当前位置:文档之家› 大学物理练习册答案

大学物理练习册答案

大学物理练习册答案
大学物理练习册答案

第十章

练习一

一、选择题

1、下列四种运动(忽略阻力)中哪一种是简谐振动?( )

(A)小球在地面上作完全弹性的上下跳动

(B)细线悬挂一小球在竖直平面上作大角度的来回摆动

(C)浮在水里的一均匀矩形木块,将它部分按入水中,然后松开,使木块上下浮动 (D)浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动 2、质点作简谐振动,距平衡位置2.0cm 时,加速度a=4.0cm/s 2,则该质点从一端运动到另一端的时间为( )

(A)1.2s (B)2.4s (C)2.2s (D)4.4s

3、如图下所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动,若从松手时开始计时,则该弹簧振子的初相位为( )

(A) 0 (B) 2

π (C) 2

π

-

(D) π 4、一质量为m 的物体与一个劲度系数为k 的轻弹簧组成弹簧振子,当其振幅为A 时,该弹簧振子的总能量为E 。若将其弹簧分割成两等份,将两根弹簧并联组成新的弹簧振子,则新弹簧振子的振幅为多少时,其总能量与原先弹簧振子的总能量E 相等( )

(A)

2A (B) 4A

(C)2

A (D)A 二、填空题

1、已知简谐振动A x =)cos(0?ω+t 的周期为T ,在2

T

t =

时的质点速度为 ,加速度为 。

2、已知月球上的重力加速度是地球的1/6,若一个单摆(只考虑小角度摆动)在地球上的振动周期为T ,将该单摆拿到月球上去,其振动周期应为 。

3、一质点作简谐振动,在同一周期内相继通过相距为11cm 的A,B 两点,历时2秒,速度大小与方向均相同,再经过2秒,从另一方向以相同速率反向通过B 点。 该振动的振幅为 ,周期为 。

4、简谐振动的总能量是E ,当位移是振幅的一半时,k E E = ,P E

E

= ,当x

A

= 时,k P E E =。

三、计算题

1、一振动质点的振动曲线如右图所示, 试求:

(l)运动学方程;

(2)点P 对应的相位;

(3)从振动开始到达点P 相应位置所需的时间。

2、一质量为10g 的物体作简谐运动,其振幅为24 cm ,周期为4.0s ,当t=0时,位移为+24cm 。求:

(1)t=0.5s 时,物体所在位置;

(2)t=0.5s 时,物体所受.力的大小与方向;

(3)由起始位置运动到x =12cm 处所需的最少时间;

(4)在x =12cm 处,物体的速度、动能以及系统的势能和总能量。

3、如右图所示,绝热容器上端有一截面积为S 的玻璃管,管内 放有一质量为m 的光滑小球作为活塞。容器内储有体积为V 、 压强为p 的某种气体,设大气压强为p 0。开始时将小球稍向下 移,然后放手,则小球将上下振动。如果测出小球作谐振动时的 周期T ,就可以测定气体的比热容比γ。试证明

222

4mV pS T πγ=

(假定小球在振动过程中,容器内气体进行的过程可看作准静态绝热过程。)

练习二

一、选择题

1、一弹簧振子,当把它水平放置时,它可以作简谐振动。若把它竖直放置或放在固定的光滑斜面上,试判断下面哪种情况是正确的:( )

(A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动

(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动

(C) 两种情况都可作简谐振动

(D) 两种情况都不能作简谐振动

2、在阻尼振动中,振动系统( )

(A) 只是振幅减小

(B) 只是振动变慢

(C) 振幅既不减小,振动也不变慢

(D) 振幅减小且振动变慢

3、下列选项中不属于阻尼振动基本形式的是( )

(A) 强阻尼

(B) 欠阻尼

(C) 过阻尼

(D) 临界阻尼

4、受迫振动的振幅依赖于( )

(A) 振子的性质

(B) 振子的初始状态

(C) 阻尼的大小

(D) 驱动力的特征

二、填空题

1、实际上,真实的振动系统总会受到阻力作用而作振幅不断减小的阻尼振动,这是因为阻尼的存在使系统的能量逐渐减少,能量损失的原因通常有两种:和。

2、在灵敏电流计等精密仪表中,为使人们能较快地和较准确地进行读数测量,常使电流计的偏转系统工作在状态下。

3、试分别写出简谐振动、阻尼振动和受迫振动的运动微分方程、

、。

4、在阻尼很小的情况下,受迫振动的频率取决于驱动力的频率,当驱动力的频率逐渐趋近于振动系统的固有频率时,振幅达到最大值,这种现象叫做。

三、计算题

1、质量为m=5.88kg的物体,挂在弹簧上,让它在竖直方向上作自由振动。在无阻尼情况下,其振动周期为T=0.4πs;在阻力与物体运动速度成正比的某一介质中,它的振动周期为T=0.5πs。求当速度为0.01m/s时,物体在阻尼介质中所受的阻力。

2、一摆在空中振动,某时刻,振幅为A0=0.03m,经t1=10s后,振幅变为A1=0.01m。问:由振幅为A0时起,经多长时间,其振幅减为A2=0.003m?

