当前位置:文档之家› 共模滤波器设计与选材

共模滤波器设计与选材

共模滤波器设计与选材
共模滤波器设计与选材

EMC滤波电路的原理与设计---整理【WENDA】

第一章开关电源电路—EMI滤波电路原理 滤波原理:阻抗失配;作为电感器就是低通(更低的频率甚至直流能通过)高阻(超过一定频率后就隔断住难于通过)(或者是损耗成热消散掉),因此电感器滤波靠的是阻抗 Z=(R^2+(2ΠfL)^2)^1/2。也就是分成两个部分,一个是R涡流损耗,频率越高越大,直接把杂波转换成热消耗掉,这种滤波最干净彻底;一个是2ΠfL 这部分是通过电感量产生的阻挡作用,把其阻挡住。实际都是两者的结合。但是要看你要滤除的杂波的频率,选择合适的阻抗曲线。因为电感器是有截止频率的,超过这个频率就变成容性,也就失去电感器的基本特性了,而这个截止频率和磁性材料的特性和分布电容关系最大,因此要滤波更高的频率的干扰,就需要更低的磁导率,更低的分布电容。因此一般我们滤除几百K以下的共模干扰,一般使用非晶做共模电感器,或者10KHZ以上的高导铁氧体来做,这样主要使用阻抗的WL这一方面的特性,主要发挥阻挡作用。电感器滤波器是通过串联在电路里实现。撒旦谁打死多少次顺风车安顺场。 因此:共模滤波电感器不是电感量越大越好主要看你要滤除的共模干扰的频率范围。先说一下共模电感器滤波原理共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了,然后靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果。当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感 器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用。这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000\15000 的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号。因此首先要确认你要滤除共模干扰的频率范围然后再选择合适的滤波电感器材料. 电容的阻抗是Z=-1/2ΠfL那么也就是频率越高阻抗绝对值越小,那么就是高通低阻,就是频率越高越能通过,所以电容滤波是旁路,也就是采用并联方式,把高频的干扰通过电容旁路给疏导回去。

实验五:FIR数字滤波器设计与软件实现

实验五:FIR数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord 和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材; ○2采样频率Fs=1000Hz,采样周期T=1/Fs; ○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截

至频率fs=150Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率s 20.3s f ωπ=T =π,阻带最小衰为60dB 。 ○ 4实验程序框图如图2所示,供读者参考。 图2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为pl ω和pu ω,阻带上、下截止频率为sl ω和su ω,试求理想带通滤波器的截止频率cl cu ωω和。 (3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低? 5.信号产生函数xtg 程序清单(见教材) 二、 滤波器参数及实验程序清单 1、滤波器参数选取 根据实验指导的提示③选择滤波器指标参数: 通带截止频率fp=120Hz ,阻带截至频率fs=150Hz 。代入采样频率Fs=1000Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率

巴特沃斯有源高通滤波器的设计

昆明理工大学课程设计说明书 课题名称:巴特沃斯有源高通滤波器的设计专业名称:电子信息工程 学生班级:09级电信三班 学生姓名:周剑彪 学生学号:200911513339 指导老师:王庆平 设计时间:2011年6月23日

第一部分:题目分析及设计思路 (一)、滤波器简介 滤波器是一种对信号有处理作用的器件或电路。主要作用是:让有用信号尽可能无衰减的通过,对无用信号尽可能大的衰减。 滤波器按照所处理的信号,可以分为:模拟滤波器和数字滤波器;按照信号的频段,可以分为:低通、高通、带通和带阻滤波器四种;按照所采用的原件,也可以分为:无源滤波器和有源滤波器。用来说明滤波器性能的技术指标主要有:中心频率f0,即工作频带的中心;带宽BW;通带衰减,即通带内的最大衰减阻带衰减等。 (二)巴特沃斯滤波器简介 巴特沃斯滤波器是电子滤波器的一种。巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。这种滤波器最先由英国工程师斯替芬〃巴特沃斯(Stephen Butterworth)在1930 年发表在英国《无线电工程》期刊的一篇论文中提出的。一级至五级巴特沃斯低通滤波器的响应如下图所示:

巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。 (三)、巴特沃斯有源高通滤波器优化设计 设计目的 掌握滤波器的基本概念; 掌握滤波器传递函数的描述方法; 掌握巴特沃斯滤波器的设计方法; 设计一个巴特沃斯滤波器,其技术指标为: (1)阻带截止频率: fc = 1kHz ; (2)通带放大倍数:Aup =2; (3)品质因素:Q = 1; (4)阻带最小衰减率:-25dB。 设计要求: (1)确定传递函数; (2)给出电路结构和元件参数;(运算放大器可以选择) (3)利用PSPICE 软件对电路进行仿真,得到滤波器的幅频响应,是否满足设计指标;

