当前位置:文档之家› 高考物理新电磁学知识点之磁场技巧及练习题附解析(3)

高考物理新电磁学知识点之磁场技巧及练习题附解析(3)

高考物理新电磁学知识点之磁场技巧及练习题附解析(3)
高考物理新电磁学知识点之磁场技巧及练习题附解析(3)

高考物理新电磁学知识点之磁场技巧及练习题附解析(3)

一、选择题

1.如图所示为质谱仪的原理图,一束粒子流由左端平行于P 1、P 2射入,粒子沿直线通过速度选择器,已知速度选择器的电场强度为E ,磁感应强度为B 1.粒子由狭缝S 0进入匀强磁场B 2后分为三束,它们的轨道半径关系为132r r r =<,不计重力及粒子间的相互作用力,则下列说法中正确的是( )

A .P 1极板带负电

B .能通过狭缝S 0的带电粒子的速率等于1

B

E

C .三束粒子在磁场B 2中运动的时间相等

D .粒子1的比荷

11q m 大于粒子2的比荷2

2

q m 2.质量和电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是( )

A .M 带正电,N 带负电

B .M 的速率大于

N 的速率 C .洛伦磁力对M 、N 做正功 D .M 的运行时间大于N 的运行时间

3.为了降低潜艇噪音可用电磁推进器替代螺旋桨。如图为直线通道推进器示意图。推进器前后表面导电,上下表面绝缘,规格为:a ×

b ×

c =0.5m×0.4m×0.3m 。空间内存在由超导励磁线圈产生的匀强磁场,其磁感应强度B =10.0T ,方向竖直向下,若在推进器前后方向通以电流I =1.0×

103A ,方向如图。则下列判断正确的是( )

A .推进器对潜艇提供向左的驱动力,大小为4.0×

103N

B.推进器对潜艇提供向右的驱动力,大小为5.0×103N

C.超导励磁线圈中的电流方向为PQNMP方向

D.通过改变流过超导励磁线圈或推进器的电流方向可以实现倒行功能

4.如图甲是磁电式电流表的结构图,蹄形磁铁和铁芯间的磁场均匀辐向分布。线圈中a、b两条导线长度均为l,未通电流时,a、b处于图乙所示位置,两条导线所在处的磁感应强度大小均为B。通电后,a导线中电流方向垂直纸面向外,大小为I,则()

A.该磁场是匀强磁场

B.线圈平面总与磁场方向垂直

C.线圈将逆时针转动

D.a导线受到的安培力大小始终为BI l

5.电磁血流量计是基于法拉第电磁感应定律,运用在心血管手术和有创外科手术的精密监控仪器。工作原理如图所示,将患者血管置于磁感应强度为B的匀强磁场中,测出管壁上MN两点间的电势差为U,已知血管的直径为d,则血管中的血液流量Q为()

A.πdU

B

B.

π

4

dU

B

C.

πU

Bd

D.

π

4

U

Bd

6.笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件.当显示屏开启时磁体远离霍尔元件,电脑正常工作:当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态.如图所示,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e的自由电子,通入方向向右的电流时,电子的定向移动速度为 .当显示屏闭合时元件处于垂直于上表面、方向向下的匀强磁场中,于是元件的前、后表面间出现电压U,以此控制屏幕的熄灭.则元件的()

A.前表面的电势比后表面的低

B.前、后表面间的电压U与 无关C.前、后表面间的电压U与c成正比

D.自由电子受到的洛伦兹力大小为eU a

7.如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平

面(未画出)。一群比荷为q

m

的负离子以相同速率v0(较大),由P点在纸平面内向不同

方向射入磁场中发生偏转后,又飞出磁场,最终打在磁场区域右侧足够大荧光屏上,离子重力不计。则下列说法正确的是()

A.离子在磁场中的运动轨迹半径可能不相等

B.由Q点飞出的离子在磁场中运动的时间最长

C.离子在磁场中运动时间一定相等

D.沿PQ方向射入的离子飞出时偏转角最大

8.如图所示,回旋加速器是用来加速带电粒子使它获得很大动能的装置。其核心部分是两个D形金属盒,置于匀强磁场中,两盒分别与高频电源相连。则下列说法正确的是

()

A.带电粒子从磁场中获得能量

B.带电粒子加速所获得的最大动能与加速电压的大小有关

C.带电粒子加速所获得的最大动能与金属盒的半径有关

D.带电粒子做圆周运动的周期随半径增大而增大

9.如图所示,在垂直纸面向里的匀强磁场边界上,有两个质量、电荷量均相等的正、负离子(不计重力),从O点以相同的速度射入磁场中,射入方向均与边界成θ角,则正、负离子在磁场中运动的过程,下列判断正确的是

A.运动的轨道半径不同

B.重新回到磁场边界时速度大小和方向都相同

C.运动的时间相同

D .重新回到磁场边界的位置与O 点距离不相等

10.某小组重做奥斯特实验,在一根南北方向放置的直导线的正下方放置一小磁针,如图所示,给导线通入恒定电流,小磁针再次静止时偏转了30°,已知该处地磁场水平分量

55.010B T -=?,通电直导线在该处产生的磁感应强度大小为( )

A .52.910T -?

B .57.110T -?

C .58.710T -?

D .41.010T -?

11.一回旋加速器当外加磁场一定时,可把质子加速到v ,它能把氚核加速到的速度为

( ) A .v

B .2v

C .

3

v D .

23

v 12.如图所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤读数为N 1,现在磁铁上方中心偏左位置固定一通电导线,电流方向如图,当加上电流后,台秤读数为N 2,则以下说法正确的是( )

A .N 1>N 2,弹簧长度将变长

B .N 1>N 2,弹簧长度将变短

C .N 1<N 2,弹簧长度将变长

D .N 1<N 2,弹簧长度将变短

13.如图,边长为l ,质量为m 的等边三角形导线框用绝缘细线悬挂于天花板,导线框中通一逆时针方向的电流,图中虚线过ab 边中点和ac 边中点,在虚线的下方有一垂直于导线框向外的匀强磁场,其磁感应强度大小为B ,此时导线框处于静止状态,细线中的拉力为1F ;保持其他条件不变,现将虚线下方的磁场移至虚线上方,此时细线中拉力为2F 。导线框中的电流大小为( )

A .

12

F F Bl

- B .

21

F F Bl

- C .

122()

F F Bl

-

D .

212()

F F Bl

- 14.如图所示,以O 为圆心的圆形区域内,存在方向垂直纸面向外的勻强磁场,磁场边界上的A 点有一粒子发射源,沿半径AO 方向发射出速率不同的同种粒子(重力不计),垂直进入磁场,下列说法正确的是

A.率越大的粒子在磁场中运动的时间越长

B.速率越小的粒子在磁场中运动的时间越长

C.速率越大的粒子在磁场中运动的角速度越大

D.速率越小的粒子在磁场中运动的角速度越大

15.如图所示,矩形线圈abcd在匀强磁场中可以分别绕垂直于磁场方向的轴P1和P2以相同的角速度匀速转动,当线圈平面转到与磁场方向平行时()

A.线圈绕P1转动时的电流等于绕P2转动时的电流

B.线圈绕P1转动时的电动势小于绕P2转动时的电动势

C.线圈绕P1和P2转动时电流的方向相同,都是a→b→c→d

D.线圈绕P1转动时dc边受到的安培力大于绕P2转动时dc边受到的安培力

16.电荷在磁场中运动时受到洛仑兹力的方向如图所示,其中正确的是()A.B.C.D.

