以上的带有催化剂粉末的过热油气,因此必须先把油气冷却到饱和状态并洗下夹带的粉尘以便进行分馏和避免堵塞塔盘。因此由塔底抽出的油浆经冷却后返

工艺危害分析作业规程参考

目录 1 目的 2 范围 3 定义 4 职责 5 流程图 6 工艺危害分析的应用 7 工艺危害分析的时间和频次 8 工艺危害分析过程 8.1 工艺危害分析的计划和准备 8.2 危害辨识 8.3 工艺危害评审 8.4 后果分析 8.5 设施布置 8.6 人员因素分析 8.7 本质安全工艺分析 8.8 建议措施的制定和管理 8.9 文件管理 9 管理系统 10 记录表单 附件

工艺危害分析作业规程 1 目的 通过辨识、评估、制定措施以控制工艺和操作中的危害,预防工艺安全事故的发生,提高工艺安全水平。 2 范围 适用于新建、扩建、技改项目及现有装置的建设、生产运行、封存、拆除。 3 定义 3.1 危害/危险源 有可能造成人员伤亡、财产损失或环境破坏的根源、状态或行为,或他们的组合。3.2 工艺危害分析(PHA) 通过系统的、有条理的方法来识别、评估和控制工艺中的危害,包括工艺危害评审和后果分析。 3.3 工艺危害评审 对工艺设施进行系统的、有组织的检查,并使用特定的方法识别危害、评估风险、产生结论和建议的过程。 3.4 人员因素(Human Factor) 人员因素是指在日常或紧急情况下,人员与其周围的工作环境交互影响的各方面。在工艺危害分析中应对人员因素加以考虑,包括各个级别的人为失误。除了操作人员或检维修人员可能出现的失误之外,对于有可能发生监督和管理上的失误,提供适当的培训和程序。 3.5 本质安全(Inherent Safety) 处理工艺危害(包括工艺物料的基本化学特性[如毒性、易燃性和反应性],物料处理的物理条件[如温度和压力],工艺设备的特性或这些因素的综合作用带来的危害)的一种原则,即从根本上消除危害,而不是靠控制措施来保证工艺安全。 3.6 工艺设计基础(Process Design Basis) 包括工艺原理、物料和能量平衡、工艺步骤、每道工序的工艺参数、每个参数的限值(最大值、最小值和正常值),以及超出限值的后果(即超出最大值和低于最小值的情况)。 3.7 设备设计基础(Equipment Design Basis)

工艺设计危害分析管理规范

工艺危害分析管理规范 1范围和应用领域 (3) 1.1目的 (3) 1.2适用范围 (3) 1.3应用领域 (3) 2参考文件 (3) 3术语和定义 (4) 4职责 (4) 5管理要求 (5) 5.1应用类型 (5) 5.2应用时机 (6) 5.3实施步骤 (7) 5.4计划和准备 (8) 5.5危害辨识 (9) 5.6后果分析 (10) 5.7危害分析 (11) 5.8风险评估 (12) 5.9建议提出和回复 (13) 5.10 PHA 报告 (13) 5.11建议的追踪 (14) 5.12重点分析因素 (15) 6管理系统 (17) 6.1资源支持 (17) 6.2管理记录 (17) 6.3审核要求 (17) 6.4复核与更新 (17) 6.5偏离管理 (17) 6.6培训和沟通 (17) 6.7解释 (18)

附录A PHA再确认方法 (19) 附录B PHA流程图 (23) 附录C PHA检查表示例 (25) 附录D定性风险评估规则 (32) 附录E PHA报告编制指南 (38) 1范围和应用领域 1.1目的 为规范工艺危害分析(简称PHA)管理,辨识、评估和控制工艺设备设计、生产、停用、拆除和报废过程中的危害,预防火灾、爆炸、泄漏等生产工艺危害事故的发生,特制定本规范。 1.2适用范围 本规范适用于中国石油所属企业,包括中国石油控股的合资企业,以及为中国石油服务的承包商。 1.3应用领域 本规范应用于油田钻井、油气生产、油气集输、炼化生产、油品储运等具有火灾、爆炸、泄漏等潜在风险的活动或过程。 2参考文件 工艺安全管理规范 工艺技术安全信息管理规范 质量保证管理规范 机械完整性管理规范 应急响应管理规范 启动前安全检查规范 工艺和设备变更管理规范

相关主题
文本预览
相关文档 最新文档