共模电感的参数选择

开关电源EMI滤波器的设计 要使EMI滤波器对EMI信号有最佳的衰减特性,设计与开关电源共模、差模噪声等效电路端接的EMI滤波器时,就要分别设计抗共模干扰滤波器和抗差模干扰滤波器才能收到满意的效果。 1.抗共模干扰的电感器的设计 电感器是在同一磁环上由两个绕向与匝数都相同的绕组构成。当信号电流在两个绕组流过对,产生的磁场恰好抵消,它可几乎无损耗地传输信号。因此,共模电流可以认为是地线的等效干扰电压Ug所引起的干扰电流。当它流经两个绕组时,产生的磁场同相叠加,电感器对干扰电流呈现出较大的感抗,由此起到了抑制地线干扰的作用。电路如图1所示。 信号源至负载RL连接线的电阻为Rcl、Rc2,电感器自感为L1、L2,互感为M,设两绕组为紧耦合,则得到L1=L2=M。由于Rc1和RL串联且Rc1<<RL,则可以不考虑Vg,Vg 被短路可以不考虑Vg的影响。其中(Is是信号电流,Ig是经地线流回信号源的电流。由基尔霍夫定律可写出:

式(2)表明负载上的信号电压近似等于信号源电压,即共模电感传输有用信号时几乎不引入衰减。由(1)式得知,共模千扰电流Ig随f:fc的比值增大而减小。当f:fc的比值趋于无穷时,Ig=0,即干扰信号电流只在电感器的两个绕组中流过而不经过地线,这样就达到了抑制共模干扰的作用。所以,可以根据需要抑制的干扰电压频率来设置电感器截止频率。一般来说,当干扰电压频率f≥5fc时,即Vn:Vg≤0.197,就可认为达到有效抑制地线中心干扰的目的。 2.抗差模干扰的滤波器设计 差模干扰的滤波器可以设计成Π型低通滤波器,电路如图2所示。这种低通滤波器主要是设置电路截止频率人的值达到有效地抑制差模传导干扰的目的。

IIR数字滤波器的设计实验报告

IIR数字滤波器的设计 一、实验目的: 掌握冲激相应不变法和双线性变换法设计IIR数字滤波器的原理和方法; 观察冲激相应不变法和双线性变换法设计IIR数字滤波器的频率特性; 了解冲激相应不变法和双线性变换法的特点和区别。 二、实验原理: 无限长单位冲激响应(IIR)数字滤波器的设计思想: a)设计一个合适的模拟滤波器 b)利用一定的变换方法将模拟滤波器转换成满足预定指 标的数字滤波器 切贝雪夫I型:通带中是等波纹的,阻带是单调的

切贝雪夫II型:通带中是单调的,阻带是等波纹的 1.用冲击响应不变法设计一个低通切贝雪夫I型数字滤波器通带上限截止频率为400Hz 阻带截止频率为600Hz 通带最大衰减为0.3分贝 阻带最小衰减为60分贝 抽样频率1000Hz 2.用双线性变换法设计切贝雪夫II型高通滤波器 通带截止频率2000Hz 阻带截止频率1500Hz 通带最大衰减0.3分贝 阻带最小衰减50分贝 抽样频率20000Hz 四、实验程序:

1) Wp=2*pi*400; Ws=2*pi*600; Rp=0.3; Rs=60; Fs=1000; [N,Wn]=cheb1ord(Wp,Ws,Rp,Rs,'s'); [Z,P,K]=cheb1ap(N,Rp); [A,B,C,D]=zp2ss(Z,P,K); [At,Bt,Ct,Dt]=lp2lp(A,B,C,D,Wn); [num1,den1]=ss2tf(At,Bt,Ct,Dt); [num2,den2]=impinvar(num1,den1,Fs); [H,W1]=freqs(num1,den1); figure(1) subplot(2,1,1); semilogx(W1/pi/2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz'); ylabel(' 模拟滤波器幅值(db)'); [H,W2]=freqz(num2,den2,512,'whole',Fs); subplot(2,1,2); plot(W2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz');