17.质量和电量都相等的带电粒子M和N,以不同的速度率经小孔S垂直进入匀强磁场,运行的半圆轨迹如图中虚线所示,下列表述正确的是()

A.M带正电,N带负电

B.M的速度率小于N的速率

C.洛伦兹力对M、N做正功

D.M的运行时间等于N的运行时间

18.航母上飞机弹射起飞是利用电磁驱动来实现的。电磁驱动原理如图所示,在固定线圈左右两侧对称位置放置两个闭合金属圆环,铝环和铜环的形状、大小相同,已知铜的电阻率较小,则合上开关S的瞬间()

A.两个金属环都向左运动

B.两个金属环都向右运动

C.从左侧向右看,铝环中感应电流沿顺时针方向

D.铜环受到的安培力小于铝环受到的安培力

19.如图所示,在竖直向上的匀强磁场中,用两根等长的绝缘细线水平悬挂金属棒MN,通以M到N的电流,平衡时两悬线与竖直方向的夹角均为θ。如果仅改变下列某一个条件,即可使得θ变大的是()

A.两悬线等长变短B.金属棒质量变大

C.磁感应强度变小D.棒中的电流变大

20.如图所示,正方形区域内存在垂直纸面的匀强磁场。一带电粒子垂直磁场边界从a点射入,从b点射出。下列说法正确的是

A.粒子带正电

B.粒子在b点速率大于在a点速率

C.若仅减小磁感应强度,则粒子可能从b点右侧射出

D.若仅减小入射速率,则粒子在磁场中运动时间变短

21.关于电场和磁场,下列说法中正确的是()

A.电场和磁场不是实际存在的,是人们想象假设出来的

B.电场和磁场的观点是库仑首先提出来的,并得到物理学理论和实验的证实和发展C.磁感应强度的方向就是通电导线在磁场中所受力的方向

D.电场强度是电场本身的性质,与试探电荷的电量及其所受电场力大小无关

22.MN板两侧都是磁感应强度为B的匀强磁场,方向如图所示,带电粒子从a位置以垂直磁场方向的速度开始运动,依次通过小孔b、c、d,已知ab=bc=cd,粒子从a运动到d 的时间为t,则粒子的比荷为()

A.3

tB

π

B.

4

3tB

π

C.

tB

π

D.

tB

23.在两个倾角均为α的光滑斜面上,放有两个相同的金属棒,分别通有电流I1和I2,磁场的磁感应强度大小相同,方向分别为竖直向上和垂直于斜面向上,如图所示,两金属棒均处于平衡状态.则两种情况下的电流之比I1:I2为

A.sinα:1B.1:sinαC.cosα:1D.1:cosα

24.如图所示,在威尔逊云雾室中,有垂直纸面向里的匀强磁场。图中曲线ab,是一个垂直于磁场方向射入的带电粒子的径迹。由于它在行进中使周围气体电离,其能量越来越小,电量保持不变,由此可知()

A.粒子带负电,由a向b运动

B.粒子带负电,由b向a运动

C.粒子带正电,由a向b运动

D.粒子带正电,由b向a运动

25.三根通电长直导线a、b、c平行且垂直纸面放置,其横截面如图所示,a、b、c恰好位于直角三角形的三个顶点,∠c=90?,∠a=37?。a、b中通有的电流强度分别为I1、I2,c受到a、b的磁场力的合力方向与a、b连线平行。已知通电长直导线在周围某点产生的磁

场的磁感应强度

I

B k

r

=,k为比例系数,I为电流强度,r为该点到直导线的距离,sin37?

=0.6。下列说法正确的是()

A.a、b中电流反向,1I:216

I=:9 B.a、b中电流同向,1I:24

I=:3

C .a 、b 中电流同向,1I :216I =:9

D .a 、b 中电流反向,1I :24I =:3

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.D 解析:D 【解析】 【分析】 【详解】

A .若射入速度选择器中的粒子带正电,根据左手定则知,带电粒子所受的洛伦兹力方向竖直向上,则电场力的方向竖直向下,知电场强度的方向竖直向下,所以速度选择器的1P 极板带正电,故A 错误;

B .粒子在速度选择器中做匀速直线运动,洛伦兹力等于电场力,即有

1qvB qE =

所以能通过狭缝0S 的带电粒子的速率为

1

E v B =

故B 错误;

C .粒子在磁场中做半个匀速圆周运动,其运动时间为

122r r

t v v

ππ=

= 由于三个粒子运动的半径不等,所以运动时间也不相等,故C 错误;

D 进入2B 磁场中的粒子速度是一定的,根据2

2mv qvB r

=可得

2

mv

r qB =

知r 越大,比荷

q

m

越小,粒子1的半径小于粒子2的半径,所以粒子1的比荷大于粒子2的比荷,故D 正确; 故选D 。

2.B

解析:B 【解析】

【分析】 【详解】

A. 根据左手定则,可知,M 带负电,N 带正电,A 错误;

B. 粒子在磁场中运动,洛伦兹力提供向心力,即:

2

v qvB m r

=

解得:

mv r qB

=

同一磁场,又M 和N 两粒子的电荷量相同,故轨道半径大小r 和速度v 成正比,故B 正确;

C. 洛伦兹力每时每刻与速度垂直,不做功,C 错误;

D. 粒子在磁场中运动的周期T 的计算如下:

22r m

T v qB

ππ=

= 同一磁场,M 和N 两粒子的电荷量相同,故两粒子在磁场中运动的周期相同,它们均运动了半个周期,故它们运动的时间相同,D 错误; 故选B 。

3.D

解析:D 【解析】 【分析】 【详解】

AB .磁场方向向下,电流方向向里,依据左手定则,则安培力方向向左,因此驱动力方向向右,根据安培力公式有

3310 1.0100.4N 4.010N F BIL ==???=?

故AB 错误;

C .磁场方向向下,根据安培定则可判定超导励磁线圈中的电流方向为PMNQP 方向,故C 错误;

D .通过改变流过超导励磁线圈或推进器的电流方向,根据左手定则可知驱动力方向相反,故D 正确。 故选D 。

4.D

解析:D 【解析】 【分析】

通过分析通电导线在磁场中的受力,了解磁电式电流表的工作原理。 【详解】

A .该磁场是个辐向磁场,磁场方向与铁芯垂直,但不是匀强磁场,A 错误;

B .由于是辐向磁场,线圈平面与磁场方向始终平行,B 错误;

C .根据左手定则,在图中位置,a 导线受力向上,b 边受力向下,线圈将顺时针方向转动,C 错误;

D .由于在转动过程中,a 导线始终与磁场垂直,因此受到安培力大小始终为BIl ,D 正确。 故选D 。

5.B

解析:B 【解析】 【分析】 【详解】

导电液体流过磁场区域稳定时,电荷所受的电场力和洛伦兹力平衡,有

U

q

qvB d

= 解得

U v Bd

=

而流量为

24U dU Q vS R Bd B

ππ==

?= 故B 正确,ACD 错误。 故选B 。

6.D

解析:D 【解析】 【详解】

由图知电流从左向右流动,因此电子的运动方向为从右向左,根据左手定则可知电子偏转到后面表,因此前表面的电势比后表面的高,故A 错误,电子在运动过程中洛伦兹力和电场力平衡,有=,=U F evB F eE e

a =洛电,故=U F e a 洛,故D 正确,由U

evB e a

=则电压U avB =,故前后表面的电压与速度有关,与a 成正比,故BC 错误.