共模、差模电源线滤波器设计

切断电磁干扰传输途径——共模、差模电源线滤波器设计 电源线干扰可以使用电源线滤波器滤除,开关电源EMI滤波器基本电路如图6所示。一个合理有效的开关电源EMI滤波器应该对电源线上差模干扰和共模干扰都有较强的抑制作用。在图6中CX1和CX2叫做差模电容,L1叫做共模电感,CY1和CY2叫做共模电容。差模滤波元件和共模滤波元件分别对差模和共模干扰有较强的衰减作用。 共模电感L1是在同一个磁环上由绕向相反、匝数相同的两个绕组构成。通常使用环形磁芯,漏磁小,效率高,但是绕线困难。当市网工频电流在两个绕组中流过时为一进一出,产生的磁场恰好抵消,使得共模电感对市网工频电流不起任何阻碍作用,可以无损耗地传输。如果市网中含有共模噪声电流通过共模电感,这种共模噪声电流是同方向的,流经两个绕组时,产生的磁场同相叠加,使得共模电感对干扰电流呈现出较大的感抗,由此起到了抑制共模干扰的作用。L1的电感量与EMI滤波器的额定电流I有关,具体关系参见表1所列。 [4] 实际使用中共模电感两个电感绕组由于绕制工艺的问题会存在电感差值,不过这种差值正好被利用作差模电感。所以,一般电路中不必再设置独立的差模电感了。共模电感的差值电感与电容CX1及CX2构成了一个∏型滤波器。这种滤波器对差模干扰有较好的衰减。 除了共模电感以外,图6中的电容CY1及CY2也是用来滤除共模干扰的。共模滤波的衰减在低频时主要由电感器起作用,而在高频时大部分由电容CY1及CY2起作用。电容CY的选择要根据实际情况来定,由于电容CY接于电源线和地线之间,承受的电压比较高,所以,需要有高耐压、低漏电流特性。计算电容CY漏电流的公式是 ID=2πfCYVcY 式中:ID为漏电流; f为电网频率。 一般装设在可移动设备上的滤波器,其交流漏电流应<1mA;若为装设在固定位置且接地的设备上的电源滤波器,其交流漏电流应<3.5mA,医疗器材规定的漏电流更小。由于考虑到漏电流的安全规范,电容CY的大小受到了限制,一般为2.2~33nF。电容类型一般为瓷片电容,使用中应注意在高频工作时电容器CY与引线电感的谐振效应。 差模干扰抑制器通常使用低通滤波元件构成,最简单的就是一只滤波电容接在两根电源线之间而形成的输入滤波电路(如图6中电容CX1),只要电容选择适当,就能对高频干扰起到抑制作用。该电容对高频干扰阻抗甚底,故两根电源线之间的高频干扰可以通过它,它对工频信号的阻抗很高,故对工频信号的传输毫无影响。该电容的选择主要考虑耐压值,只要满足功率线路的耐压等

EMI滤波电感设计

EMI滤波电感设计 EMI滤波器 正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下单独使用共模噪声滤波器。 图1 EMI滤波器的插入 一、共模电感设计 在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。(对于电源的输入线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为另。由于磁通的阻碍,SMPS 的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。 共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。 此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。 1.1、选择电感材料 开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。 对于电感来讲,大多数选择适当和高效费比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻抗ZS和频率的关系曲线。 图2铁氧体磁环的阻抗和频率的关系 在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。

高通滤波器设计及仿真

信息与电气工程学院 电子电路仿真及设计CDIO三级项目 设计说明书 (2013/2014学年第二学期) 题目:高通滤波器系统仿真及设计 专业班级:通信工程班

目录 第一章文氏桥振荡器-------------------------------------------------1 1.1振荡器的设计及要求 ---------------------------------------------1 1.2系统工作原理 ---------------------------------------------------1 1.3电路设计原理图,实物图, 参数计算及仿真 --------------------------2第二章高通滤波器---------------------------------------------------6 2.1实际滤波器的基本参数--------------------------------------------6 2.2滤波器的设计目的------------------------------------------------6 2.3设计要求--------------------------------------------------------7 2.4系统的设计方案--------------------------------------------------7 2.5系统工作原理----------------------------------------------------7 2.6滤波器设计仿真,仿真结果,实物图,实测结果----------------------7 第三章合成电路----------------------------------------------------11 3.1合成电路仿真图-------------------------------------------------11 3.2焊接成品-------------------------------------------------------12 第四章心得体会----------------------------------------------------14 附录---------------------------------------------------------------14 参考文献-----------------------------------------------------------14

实验四数字滤波器的设计实验报告

数字信号处理 实验报告 实验四 IIR数字滤波器的设计学生姓名张志翔 班级电子信息工程1203班 学号 指导教师 实验四 IIR数字滤波器的设计 一、实验目的: 1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设 计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。 2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。 3.熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。 二、实验原理: 1.脉冲响应不变法 用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则 2.双线性变换法 S平面与z平面之间满足以下映射关系:

s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。 双线性变换不存在混叠问题。 双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。 三、实验内容及步骤: 实验中有关变量的定义: fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期 (1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms; 设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。 MATLAB源程序: wp=2*1000*tan(2*pi*300/(2*1000)); ws=2*1000*tan(2*pi*200/(2*1000)); [N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn [B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动 [num,den]=bilinear(B,A,1000); [h,w]=freqz(num,den); f=w/(2*pi)*1000; plot(f,20*log10(abs(h)));