7.B

解析:B 【解析】 【分析】 【详解】

A .离子在磁场中做圆周运动,洛伦兹力提供向心力,由牛顿第二定律得

2mv qvB r

=

解得

mv r qB

=

因粒子的速率相同,比荷相同,故半径一定相同,故A 错误;

BD .由圆的性质可知,轨迹圆(离子速率较大,半径较大)与磁场圆相交,当轨迹圆的弦长最大时偏向角最大,最长弦长为PQ ,故由Q 点飞出的粒子圆心角最大,所对应的时间最长,故B 正确,D 错误;

C .设粒子轨迹所对应的圆心角为θ,则粒子在磁场中运动的时间为

2t T θπ=

其中

2m

T qB

π=

所有粒子的运动周期相等,由于离子从圆上不同点射出时,轨迹的圆心角不同,所以离子在磁场中运动时间不同,故C 错误。 故选B 。

8.C

解析:C 【解析】 【详解】

A 、由回旋加速器原理可知,它的核心部分是两个D 形金属盒,置于匀强磁场中,两盒分别与高频电源相连,两盒间的窄缝中形成匀强磁场,交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的匀强电场一次一次地反向,粒子就会被一次一次地加速,在磁场中洛伦兹力不做功,带电粒子是从电场中获得能量的,故A 错误.

B 、粒子从D 形盒出来时速度最大,由qvB=m

,粒子被加速后的最大动能

E km =m =,可见带电粒子加速所获得的最大动能与回旋加速器的半径有关,与加

速电压的大小无关,故B 错误,C 正确.

D 、高频电源周期与粒子在磁场中匀速圆周运动的周期相同,由带电粒子做圆周运动的周期T=2可知,周期T 由粒子的质量、电量和磁感应强度决定,与半径无关,故D 错误.

故选:C. 【点睛】

解决本题的关键是掌握加速器的工作原理以及加速器的构造,注意粒子是从电场中获得能

量,但回旋加速器的最大速度与电场无关,与磁感应强度和D 形盒的半径有关.

9.B

解析:B 【解析】 【分析】

由题正负离子的质量与电量相同,进入同一磁场做匀速圆周运动的周期相同,根据偏向角的大小分析运动时间的长短.由牛顿第二定律研究轨道半径.根据圆的对称性,分析离子重新回到边界时速度方向关系和与O 点距离. 【详解】

A .根据牛顿第二定律得

2

v qvB m r

=

mv r qB

=

由题q 、v 、B 大小均相同,则r 相同,故A 错误;

B .正负离子在磁场中均做匀速圆周运动,速度沿轨迹的切线方向,根据圆的对称性可知,重新回到边界时速度大小与方向相同,故B 正确.

C .粒子在磁场中运动周期为

2m

T qB

π=

则知两个离子圆周运动的周期相等.根据左手定则分析可知,正离子逆时针偏转,负离子顺时针偏转,重新回到边界时正离子的速度偏向角为22πθ-,轨迹的圆心角也为

22πθ-,运动时间

1222t T πθ

π-=

同理,负离子运动时间

222t T θπ

=

显然时间不等,故C 错误;

D .根据几何知识得知重新回到边界的位置与O 点距离

2sin S r θ=

r θ、相同,则S 相同,故D 错误. 故选B 。

10.A

解析:A 【解析】 【分析】 【详解】

各个分磁场与合磁场关系如图所示

由数学关系得

5tan 2.910T x B B θ-==?

故选A 。

11.C

解析:C 【解析】 【分析】 【详解】

在回旋加速器内加速有

2

v m qvB r

= 解得qBr

v m =

,可知最终的速度与荷质比有关,质子荷质比为1,氚核荷质比为13

,能把氚核加速到的速度为3

v

,C 正确。 故选C 。

12.B

解析:B 【解析】 【分析】 【详解】

磁铁的磁感线在它的外部是从N 极到S 极,因为长直导线在磁铁的中心偏左位置,所以此处的磁感线是斜向右上的,电流的方向垂直与纸面向里,根据左手定则,导线受磁铁给的安培力方向是斜向右下,长直导线是固定不动的,根据物体间力的作用是相互的,导线给磁铁的反作用力方向就是斜向左上的;导线给磁铁的反作用力方向就是斜向左上的,将这个力在水平和竖直分解,因此光滑平板对磁铁支持力减小,由于在水平向左产生分力,所以弹簧产生压缩,弹簧长度将变短.故选B .

13.A

解析:A 【解析】 【分析】

当磁场在虚线下方时,通电导线的等效长度为1

2

l ,电流方向向右,当磁场在虚线上方时,通电导线的等效长度为1

2

l ,电流方向变为向左,据此根据平衡条件列式求解。 【详解】

当磁场在虚线下方时,通电导线的等效长度为1

2

l ,电流方向向右,受到的安培力方向竖直向下,故

11

2

F BIl mg -=

当磁场在虚线上方时,通电导线的等效长度为1

2

l ,电流方向变为向左,受到的安培力方向竖直向上,故

21

2

F BIl mg +=

联立可得12

F F I Bl

-= A.12F F Bl -与计算结果21

F F I Bl -=不相符,故A 正确; B.21F F Bl -与计算结果21

F F I Bl -=相符,故B 错误; C.122()F F Bl -与计算结果21

F F I Bl -=不相符,故C 错误; D.

212()F F Bl -与计算结果21

F F I Bl

-=不相符,故D 错误。 14.B

解析:B 【解析】

粒子在磁场中做圆周运动,洛伦兹力作向心力,则有

2

v

Bqv m

R

=,解得粒子做圆周运动的

半径

mv

R

Bq

=,设磁场圆形区域半径为r,如图所示

粒子在磁场中运动的偏转角为2θ,由向何关系得:

r

tan

R

θ=,所以v越大,则R大,则

tanθ越小,故θ也越小,而周期

2m

T

Bq

π

=,即不同速率的粒子在磁场中做圆周运动的周

期相同,则粒子在磁场中运动的偏转角越大,运动时间越长,所以速率越大的粒子在磁场中运动的偏转角越小,运动的时间越短,故A错误,B正确.粒子在磁场中运动的角速度v Bq

R m

ω==,所以不同速率粒子在磁场中运动的角速度相等,故CD错误;

15.A

解析:A

【解析】

【分析】

【详解】

AB.根据E=BωS可知,无论线圈绕轴P1和P2转动,则产生的感应电动势均相等,故感应电流相等,故A正确,B错误;

C.由楞次定律可知,线线圈绕P1和P2转动时电流的方向相同,都是a→d→c→b→a,故C错误;

D.由于线圈P1转动时线圈中的感应电流等于绕P2转动时线圈中得电流,故根据

F=BLI

可知,线圈绕P1转动时dc边受到的安培力等于绕P2转动时dc边受到的安培力,故D错误。

故选A。

16.A

解析:A

【解析】

【分析】

【详解】

根据左手定则得,A选项洛伦兹力方向竖直向下,B选项洛伦兹力方向竖直向下,C选项不受洛伦兹力,D选项洛伦兹力方向垂直纸面向外.故A正确,BCD错误.故选A.【点睛】

解决本题的关键掌握左手定则判定电荷在磁场中运动速度、磁场和电荷受到洛仑兹力三者之间的方向关系.

17.D

解析:D

【解析】

【详解】

A.由左手定则判断出N带正电荷,M带负电荷,故选项A不符合题意;

B.粒子在磁场中运动,根据洛伦兹力提供向心力则有:

2

v

qvB m

r

=

解得速度的大小为

qBr

v

m

=,在质量与电量相同的情况下,半径大说明速率大,即M的速

度率大于N的速率,故选项B不符合题意;

C.洛伦兹力始终与速度的方向垂直,洛伦兹力对M、N不做功,故选项C不符合题意;

D.粒子在磁场中运动半周,即时间为周期的一半,而周期为

2m

T

qB

π

=,M运行时间等于

N的运行时间,故选项D符合题意。

18.C

解析:C

【解析】

【详解】

AB.若环放在线圈两边,根据“来拒去留”可得,合上开关S的瞬间,环为阻碍磁通量增大,则环将向两边运动,故AB错误;

C.线圈中电流为右侧流入,磁场方向为向左,在闭合开关的过程中,磁场变强,则由楞次定律可知,电流由左侧向右看为顺时针,故C正确;

D.由于铜环的电阻较小,故铜环中感应电流较大,则铜环受到的安培力要大于铝环受到的安培力,故D错误。

故选C。

19.D

解析:D

【解析】

【分析】

【详解】

导体棒受力如下图所示

可得

tan

F BIL

mg mg θ==

A.两悬线等长变短,不是导线变短,故θ不变,故A错误;

B.金属棒质量变大,则θ变小,故B错误;

C.磁感应强度变小,则θ变小,故C错误;

D.棒中的电流变大,则θ变大,故D正确。

故选D。

20.C

解析:C

【解析】

【详解】

由左手定则确粒子的电性,由洛伦兹力的特点确定粒子在b、a两点的速率,根据2

v

qvB m

r

=确定粒子运动半径和运动时间。

由题可知,粒子向下偏转,根据左手定则,所以粒子应带负电,故A错误;由于洛伦兹力不做功,所以粒子动能不变,即粒子在b点速率与a点速率相等,故B错误;若仅减小磁

感应强度,由公式

2

v

qvB m

r

=得:

mv

r

qB

=,所以磁感应强度减小,半径增大,所以粒子

有可能从b点右侧射出,故C正确,若仅减小入射速率,粒子运动半径减小,在磁场中运动的偏转角增大,则粒子在磁场中运动时间一定变长,故D错误。

21.D

解析:D

【解析】

【详解】

A.电场和磁场是客观存在的,电场线和磁感线是人们想象假设出来的,故A错误;

B.电场和磁场的观点是法拉第首先提出来的,并得到物理学理论和实验的证实和发展,故B错误;

C. 磁感应强度的方向与通电导线在磁场中所受力的方向无关,通电导线与磁场垂直时,不受安培力,故C错误;

D. 电场强度是电场本身的性质,与试探电荷的电量及其所受电场力大小无关,故D正确;22.A

解析:A

【解析】

画出粒子的运动轨迹如图,

则有t=1.5T,则得

2

3

T t

=,由周期公式

2m

T

qB

π

=得:

22

3

m

t

qB

π

=,解得,粒子的比荷3

q

m tB

π

=,故A正确.

点晴:带电粒子垂直射入磁场中,由洛伦兹力提供向心力而做匀速圆周运动,已知

ab=bc=cd,画出轨迹,可知时间t=1.5T,求出周期,由周期公式

2m

T

qB

π

=求出比荷.23.D

解析:D

【解析】

导体棒受力如图,根据共点力平衡得12

tan sin

F mg F mg

αα

==

,,

所以导体棒所受的安培力之比1

2

tan1

sin cos

F

F

α

αα

==,因为F BIL

=,所以

11

22

1

cos

I F

I Fα

==,D正确.

24.A

解析:A

【解析】据题意,带电粒子沿垂直于磁场方向射入匀强磁场,粒子的能量逐渐减小,速度减小,则由公式得知,粒子的轨迹半径逐渐减小,由图看出,粒子的运动方向是从a向b运动。在a处,粒子所受的洛伦兹力斜右下方,由左手定则判断可知,该粒子带负电,A正确.

25.A

解析:A

【解析】

【详解】

同向电流相互吸引,异向电流相互排斥,且c受到a、b的磁场力的合力方向与a、b连线

平行,则ab 中电流方向相反,c 受力分析如图所示: 竖直方向平衡得:

11

sin

37sin 53a b ac bc

k

I k I r r ???=? 根据几何关系得:

cos37ac ab r r ?=

cos53bc ab r r ?=

联立解得:

16

9

a b I I =

A .a 、b 中电流反向,1I :216I =:9与分析相符,故A 正确;

B .a 、b 中电流同向,1I :24I =:3与分析不符,故B 错误;

C .a 、b 中电流同向,1I :216I =:9与分析不符,故C 错误;

D .a 、b 中电流反向,1I :24I =:3与分析不符,故D 错误。

2020高考物理知识点汇总

2020高考物理知识点汇总 在高考物理复习中掌握重点知识点是物理学习方法中最有效的一种。掌握一些重要的 知识点学习起来就不会那么吃力,那么,下面由小编为整理有关2020高考物理知识 点总结的资料,供参考! 2020高考物理知识点总结:热力学 (一)改变物体内能的两种方式:做功和热传递 1.做功:其他形式的能与内能之间相互转化的过程,内能改变了多少用做功的数值来 量度,外力对物体做功,内能增加,物体克服外力做功,内能减少。 2.热传递:它是物体间内能转移的过程,内能改变了多少用传递的热量的数值来量度,物体吸收热量,物体的内能增加,放出热量,物体的内能减少,热传递的方式有:传导、对流、辐射,热传递的条件是物体间有温度差。 (二)热力学第一定律 1.内容:物体内能的增量等于外界对物体做的功W和物体吸收的热量Q的总和。 2.符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值,吸收热 (三)能的转化和守恒定律 能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式或从一 个物体转移到另一个物体。在转化和转移的过程中,能的总量不变,这就是能量守恒 定律。 (四)热力学第二定律 两种表述:(1)不可能使热量由低温物体传递到高温物体,而不引起其他变化。 (2)不可能从单一热源吸收热量,并把它全部用来做功,而不引起其他变化。 热力学第二定律揭示了涉及热现象的宏观过程都有方向性。 (3)热力学第二定律的微观实质是:与热现象有关的自发的宏观过程,总是朝着分子热 运动状态无序性增加的方向进行的。 (4)熵是用来描述物体的无序程度的物理量。物体内部分子热运动无序程度越高,物体 的熵就越大。 注:1.第一类永动机是永远无法实现的,它违背了能的转化和守恒定律。 2.第二类永动机也是无法实现的,它虽然不违背能的转化和守恒定律,但却违背了热 力学第二定律。

高考物理知识点大全(坤哥物理)