共模滤波器设计指南

共模滤波器设计指南 简介 选择共模滤波器的元件值不需要很复杂的过程。可使用标准过滤器排列来取得相对简单和直观的设计过程,虽然这些排列可能经过修改以使用预先定义好的元件值。 概述 线路滤波器防止在电子设备和AC线路之间产生过多噪音;一般而言,重点还是对AC 线路的保护。图1显示了在AC线路(通过全阻抗匹配电路)和(噪音)电源转换器之间使用共模滤波器的情况。共模噪音(噪音在接地的两条线路上同时产生)的运动方向是从负载端进入滤波器,这样两个线路共有的噪音得到很大衰减。最后,滤波器加到AC线路(通过全阻抗匹配电路)上的输出小到可以忽略不计。 图1 通用线路滤波 设计共模滤波器必须设计两个相同的差动滤波器。其中每个滤波器分别对应两极的线路,而每一边的感应器分别耦合一个磁芯。 图2 共模感应器 对于差动输入电流(从A到B的输入是沿L1,从B到A是沿L2),两个感应器之间的耦合净磁通量为0。 任何差动信号引起的自感应是两个滤波器耦合不好引起的。滤波器作为独立元件工作,其漏感对差动信号做出响应:漏感衰减了差动信号。 当感应器L1和L2收到接地的同一电极的相同信号,它们都会在共用的磁芯中产生一个非零的净通量。两个感应器于是作为独立元件工作,其共同的自感应对共同的差动信号做出响应:共同的自感应衰减了共同的差动信号。 一阶滤波器 设计最简单、最便宜的滤波器是一阶滤波器。这种滤波器使用单个反应元件来储存波谱能量的特定波段,而不将能量传递到负载。在低通共模滤波器中,使用的反应元件是共模线圈。 滤波器的自感应值是用负载(单位:欧姆)除以信号将衰减时及超过这一水平的角频率。例如,在50欧姆的负载中,当频率达到4000HZ或以上水平时候信号开始衰减,则需要使用1.99mH(50/(2π×4000))的感应器。其相应的共模滤波器配置如下图: 图3 一阶(单极)共模滤波器 频率达到4000HZ时,衰减量为3dB,每增加8HZ,衰减6dB。由于最主要的感应器对一阶滤波器的依赖性,因此必须考虑线圈自感应的变动。例如,额定自感应值变动±20%意味着名义33dB,4000HZ的频率其实际范围在3332-4999HZ。典型做法是规定共模滤波器的自感应值为最小值,这样就保证了交叉频率不会升得太高。但是,在选择一阶低通滤波器的线圈时要加以注意,因为比典型和最小值高得多的自感应值可能限制线圈可使用的衰减波段。

共模电感的设计

EMI滤波共模电感设计 正常工作的开关类电源(SMPS)会产生有害的高频噪声,它能影响连接到相同电源线上的电子设备像计算机、仪器和马达控制。用一个EMI滤波器插入电源线和SMPS之间能消除这类干扰(图1)。一个差模噪声滤波器和一个共模噪声滤波器能够串联或在许多情况下 单独使用共模噪声滤波器。 图1 EMI滤波器的插入 在一个共模滤波器内,电感的每一个绕阻和电源输入线中的任一根导线相串联。(对于电源的输入 线来讲)电感绕组的接法和相位是这样的,第一个绕组产生的磁通会与第二个绕组产生的磁通相削. 于是,除了泄漏阻抗的小损耗和绕组的直流电阻以外,电感至电源输入线的插入阻抗为零。由于磁 通的阻碍,SMPS的输入电流需要功率,因此将通过滤波器,滤波器应没有任何明显的损耗。 共模噪声的定义是出现在电源输入线的一根或二根导线上的有害电流通过电感的地返回噪声源的噪声。 此电流要视共模电感的任何一个或二个绕组的全部阻抗,因为它不能被返回的电流所抵消。共模噪声电压是电感绕组上的衰减,应从有害噪声中保持电源输入线的畅通。 1.1、选择电感材料 开关电源正常工作频率20KHz以上,而电源产生的有害噪声比20KHz高,往往在100KHz~50MHz之间。 对于电感来讲,大多数选择适当和高效率比的铁氧体,因为在有害频带内能提供最高的阻抗。当看到公共参数如磁导率和损耗系数就去识别材料是困难的。图2给出铁氧体磁环J-42206-TC绕10匝后的阻抗ZS和频率的关系曲线。 图2铁氧体磁环的阻抗和频率的关系

在1~10MHz之间绕组到达最大阻抗,串联感抗XS和串联电阻RS(材料磁导率和损耗系数的函数)共同产生总阻抗Zt。 图3所示为图2中铁氧体材料的磁导率和损耗系数与频率的函数关系。由于感抗引起的下降,导致磁导率在750KHz以上的下降;由于电阻取决高频的源阻抗所以损耗系数随频率而增加。 铁氧体磁环的磁导率、损耗系数和频率的关系 图3 图4给出三种不同材料的总阻抗和频率的关系 J材料在超过1~20MHz范围内具有高的总阻抗,它最广泛地应用于共模滤波器的扼流圈。在1MHz,W材料阻抗比J材料高20-50%,当低频噪声是主要问题时经常应用J材料;K材料可用于2MHz以上,因为在此频率范围内它产生的阻抗比J材料高直至100%。在2MHz 以上或以下,对于滤波器所要求的规范,J或W是优先的。图4三种不同材料的阻抗和频率的关系。 1.2、磁芯的形状 对于共模噪声滤波器环形磁芯是最普及的,他们不贵、泄漏磁通也低。环形磁芯必须 用手绕制(或在独特的环形绕线机上绕制)。正常情况要用一个非金属的分隔板放置在两 个绕组之间,以及为了和PC板连接,这个绕制器件还需环氧化在印制板的头部。具有附件

二阶高通滤波器的设计 (2)

前言 当今时代,随着科学技术的发展,先进的电子技术在各个近代学科门类和技术领域中有着不可或缺的核心地位。以前的三次工业革命就使我们的社会发生了翻天覆地的变化,使我们由手工时代进入了现代的电器时代。同时科技在国家的国防事业中发挥了重要的作用,只有科技发展了才能使一个国家变得强大。而作为二十一世纪的一名大学生,不仅仅要将理论只是学会,更为重要的是要将所学的知识用于实际生活之中,使理论与实践能够联系起来。 对信号进行分析与处理时, 常常会遇到有用信号叠加上无用噪声的问题, 这些噪声有的是与信号同时产生的, 有的是传输过程中混入的。因此, 从接收的信号中消除或减弱干扰噪声, 就成为信号传输与处理中十分重要的问题。根据有用信号与噪声的不同特性, 消除或减弱噪声,提取有用信号的过程称为滤波, 实现滤波功能的系统称为滤波器。 低通滤波器在现实生活中运用也十分广泛。该种滤波器是只有在规定的频率范围内才能使信号通过,而且其电路性能稳定,增益容易调节。利用这一性质不仅可以滤出有用信号且同时抑制无用信号。工程上也常常用低通滤波器作信号处理、数据传递和抑制干扰等。例如:无线电发射机使用低通滤波器阻塞可能引起与其它通信发生干扰的谐波发射;固体屏障也是一个声波的低通滤波器,当另外一个房间中播放音乐时,很容易听到音乐的低音,但是高音部分大部分被过滤掉。 我国现在有滤波器的种类和所覆盖的频率虽然基本上满足现有的各种电信设备。但从整体而言,我国有源滤波器的发展比无源滤波器缓慢,尚未大量生产和应用。我国电子产品要想实现大规模集成,滤波器集成化仍然是个重要课题。

第一章设计任务 1.1二阶低通滤波器题目要求 a)设计截止频率f=2kHz的滤波器 b)输出增益Av=2 c)要求用压控电压源型、无限增益多路反馈型两种方法

实验五FIR数字滤波器的设计

实验六 FIR 数字滤波器的设计 一、实验目的 1.熟悉FIR 滤波器的设计基本方法 2.掌握用窗函数设计FIR 数字滤波器的原理与方法。 二、实验内容 1.FIR 数字滤波器的设计方法 FIR 滤波器的设计问题在于寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应)(ωj d e H ,其对应的单位脉冲响应为)(n h d 。 (1)用窗函数设计FIR 滤波器的基本原理 设计思想:从时域从发,设计)(n h 逼近理想)(n h d 。设理想滤波器)(ωj d e H 的单位脉 冲响应为)(n h d 。以低通线性相位FIR 数字滤波器为例。 ?∑--∞-∞=== ππωωωωω πd e e H n h e n h e H jn j d d jn n d j d )(21)()()( (6-1) )(n h d 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即 ???-==2 /)1()()()(N a n w n h n h d (6-2) 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,这个现象称为吉布斯(Gibbs )效应。为了消除吉布斯效应,一般采用其他类型的窗函数。 (2) 典型的窗函数 ① 矩形窗(Rectangle Window) )()(n R n w N = (6-3)