最新高考物理知识点大全(坤哥物理) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一单元直线运动 (1) 第二单元相互作用 (4) 第三单元牛顿运动定律 (7) 第四单元曲线运动 (9) 第五单元万有引力 (12) 第六单元机械能 (14) 第七单元动量 (18) 第八单元力学实验 (24) 第九单元静电场 (30) 第十单元恒定电流 (34) 第十一单元电学实验 (36) 第十二单元磁场 (46) 第十三单元电磁感应 (49) 第十四单元交变电流 (51) 第十五单元近代物理 (53) 第十六单元选修3-3 (63) 第十七单元选修3-4 (73) 第十八单元常用的物理方法 (85) 第十九单元常用的数学方法 (92)

第一单元直线运动 1.匀变速直线运动: (1)平均速度(定义式)v=s s (2)有用推论s s 2-s 2=2as (3)中间时刻速度s s 2=(s s+s0) 2 (4)末速度v t=v0+at (5)中间位置速度s s 2=√s02+s s2 2 (6)位移s=v0t+1 2 at2 (7)加速度a=s s-s0 s (以v0为正方向,a与v0同向(加速)则a>0;反向则a<0) (8)实验用推论Δs=aT2(Δs为连续相邻相等时间T内位移之差) 易错提醒: (1)平均速度是矢量 (2)物体速度大,加速度不一定大 (3)a=s s-s0 s 只是量度式,不是决定式 2.自由落体运动 (1)初速度v0=0 (2)末速度v t=gt (3)下落高度h=1 2gt2(从v 位置向下计算) (4)推论s s 2=2gh 易错提醒: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律。 (2)a=g=9.8 m/s2≈10 m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 3.竖直上抛运动 (1)位移s=v0t-1 2 gt2 (2)末速度v t=v0-gt (3)有用推论s s 2-s 2=-2gs (4)上升最大高度H m=s02 2s (从抛出点算起)。 (5)往返时间t=2s0 s (从抛出落回原位置的时间)。

高中物理电磁学和光学知识点公式总结大全

高中物理电磁学知识点公式总结大全 来源:网络作者:佚名点击:1524次 高中物理电磁学知识点公式总结大全 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。 平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、感应电动势与电磁波 1.法拉地定律:感应电动势。注意此处并非计算封闭曲面上之磁通量。 感应电动势造成的感应电流之方向,会使得线圈受到的磁力与外力方向相反。 2.长度的导线以速度v前进切割磁力线时,导线两端两端的感应电动势。若v、B、互相垂直,则 3.法拉地定律提供将机械能转换成电能的方法,也就是发电机的基本原理。以频率f 转动的发电机输出的电动势,最大感应电动势。 变压器,用来改变交流电之电压,通以直流电时输出端无电位差。 ,又理想变压器不会消耗能量,由能量守恒,故 4.十九世纪中马克士威整理电磁学,得到四大公式,分别为 a.电场的高斯定律 b.法拉地定律 c.磁场的高斯定律 d.安培定律 马克士威由法拉地定律中变动磁场会产生电场的概念,修正了安培定律,使得变动的电场会产生磁场。e.马克士威修正后的安培定律为 a.、 b.、 c.和修正后的e.称为马克士威方程式,为电磁学的基本方程式。由马克士威方程式,预测了电磁波的存在,且其传播速度。 。十九世纪末,由赫兹发现了电磁波的存在。 劳仑兹力。 右手定则:右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向

高考物理考点全面归纳,分类解析

高考物理考点全面归纳,分类解析 高考物理考点全面归纳,分类解析 高考物理考点全面归纳,分类解析 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因.力是矢量。 2.重力 (1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力 (1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.

(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件可以判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=FN进行计算,其中FN是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解. ②静摩擦力大小:静摩擦力大小可在0与fmax之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解. 5.物体的受力分析 (1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过力的传递作用在研究

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

高考物理基础知识点.doc

高考物理基础知识点 高考物理基础知识点:气体的性质 1.气体的状态参量: 温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志 热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)} 体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL 压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压。 1atm=1.013 105Pa=76cmHg(1Pa=1N/m2) 2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大 3.理想气体的状态方程:p1V1/T1=p2V2/T2{PV/T=恒量,T 为热力学温度(K)} 注: (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关; (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。 高考物理基础知识点:功和能 1.功:W=Fscos (定义式){W:功(J),F:恒力(N),s:位移(m),:F、s间的夹角}

2.重力做功:Wab=mghab{m:物体的质量,g=9.8m/s2 10m/s2,hab:a与b高度差(hab=ha-hb)} 3.电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab= a- b} 4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)} 5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)} 6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率} 7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f) 8.电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)} 9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值( ),t:通电时间(s)} 10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt 11.动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)} 12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)} 13.电势能:EA=q A{EA:带电体在A点的电势能(J),q:电量(C),A:A点的电势(V)(从零势能面起)} 14.动能定理(对物体做正功,物体的动能增加):W合=mvt2/2-mvo2/2或W合= EK {W合:外力对物体做的总功,EK:动能变化

高考物理最新电磁学知识点之静电场知识点总复习

高考物理最新电磁学知识点之静电场知识点总复习 一、选择题 1.如图所示,一平行板电容器充电后与电源断开,负极板接地,在两极板间有一正电荷(电荷量很小)固定在P点,用E表示两极板间电场强度,U表示电容器的电压,Ep表示正电荷在P点的电势能,若保持负极板不动,将正极板移到图中虚线所示的位置,则() A.E变大,Ep变大B.U变小,Ep不变C.U变大,Ep变小D.U不变,Ep不变2.真空中静电场的电势φ在x正半轴随x的变化关系如图所示,x1、x2、x3为x轴上的三个点,下列判断正确的是() A.将一负电荷从x1移到x2,电场力不做功 B.该电场可能是匀强电场 C.负电荷在x1处的电势能小于在x2处的电势能 D.x3处的电场强度方向沿x轴正方向 3.如图所示,真空中有两个带等量正电荷的Q1、Q2固定在水平x轴上的A、B两点。一质量为m、电荷量为q的带电小球恰好静止在A、B连线的中垂线上的C点,由于某种原因,小球带电荷量突然减半。D点是C点关于AB对称的点,则小球从C点运动到D点的过程中,下列说法正确的是( ) A.小球做匀加速直线运动 B.小球受到的电场力可能先减小后增大 C.电场力先做正功后做负功

D.小球的机械能一直不变 4.在如图所示的电场中, A、B两点分别放置一个试探电荷, F A、F B分别为两个试探电荷所受的电场力.下列说法正确的是 A.放在A点的试探电荷带正电 B.放在B点的试探电荷带负电 C.A点的电场强度大于B点的电场强度 D.A点的电场强度小于B点的电场强度 5.如图所示,三条平行等间距的虚线表示电场中的三个等势面,电势分别为10V、20V、30V,实线是一带电粒子(不计重力)在该区域内的运动轨迹,a、b、c是轨迹上的三个点,下列说法正确的是() A.粒子在三点所受的电场力不相等 B.粒子必先过a,再到b,然后到c C.粒子在三点所具有的动能大小关系为E kb>E ka>E kc D.粒子在三点的电势能大小关系为E pc<E pa<E pb 6.图中展示的是下列哪种情况的电场线() A.单个正点电荷B.单个负点电荷 C.等量异种点电荷D.等量同种点电荷 7.如图所示,将一带电小球A通过绝缘细线悬挂于O点,细线不能伸长。现要使细线偏离竖直线30°角,可在O点正下方的B点放置带电量为q1的点电荷,且BA连线垂直于 OA;也可在O点正下方C点放置带电量为q2的点电荷,且CA处于同一水平线上。则 为()