差模滤波器和共模滤波器

共模和差模信号与滤波器 山东莱芜钢铁集团动力部周志敏(莱芜271104) 1概述 随着微电子技术的发展和应用,电磁兼容已成为研究微电子装置安全、稳定运行的重要课题。抑制电磁干扰采用的技术主要包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。而干扰源的传播途径分为传导干扰和辐射干扰。传导噪声的频率范围很宽,从10kHz~30MHz,仅从产生干扰的原因出发,通过控制脉冲的上升与下降时间来解决干扰问题未必是一个好方法。为此了解共模和差模信号之间的差别,对正确理解脉冲磁路和工作模块之间的关系是至关重要的。在抑制电磁干扰的各项技术中,采用滤波技术对局域网(LAN)、通信接口电路、电源电路中减少共模干扰起着关键作用。所以掌握滤波器的工作原理和其实用电路的结构及其正确的应用,是微电子装置系统设计中的一个重要环节。 2差模信号和共模信号 差模信号又称为常模、串模、线间感应和对称信号等,在两线电缆传输回路,每一线对地电压用符号V1和V2来表示。差模信号分量是VDIFF。纯差模信号是:V1=-V2;其大小相等,相位差180°;VDIFF=V1-V2,因为V1和V2对地是对称的,所以地线上没有电流流过,差模信号的电路如图1所示。所有的差模电流(IDIFF)全流过负载。差模干扰侵入往返两条信号线,方向与信号电流方向一致,其一种是由信号源产生,另一种是传输过程中由电磁感应产生,它和信号串在一起且同相位,这种干扰一般比较难以抑制。 共模信号又称为对地感应信号或不对称信号,共模信号分量是VCOM,纯共模信号是:VCOM=V1=V2;大小相等,相位差为0°;V3=0。共模信号的电路如图2所示。干扰信号侵入线路和接地之间,干扰电流在两条线上各流过二分之一,以地为公共回路;原则上讲,这种干扰是比较容易消除的。在实际电路中由于线路阻抗不平衡,使共模信号干扰会转化为不易消除的串扰干扰。 3滤波器 滤波器可以抑制交流电源线上输入的干扰信号及信号传输线上感应的各种干扰。滤波器可分为交流电源滤波器、信号传输线滤波器和去耦滤波器。交流电源滤波器大量应用在开关电源的系统中,既可以抑制外来的高频干扰,还可以抑制开关电源向外发送干扰。来自工频电源或雷击等瞬变干扰,经电源线侵入电子设备,这种干扰以共模和差模方式传播,可用电源滤波器滤除。在滤波电路中,有很多专用的滤波元件(如铁氧体磁环),它们能够改善电路的滤波特性,恰当地设计和使用滤波器是抗干扰技术的重要手段。例如开关电源通过传导和辐射出的噪声有差模和共模之分,差模噪声采用π型滤波器抑制,如图3(a)所示。图3(a)中,LD为滤波扼流圈。若要对共模噪声有抑制能力,应采用如图3(b)所示的滤波电路。图3(b)中,LC为滤波扼流圈。由于LC的两个线圈绕向一致,当电源输入电流流过LC时,所产生的磁场可以互相抵消,相当于没有电感效应,因此,它使用磁导率高的磁芯。LC对共模噪声来说,相当于一个大电感,能有效地抑制共模传导噪声。开关电源输入端分别对地并接的电容CY对共模噪声起旁路作用。共模扼流圈两端并联的电容CX对共模噪声起抑制作用。R为CX 的放电电阻,它是VDE 0806和IEC 380安全技术标准所推荐的。图3(b)中各元件参数范围为:CX=0.1μF~2μF; CY=2.0nF~33nF;LC=几~几十mH,随工作电流不同而取不同的参数值,如电流为25A时LC=1.8mH;电流为0 3A时,LC=47mH。另外在滤波器元件选择中,一定要保证输入滤波器的谐振频率低于开关电源的工作频率。

用matlab设计高通滤波器,雪比切夫、fir两种方法 课程设计HPF

课 程 设 计 20011 年 7月 1日 设计题目 学 号 专业班级 指导教师 学生姓名 张腾达 吴晔 陈丽娟 杨蕾 通信电子电路课程设计 ——数字滤波器的设计 张静 20080302 光信息08-3 班 实验组员 张静 胡磊 艾永春 赵亚龙 王宏道 胡进娟 马丽婷

设计题目通信电子电路课程设计 ——数字滤波器的设计 成绩 课程设计主要内容通信电子电路课程设计——数字滤波器的设计 某系统接收端接收到的信号为:y=cos(2π*60t)+1.2cos(2π *140t)+2sin(2π*220t) +1.5sin(2π*300t),此信号夹杂了一个正弦噪声noise= cos(2π*60t),设计一个高通滤波器将此噪声滤除,恢复原信号。 内容: 1.窗函数法设计FIR数字高通滤波器 2.切比雪夫1型高通滤波器 指导老师评语建议:从学生的工作状态、工作量、设计论文的创造性、学术性、实用性及书面表达能力等方面给出评价。 签名: 20 年月日

设计要求: 某系统接收端接收到的信号为 y=cos(2π*60t)+1.2cos(2π*140t)+2sin(2π*220t) +1.5sin(2π*300t) (A) 发现此信号夹杂了一个正弦噪声noise=1.5sin(2π*300t),请设计一个低通滤波器将此噪声滤除,从而恢复原信号。 (B) 发现此信号夹杂了一个正弦噪声noise= cos(2π*60t) +1.5sin(2π*300t) ,请设计一个带通滤波器将此噪声滤除,从而恢复原信号。 (C) 发现此信号夹杂了一个正弦噪声noise= 1.2cos(2π*140t)+2sin(2π*220t),请设计一个带阻滤波器将此噪声滤除,从而恢复原信号。 (D) 发现此信号夹杂了一个正弦噪声noise= cos(2π*60t),请设计一个高通滤波器将此噪声滤除,从而恢复原信号。 要求: (1)请写出具体的MATLAB程序,并详细解释每条程序(2)画出滤波前后信号的频谱图 (3)画出所设计滤波器的幅频和相频特性图,并写出具体参数