高中物理知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。 (3).平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。

高三物理高考精选知识点梳理

高三物理高考精选知识点梳理 学习高中物理知识点的时候需要讲究方法和技巧,更要学会对高中物理知识点进行归纳整理。下面就是我给大家带来的高三物理高考知识点,希望能帮助到大家! 高三物理高考知识点1 (1)极性分子之间 极性分子的正负电荷的重心不重合,分子的一端带正电荷,另一端带负电荷。当极性分子相互接近时,由于同极相斥,异极相吸,使分子在空间定向排列,相互吸引而更加接近,当接近到一定程度时,排斥力同吸引力达到相对平衡。极性分子之间按异极相邻的状态取向。 (2)极性分子与非极性分子之间 非极性分子的正负电荷重心是重合的,当非极性分子与极性分子相互接近时,由于极性分子电场的影响,使非极性分子的电子云发生“变形”,从而使原来的非极性分子产生极性。这样,非极性分子与极性分子之间也就产生了相互作用力。极性分子对非极性分子有诱导作用。 (3)非极性分子之间 非极性分子间不可能产生上述两种作用力,那又是怎样产生作用力的呢? 我们说非极性分子的正负电荷重心重合是从整体上讲的。但由于核外电子是绕核高速运动的,原子核也在不断振动之中,原子核外的电子对原子核的相对位置会经常出现瞬间的不对称,正负电荷重心经常出现瞬间的不重合,也就是说非极性分子经常产生瞬时极性,从而使非极性分子间也产生了相互吸引力。

从上述的分析可以看出,无论什么分子之间都存在着相互吸引力,即范德华力。范德华力从本质上看,是一种电性吸引力。 高三物理高考知识点2 1.电压瞬时值e=Emsinωt电流瞬时值i=Imsinωt;(ω=2πf) 2.电动势峰值Em=nBSω=2BLv电流峰值(纯电阻电路中)Im=Em/R总 3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/2 4.理想变压器原副线圈中的电压与电流及功率关系 U1/U2=n1/n2;I1/I2=n2/n2;P入=P出 5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失:P 损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕; 6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T); S:线圈的面积(m2);U:(输出)电压(V);I:电流强度(A);P:功率(W)。 注: (1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线; (2)发电机中,线圈在中性面位置磁通量,感应电动势为零,过中性面电流方向就改变; (3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值; (4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,

高考物理最新电磁学知识点之磁场知识点总复习

高考物理最新电磁学知识点之磁场知识点总复习 一、选择题 1.如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m、带电荷量为q,小球可在棒上滑动,现将此棒竖直放入沿水平方向的且互相垂直的匀强磁场和匀强电场(图示方向)中.设小球带电荷量不变,小球由棒的下端以某一速度上滑的过程中一定有() A.小球加速度一直减小 B.小球的速度先减小,直到最后匀速 C.杆对小球的弹力一直减小 D.小球受到的洛伦兹力一直减小 2.2019年我国研制出了世界上最大的紧凑型强流质子回旋加速器,该回旋加速器是我国目前自主研制的能量最高的质子回旋加速器。如图所示为回旋加速器原理示意图,现将两个相同的回旋加速器置于相同的匀强磁场中,接入高频电源。分别加速氘核和氦核,下列说法正确的是() A.它们在磁场中运动的周期相同 B.它们的最大速度不相等 C.两次所接高频电源的频率不相同 D.仅增大高频电源的频率可增大粒子的最大动能 3.为了降低潜艇噪音可用电磁推进器替代螺旋桨。如图为直线通道推进器示意图。推进器前后表面导电,上下表面绝缘,规格为:a×b×c=0.5m×0.4m×0.3m。空间内存在由超导励磁线圈产生的匀强磁场,其磁感应强度B=10.0T,方向竖直向下,若在推进器前后方向通以电流I=1.0×103A,方向如图。则下列判断正确的是() A.推进器对潜艇提供向左的驱动力,大小为4.0×103N B.推进器对潜艇提供向右的驱动力,大小为5.0×103N C.超导励磁线圈中的电流方向为PQNMP方向

D.通过改变流过超导励磁线圈或推进器的电流方向可以实现倒行功能 4.如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平 面(未画出)。一群比荷为q m 的负离子以相同速率v0(较大),由P点在纸平面内向不同 方向射入磁场中发生偏转后,又飞出磁场,最终打在磁场区域右侧足够大荧光屏上,离子重力不计。则下列说法正确的是() A.离子在磁场中的运动轨迹半径可能不相等 B.由Q点飞出的离子在磁场中运动的时间最长 C.离子在磁场中运动时间一定相等 D.沿PQ方向射入的离子飞出时偏转角最大 5.如图所示,用一细线悬挂一根通电的直导线ab(忽略外围电路对导线的影响),放在螺线管正上方处于静止状态,与螺线管轴线平行,可以在空中自由转动,导线中的电流方向由a指向b。现给螺线管两端接通电源后(螺线管左端接正极),关于导线的受力和运动情况,下列说法正确的是() A.在图示位置导线a、b两端受到的安培力方向相反导线ab始终处于静止 B.从上向下看,导线ab从图示位置开始沿逆时针转动 C.在图示位置,导线a、b两端受到安培力方向相同导线ab摆动 D.导线ab转动后,第一次与螺线管垂直瞬间,所受安培力方向向上 6.如图,一正方体盒子处于竖直向上匀强磁场中,盒子边长为L,前后面为金属板,其余四面均为绝缘材料,在盒左面正中间和底面上各有一小孔(孔大小相对底面大小可忽略),底面小孔位置可在底面中线MN间移动,让大量带电液滴从左侧小孔以某一水平速度进入盒内,若在正方形盒子前后表面加一恒定电压U,可使得液滴恰好能从底面小孔通过,测得小孔到M点的距离为d,已知磁场磁感强度为B,不考虑液滴之间的作用力,不计一切阻力,则以下说法正确的是()

2017-2019高考物理真题分类解析---动量

2017-2019高考物理真题分类解析---动量 1.(2019·江苏卷)质量为M 的小孩站在质量为m 的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v ,此时滑板的速度大小为_________。 【答案】B 2.(2018·新课标全国II 卷)高空坠物极易对行人造成伤害。若一个50 g 的鸡蛋从一居民楼的25层坠下,与地面的撞击时间约为2 ms ,则该鸡蛋对地面产生的冲击力约为 A .10 N B .102 N C .103 N D .104 N 【答案】C 正,由动量定理可知:()()0N mg t mv -=--,解得:1000N N ≈,根据牛顿第三定律可知鸡蛋对地面产生的冲击力约为103 N ,故C 正确。 3.(2018·新课标全国I 卷)高铁列车在启动阶段的运动可看作初速度为零的均加速直线运动,在启动阶段列车的动能 A .与它所经历的时间成正比 B .与它的位移成正比 C .与它的速度成正比 D .与它的动量成正比 【答案】B 【解析】根据初速度为零匀变速直线运动规律可知,在启动阶段,列车的速度与时间成正比,即v =at , 即与列车的动量二次方成正比,选项D 错误。 4.(2018·新课标全国III 卷)如图,一平行板电容器连接在直流电源上,电容器的极板水平,两微粒a 、b