二阶高通滤波器的设计

模拟电路课程设计报告设计课题:二阶高通滤波器的设计 专业班级:电信本 学生姓名: 学号:69 指导教师: 设计时间:1月3日

题目:二阶高通滤波器的设计 一、设计任务与要求 ① 分别用压控电压源和无限增益多路反馈二种方法设计电路; ② 截止频率f c =200Hz ; ③ 增益A V =2; ④ 用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V )。 二、方案设计与论证 二阶高通滤波器是容许高频信号通过、但减弱(或减少)频率低于截止频率信号通过的滤波器。高通滤波器有综合滤波功能,它可以滤掉若干次高次谐波,并可减少滤波回路数。对于不同滤波器而言,每个频率的信号的减弱程度不同。其在音频应用中也使用低音消除滤波器或者噪声滤波器。本设计为分别使用压控电压源和无限增益多路反馈两种方法设计二阶高通滤波器。二者电路都是基于芯片ua741设计而成。将信号源接入电路板后,调整函数信号发生器的频率,通过观察示波器可以看到信号放大了2倍。现在工厂对于谐波的治理,应用最多的仍然是高压无源滤波器,高压无源滤波器有多种接线方式,其中单调谐滤波器及二阶高通滤波器使用最为广泛,无源滤波器具有结构简单、设备投资较少、运行可靠性较高、运行费用较低等优点, 2.1设计一、用压控电压源设计二阶高通滤波电路 与LPF 有对偶性,将LPF 的电阻和电容互换,就可得一阶HPF 、简单二阶HPF 、压控电压源二阶HPF 电路采用压控电压源二阶高通滤波电路。 电路如图2-1所示,参数计算为: 通带增益: 3 4 1R R Aup + = Aup 表示二阶高通滤波器的通带电压放大倍数 截止频率: RC f π210=

FIR数字滤波器设计实验_完整版

班级: 姓名: 学号: FIR 数字滤波器设计实验报告 一、实验目的 1.掌握FIR 数字滤波器的设计方法; 2.熟悉MATLAB 信号处理工具箱的使用; 3.熟悉利用MATLAB 软件进行FIR 数字滤波器设计,以及对所设计的滤波器 进行分析; 4.了解FIR 滤波器可实现严格线性相位的条件和特点; 5.熟悉FIR 数字滤波器窗函数设计法的MATLAB 设计,并了解利用窗函数法 设计FIR 滤波器的优缺点; 6.熟悉FIR 数字滤波器频率采样设计法的MATLAB 设计,并了解利用频率采 样法设计FIR 滤波器的优缺点; 7.熟悉FIR 数字滤波器切比雪夫逼近设计法的MATLAB 设计,并了解利用切 比雪夫逼近法设计FIR 滤波器的优缺点。 二、实验设备及环境 1.硬件:PC 机一台; 2.软件:MATLAB (6.0版以上)软件环境。 三、实验内容及要求 1.实验内容:基于窗函数设计法、频率采样设计法和切比雪夫逼近设计法,利用MATLAB 软件设计满足各自设计要求的FIR 数字低通滤波器,并对采用不同设计法设计的低滤波器进行比较。 2.实验要求: (1)要求利用窗函数设计法和频率采样法分别设计FIR 数字低通滤波 器,滤波器参数要求均为:0.3c w π=。其中,窗函数设计法要求分别利用矩形窗、汉宁窗和布莱克曼窗来设计数字低通滤波器,且 21N ≥,同时要求给出滤波器的幅频特性和对数幅频特性; 频率

采样法要求分别利用采样点数21N =和63N =设计数字低通滤波器,同时要求给出滤波器采样前后的幅频特性,以及脉冲响应及对数幅频特性。 (2)要求利用窗函数设计法和切比雪夫逼近法分别设计FIR 数字低通 滤波器,滤波器参数要求均为: 0.2π, 0.25dB, 0.3π, 50dB p p s s ωαωα==== 其中,窗函数设计法要求利用汉明窗来设计数字低通滤波器,且 66N ≥,同时要求给出滤波器理想脉冲响应和实际脉冲响应,汉 名窗和对数幅频特性; 切比雪夫逼近法要求采用切比雪夫Ⅰ型,同时要求给出滤波器的脉冲响应、幅频特性和误差特性。 (3)将要求(1)和(2)中设计的具有相同参数要求,但采用不同设 计方法的滤波器进行比较,并以图的形式直观显示不同设计设计方法得到的数字低通滤波器的幅频特性的区别。 四、实验步骤 1.熟悉MATLAB 运行环境,命令窗口、工作变量窗口、命令历史记录窗口,FIR 常用基本函数; 2.熟悉MATLAB 文件格式,m 文件建立、编辑、调试; 3.根据要求(1)的内容,设计FIR 数字低通滤波器,建立M 文件,编写、调试、运行程序; 4.根据要求(2)的内容,设计FIR 数字低通滤波器,建立M 文件,编写、调试、运行程序; 5.将要求(1)和(2)中设计的具有相同参数要求,但采用不同设计方法的滤波器进行比较分析; 6.记录实验结果; 7.分析实验结果; 8.书写实验报告。 五、实验预习思考题 1.FIR 滤波器有几种常用设计方法?这些方法各有什么特点?