所带电荷量大小相等、符号相反,使它们分别静止于电容器的上、下极板附近,与极板距离相等。现同时释放a 、 b ,它们由静止开始运动,在随后的某时刻t ,a 、b 经过电容器两极板间下半区域的同一水平面,a 、b 间的相互作用和重力可忽略。下列说法正确的是 A .a 的质量比b 的大 B .在t 时刻,a 的动能比b 的大 C .在t 时刻,a 和b 的电势能相等 D .在t 时刻,a 和b 的动量大小相等 【答案】BD 【解析】根据题述可知,微粒a 向下加速运动,微粒b 向上加速运动,根据a 、b 经过电容器两极板间下半区域的同一水平面,可知a 的加速度大小大于b 的加速度大小,即a a >a b 。对微粒a ,由牛顿第二定 律,qE=m a a a ,对微粒b ,由牛顿第二定律,qE=m b a b ,联立解得:a qE m >b qE m ,由此式可以得出a 的质量比b 小,选项A 错误;在a 、b 两微粒运动过程中,a 微粒所受合外力大于b 微粒,a 微粒的位移大于b 微粒,根据动能定理,在t 时刻,a 的动能比b 大,选项B 正确;由于在t 时刻两微粒经过同一水平面,电势相等,电荷量大小相等,符号相反,所以在t 时刻,a 和b 的电势能不等,选项C 错误;由于a 微粒受到的电场力(合外力)等于b 微粒受到的电场力(合外力),根据动量定理,在t 时刻,a 微粒的动量等于b 微粒,选项D 正确。 【名师点睛】若此题考虑微粒的重力,你还能够得出a 的质量比b 小吗?在t 时刻力微粒的动量还相等吗?在t 时间内的运动过程中,微粒的电势能变化相同吗? 5.(2017·新课标全国Ⅰ卷)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出。在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略) A .30kg m/s ? B .5.7×102kg m/s ? C .6.0×102kg m/s ? D .6.3×102kg m/s ? 【答案】A

人教版高中物理必修一知识点大全

人教版高中物理必修一 知识点大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理学习材料 (灿若寒星**整理制作) 必修一知识点大全 1.参考系 ⑴定义:在描述一个物体的运动时,选来作为标准的假定不动的物体,叫做参考系。 ⑵对同一运动,取不同的参考系,观察的结果可能不同。 ⑶运动学中的同一公式中涉及的各物理量应以同一参考系为标准,如果没有特别指明,都是取地面为参考系。 2.质点 ⑴定义:质点是指有质量而不考虑大小和形状的物体。 ⑵质点是物理学中一个理想化模型,能否将物体看作质点,取决于所研究的具体问题,而不是取决于这一物体的大小、形状及质量,只有当所研究物体的大小和形状对所研究的问题没有影响或影响很小,可以将其形状和大小忽略时,才能将物体看作质点。 ⑴物体可视为质点的主要三种情形: ①物体只作平动时; ②物体的位移远远大于物体本身的尺度时; ③只研究物体的平动,而不考虑其转动效果时。 3.时间与时刻 ⑴时刻:指某一瞬时,在时间轴上表示为某一点。

⑵时间:指两个时刻之间的间隔,在时间轴上表示为两点间线段的长度。 ⑶时刻与物体运动过程中的某一位置相对应,时间与物体运动过程中的位移(或路程)相对应。 4.位移和路程 ⑴位移:表示物体位置的变化,是一个矢量,物体的位移是指从初位置到末位置的有向线段,其大小就是此线段的长度,方向从初位置指向末位置。 ⑵路程:路程等于运动轨迹的长度,是一个标量。 当物体做单向直线运动时,位移的大小等于路程。 5.速度、平均速度、瞬时速度 ⑴速度:是表示质点运动快慢的物理量,在匀速直线运动中它等于位移与发生这段位移所用时间的比值,速度是矢量,它的方向就是物体运动的方向。 ⑵平均速度:物体所发生的位移跟发生这一位移所用时间的比值叫这段时间内的平均速度,即t v x =,平均速度是矢量,其方向就是相应位移的方向。 ⑶瞬时速度:运动物体经过某一时刻(或某一位置)的速度,其方向就是物体经过某有一位置时的运动方向。 6.加速度 ⑴加速度是描述物体速度变化快慢的的物理量,是一个矢量,方向与速度变化的方向相同。 ⑵做匀速直线运动的物体,速度的变化量与发生这一变化所需时间的比值叫加速度,即t v v t v a 0-=??= ⑶对加速度的理解要点:

最新高考物理知识点大全

第一单元直线运动 (1) 第二单元相互作用 (4) 第三单元牛顿运动定律 (7) 第四单元曲线运动 (9) 第五单元万有引力 (12) 第六单元机械能 (14) 第七单元动量 (18) 第八单元力学实验 (24) 第九单元静电场 (30) 第十单元恒定电流 (34) 第十一单元电学实验 (36) 第十二单元磁场 (46) 第十三单元电磁感应 (49) 第十四单元交变电流 (51) 第十五单元近代物理 (53) 第十六单元选修3-3 (63) 第十七单元选修3-4 (73) 第十八单元常用的物理方法 (85) 第十九单元常用的数学方法 (92)

第一单元直线运动 1.匀变速直线运动: (1)平均速度(定义式)v=s t (2)有用推论v t 2-v02=2as (3)中间时刻速度v t 2=(v t+v0) 2 (4)末速度v t=v0+at (5)中间位置速度v s 2=√v02+v t2 2 (6)位移s=v0t+1 2 at2 (7)加速度a=v t-v0 t (以v0为正方向,a与v0同向(加速)则a>0;反向则a<0) (8)实验用推论Δs=aT2(Δs为连续相邻相等时间T内位移之差) 易错提醒: (1)平均速度是矢量 (2)物体速度大,加速度不一定大 (3)a=v t-v0 t 只是量度式,不是决定式 2.自由落体运动 (1)初速度v0=0 (2)末速度v t=gt (3)下落高度h=1 2 gt2(从v0位置向下计算) (4)推论v t 2=2gh 易错提醒: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律。

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 3.竖直上抛运动 gt2 (1)位移s=v0t-1 2 (2)末速度v t=v0-gt (3)有用推论v 2-v02=-2gs t (4)上升最大高度H m=v02 (从抛出点算起)。 2g (从抛出落回原位置的时间)。 (5)往返时间t=2v0 g 易错提醒: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性。 (3)上升与下落过程具有对称性,如在同一点速度等值反向等。 1.误认为a与Δv成正比,与时间t成反比 (1)表达式a=Δv 是加速度的定义式,而不是加速度的决定式。 t 是不变的。 (2)物体的加速度a由F和m决定,对于同一个匀加速运动,Δv越大则时间t越长,而Δv t 2.将加速度的正负错误地理解为物体做加速直线运动还是做减速直线运动的判断依据 (1)加速度的正负与正方向的规定有关。 (2)物体做加速直线运动还是做减速直线运动,判断的依据是加速度的方向和速度方向是相同还是相反。 (3)当加速度与速度同方向,如v0>0,a>0时,物体做加速运动;当加速度与速度反方向,如v0>0,a<0时,物体做减速运动。 3.刹车类问题中,对运动过程不清,盲目套用公式 (1)对刹车的过程要清楚。当速度减为零后,汽车会静止不动,不会反向加速,要结合现实生活中的刹车过程分析。

高考物理电磁学知识点之磁场技巧及练习题附解析

高考物理电磁学知识点之磁场技巧及练习题附解析 一、选择题 1.如图,等边三角形线框LMN由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向垂直,线框顶点M、N与直流电源两端相接,已如导体棒MN受到的安培力大小为F,则线框LMN受到的安培力的大小为 A.2F B.1.5F C.0.5F D.0 2.科学实验证明,足够长通电直导线周围某点的磁感应强度大小 I B k l =,式中常量 k>0,I为电流强度,l为该点与导线的距离。如图所示,两根足够长平行直导线分别通有电流3I和I(方向已在图中标出),其中a、b为两根足够长直导线连线的三等分点,O为两根足够长直导线连线的中点,下列说法正确的是( ) A.a点和b点的磁感应强度方向相同 B.a点的磁感应强度比O点的磁感应强度小 C.b点的磁感应强度比O点的磁感应强度大 D.a点和b点的磁感应强度大小之比为5:7 3.如图所示,两相邻且范围足够大的匀强磁场区域Ⅰ和Ⅱ的磁感应强度方向平行、大小分别为B和2B。一带正电粒子(不计重力)以速度v从磁场分界线MN上某处射入磁场区域Ⅰ,其速度方向与磁场方向垂直且与分界线MN成60?角,经过t1时间后粒子进入到磁场区域Ⅱ,又经过t2时间后回到区域Ⅰ,设粒子在区域Ⅰ、Ⅱ中的角速度分别为ω1、ω2,则() A.ω1∶ω2=1∶1B.ω1∶ω2=2∶1 C.t1∶t2=1∶1D.t1∶t2=2∶1 4.为了降低潜艇噪音可用电磁推进器替代螺旋桨。如图为直线通道推进器示意图。推进器前后表面导电,上下表面绝缘,规格为:a×b×c=0.5m×0.4m×0.3m。空间内存在由超导励磁线圈产生的匀强磁场,其磁感应强度B=10.0T,方向竖直向下,若在推进器前后方向通以

2004-2013十年高考物理 大全分类解析 专题04 曲线运动

2004-2013十年高考物理大全分类解析专题07 功和功率 一.2013年高考题 1. (2013全国新课标理综II第21题)公路急转弯处通常是交通事故多发地带。如图,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势。则在该弯道处, A.路面外侧高内侧低 B.车速只要低于v c,车辆便会向内侧滑动 C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧 滑动 D.当路面结冰时,与未结冰时相比, v0的值变小 2. (2013高考安徽理综第18题)由消防水龙带的喷嘴喷出水的流量是0.28m3/min,水离 开喷口时的速度大小为m/s,方向与水平面夹角为60度,在最高处正好到达着火位置, 忽略空气阻力,则空中水柱的高度和水量分别是(重力加速度g取10m/s2) A.28.8m,1.12×10-2m3 B. 28.8m,0.672m3 C. 38.4m,1.29×10-2m3 D. 38.4m,0.776m3 3.(2013高考上海物理第19题)如图,轰炸机沿水平方向匀速飞行, 到达山坡底端正上方时释放一颗炸弹,并垂直击中山坡上的目标A。已 知A点高度为h,山坡倾角为θ,由此可算出 (A)轰炸机的飞行高度 (B)轰炸机的飞行速度 (C)炸弹的飞行时间

(D)炸弹投出时的动能 4。(2013高考江苏物理第7题)如图所示,从地面上同一位置抛出两小球A、B,分别落在地 面上的M、N点,两球运动的最大高度相同。空气阻力不计,则 (A)B的加速度比A的大 (B)B的飞行时间比A的长 (C)B在最高点的速度比A在最高点的大 (D)B在落地时的速度比A在落地时的大 5。(2013高考江苏物理第2题) 如图所示,“旋转秋千装置中的两个 座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上。不 考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下 列说法正确的是 (A)A的速度比B的大 (B)A与B的向心加速度大小相等 (C)悬挂A、B的缆绳与竖直方向的夹角相等 (D)悬挂A的缆绳所受的拉力比悬挂B的小 6.(2013高考上海物理第20题)右图为在平静海面上,两艘拖船A、B拖着驳船 C运动的示意图。A、B的速度分别沿着缆绳CA、CB方向,A、B、C不在一条直线 上。由于缆绳不可伸长,因此C的速度在CA、CB方向的投影分别与A、B的速度 相等,由此可知C的 (A)速度大小可以介于A、B的速度大小之间 (B)速度大小一定不小于A、B的速度大小 (C)速度方向可能在CA和CB的夹角范围外 (D)速度方向一定在CA和CB的夹角范围内

高中物理知识点汇总

高考物理基本知识点汇总 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0gR 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 3. 传动装置中,特点是:同轴上各点ω相同,A ω=C ω,轮上边缘各点v 相同,v A =v B 4. 同步地球卫星特点是:①_______________,②______________ ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度3.1km/s 。 5. 万有引力定律:万有引力常量首先由什么实验测出:F =G 2 2 1r m m ,卡文迪许扭秤实验。 6. 重力加速度随高度变化关系: 'g =GM/r 2

说明:为某位置到星体中心的距离。某星体表面的重力加速度。 r g G M R 02 = g g R R h R h ' () = +2 2 ——某星体半径为某位置到星体表面的距离 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度'g =2 r GM 、r mv r GMm 2 2 = 、v = r GM 、 r mv r GMm 2 2 = =m ω2R =m (2π/T )2R 当r 增大,v 变小;当r =R ,为第一宇宙速度v 1=r GM =gR gR 2 =GM 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向______________ ②竖直方向____________________ ③合运动______________________ ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 相位,求?y t x y t gT v S T v x v t v v y gt v gt S v t g t v v g t tg gt v tg gt v tg tg == =====+=+== =2 0002 02 2 24 0222 00 1214 21 2αθα θ ⑥在任何两个时刻的速度变化量为△v =g △t ,△p =mgt ⑦v 的反向延长线交于x 轴上的x 2处,在电场中也有应用 10. 从倾角为α的斜面上A 点以速度v 0平抛的小球,落到了斜面上的B 点,求:S AB

最新高考物理知识点归纳

最新高考物理知识点归纳 高考物理是让很多考生感觉困惑的一科,知识点精炼,需要理解的有很多,下面由小编为整理有关高考物理知识点归纳的资料,希望对大家有所帮助! 高考物理电场知识点 1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。 2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。 电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。 场能性质是电势,场线方向电势降。场力做功是qU ,动能定理不能忘。 4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。 高考恒定电流知识点 1.电荷定向移动时,电流等于q比 t。自由电荷是内因,两端电压是条件。 正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。 2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s 等电阻。 电流做功U I t , 电热I平方R t 。电功率,W比t,电压乘电流也是。 3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。 4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。 路端电压内压降,和就等电动势,除于总阻电流是。 高考理综物理实验方法总结 1、控制变量法 在实验中或实际问题中,常有多个因素在变化,造成规律不易表现出来,这时可以先控制一些物理量不变,依次研究某一个因素的影响和利用。 如气体的性质,压强、体积和温度通常是同时变化的,我们可以分别控制一个状态参量不变,寻找另外两个参量的关系,最后再进行统一。欧姆定律、牛顿第二定律等都是用这种方法研究的。 高考理综物理实验方法总结2、等效替代法 某些物理量不直观或不易测量,可以用较直观、较易测量而且又有等效效果的量代替,从而简化问题。

相关主题
文本预览
相关文档 最新文档