有源高通滤波器电路设计(100Hz截止频率)

长沙学院课程设计说明书 题目有源高通滤波器电路设计系(部) 电子与通信工程系 专业(班级) 电气工程及其自动化姓名 学号 指导教师 起止日期

模拟电子技术课程设计任务书 系(部):电子与通信工程系专业:电气工程及其自动化指导教师:

长沙学院课程设计鉴定表

目录 摘要 (5) 1.电路设计 (6) 1.1.电路元件及参数的选择 (6) 1.2.电路原理图绘制 (6) 2.电路的仿真 (7) 2.1.使用Multisim9仿真波特图示仪 (7) 2.2.使用Multisim9仿真示波器 (7) 2.2.1.输入信号频率小于截止频率时的仿真 (7) 2.2.2.输入信号频率等于截止频率时的仿真 (8) 2.2.3.输入信号频率大于截止频率时的仿真 (8) 参考文献 (9) 设计总结 (9)

摘要 滤波器是一种能使有用信号通过而大幅抑制无用信号的电子装置。常用来进行信号处理、数据传输和抑制噪声等。以往这种滤波电路主要采用无源R、L和C组成,20世纪60年代以来,集成运放获得了迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压和输入阻抗均很高,输出阻抗又低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但是,集成运放的带宽有限,所以目前有源滤波电路的工作频率难以做的很高,以及难于对功率信号进行 滤波,这是它的不足之处。]1[在实际电子系统中,有源滤波器运用广泛,输入信号往往是含有多种频率成 分的复杂信号,可能还会混入各种噪声、干扰及其它无用频率的信号,因此需要设法将有用频率信号挑选出来、将无用信号频率抑制掉。完成此任务需要具有选频功能的电路。本文主要内容是设计一个能阻挡低频信号、输出高频信号的有源高通滤波电路,以及利用Multisim9对电路进行仿真。本电路所用到的运算放大器LM741EN,它的管脚1和5为调零端,管脚2为运放反相输入端,管脚3为同相输入端,管脚6为输出端,管脚7为正电源端,管脚4为负电源端,管脚8为空端。Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 关键词:滤波器运算放大器有源滤波电路有源高通滤波电路Multisim 电路仿真

037 差模滤波和共模滤波

差模滤波和共模滤波 1 差模滤波 低频滤波可以分为两类,差模滤波和共模滤波。根据前面的讨论,差模滤波试图减小电源线中通过地线返回的噪声。这就意味着电源线中的噪声首先会流出机壳再通过地线返回。因此滤波的策略就是在噪声流出机壳之前先将电源线的噪声旁路到地线中去,这样,噪声形成回路而且不会被测量到。可以在电源线中串联一个电感,阻止其流出,同时,在电源线和地线之间跨接一个电容,为噪声提供一个低阻抗回路。 商用与军用 尽管在前面对商用滤波和军用滤波的讨论已经表明了两者密切相关,但在设计一个低频差模滤波器的时候仍然会有不同之处。问题是设计一个电感在前电容在后的滤波器还是一个电感在后电容在前的滤波器(从电源内部向外部供电看)。商业测试方法通常测量电压,而且阻抗源相对比较大(50Ω)。可以利用这个阻抗源来阻断噪声,因此采用电感在前电容在后的滤波器更好,如图9-17所示。 在某些情况下,噪声的幅值很小,可能不需要电感,这个电容就与50Ω的电阻组成分压网络,电容阻抗通常很小,因此可以分流大部分的噪声。为使电路正常工作,电容的ESR 非常关键。在这种应用场合,需要采用多层瓷片电容或金属化塑料电容。 针对军用测试时,相反地,阻抗源是个低阻抗(10μF 电容),通过测量电流来测试噪声。为防止噪声电流流过这个低阻抗,需要采用电容在前电感在后的滤波器(如图9-18所示)。 在这种情况下(与商业用途不一样),毫无疑问,这个电容作为输入电容,如大的电解电容已经存在,最好在这个电容上再并联一个1μF 或100nF 的瓷片电容(或者同时并联——一般1μF 的电容在1MHz 以下有效而100nF 的电容可以工作到10MHz)。这个方法通常用来解决大电容在高频下特性差的问题。 交流 电容 低阻抗回路

相关主题
文本预览
相关文档 最新文档