3、火车在行驶,每当车轮经过两根铁轨的接缝时,车轮就受到一次冲击,从而使装在弹簧上的车厢发生上下振动。设每段铁轨长12.6m,如果车厢与载荷的总质量为55 t,车厢下的减振弹簧每受10 kN(即1 t质量的重力)的载荷将被压缩0.8 mm。试问火车速率多大时,

振动特别强?(这个速率称为火车的危险速率。)目前,我国铁路提速已超过140 km/h,试问如何解决提速问题。

练习三

一、选择题

1、下列关于LC 振荡电路中说法不正确的是( )

(A)电路中电流和电容器上的电量的变化也是一种简谐振动 (B)电容器放电完毕时,电路中的电流达到最大值

(C)电场能和磁场能相互转化,但总的电磁能量保持不变

(D)电容器充电时,由于线圈的自感作用,电流只能逐渐增大 2、LC 振荡电路中电荷和电流的变化,下列描述不正确的是( ) (A) 电荷和电流都作谐振动 (B) 电荷和电流都作等幅振动

(C) 电荷的相位比电流的相位超前π/2 (D) 电荷和电流振动的频率相同

3、两同方向同频率的简谐振动的振动方程为)25cos(61π

+=t x (SI )

,)2

5cos(22π

-=t x (SI ),则它们的合振动的振动方程应为( ) (A) ()SI 5cos 4t

x = (B)

()()SI 5cos 8π-=t x

(C) ()SI 210cos 4?

?

?

?

?+

=πt x (D)()SI 25cos 4??

?

?

?+=πt x

4、已知两同方向同频率的简谐振动的振动方程分别为)3

cos(11π

ω+=t A x (SI )

,)6cos(22π

ω-=t A x (SI )

,则它们的合振幅应为( ) (A)21A A - (B) 21A A + (C)

2

2

21A A + (D) 2

221A A -

二、填空题

1、两个同方向同频率的简谐振动,其振动表达式分别为:

)215cos(10621π+?=-t x (SI) , )5cos(1022

2t x -π?=- (SI)

它们的合振动的振辐为 ,初相为 。

2、一质点同时参与了两个同方向的简谐振动,它们的振动方程分别为

)41cos(05.01π+=t x ω (SI), )

129

cos(05.02π+=t x ω (SI)

其合成运动的运动方程为x = 。

3、已知一物体同时参与两个同方向同频率的简谐振动,这两个简谐振动的振动曲线如下图所示,其中A 1>A 2,则该物体振动的初相为__ __。

4、两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为 –

1

= /6。若第一个简谐振动的振幅为310cm = 17.3 cm ,则第二个简谐振动的

振幅为__ __ cm ,第一、二两个简谐振动的相位差1 2为 。 三、计算题

1、由一个电容C =4.0μF 的电容器和一个自感为L =10mH 的线圈组成的LC 电路,当电容器上电荷的最大值Q 0=6.0×10-5C 时开始作无阻尼自由振荡,试求: (l )电场能量和磁场能量的最大值;

(2)当电场能量和磁场能量相等时,电容器上的电荷量。

2、三个同方向、同频率的谐振动为

10.1cos(10)()6x t m π

=+

20.1cos(10)()2x t m π

=+

350.1cos(10)()6

x t m π

=+

试利用旋转矢量法求出合振动的表达式。

3、当两个同方向的谐振动合成为一个振动时,其振动表达式为

cos2.1cos50.0x A t t =

式中t 以s 为单位。求各分振动的角频率和合振动的拍的周期。

t

x

2

x 1

x 2

A 1

A

第十一章

练习一

一、选择题

1、当一列机械波在弹性介质中由近向远传播的时候,下列描述错误的是( ) (A)机械波传播的是介质原子

(B)机械波传播的是介质原子的振动状态 (C)机械波传播的是介质原子的振动相位 (D)机械波传播的是介质原子的振动能量

2、已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则( ) (A )波的频率为a ; (B )波的传播速度为 b/a ; (C )波长为 / b ; (D )波的周期为2 / a 。

3、一平面简谐波的波形曲线如右图所示,则( ) (A)其周期为8s (B)其波长为10m

(C)x =6m 的质点向右运动

(D)x =6m 的质点向下运动

4、如右图所示,一平面简谐波以波速u 沿x 轴正方向传播,O 为坐标原点.已知P 点的振动方程为cos y A t ω=,则( )

(A )O 点的振动方程为 []cos (/)y A t l u ω=-; (B )波的表达式为 {}cos [(/)(/)]y A t l u x u ω=--; (C )波的表达式为 {}cos [(/)(/)]y A t l u x u ω=+-; (D )C 点的振动方程为 []cos (3/)y A t l u ω=-。 二、填空题

1、有一平面简谐波沿Ox 轴的正方向传播,已知其周期为s 5.0,振幅为m 1,波长为m 2,且在0=t 时坐标原点处的质点位于负的最大位移处,则该简谐波的波动方程为 。

2、已知一简谐波在介质A 中的传播速度为u ,若该简谐波进入介质B 时,波长变为在介质

A 中的波长的两倍,则该简谐波在介质

B 中的传播速度为 。

3、已知一平面简谐波的表达式为 )37.0125cos(25.0x t y -= (SI),则

1= 10m x 点处质点的振动方程为________________________________; 1= 10m x 和2= 25m x 两点间的振动相位差为_____________。

4、一简谐波的波形曲线如右图所示,若已知 该时刻质点A 向上运动,则该简谐波的传播方向 为 ,B 、C 、D 质点在该时刻的 运动方向为B ,C ,D 。

O 2

-2

2

610()m x ()

m y

x

O u 2l l

y

C

P O ()

m x ()

m y A C

D

B

三、计算题

1、一横波沿绳子传播时的波动方程式为

0.05cos(104)y t x ππ=-

x ,y 的单位为m ,t 的单位为s 。

(l )求此波的振幅、波速、频率和波长;

(2)求绳子上各质点振动的最大速度和最大加速度;

(3)求x =0.2m 处的质点在t =1s 时的相位,它是原点处质点在哪一时刻的相位? (4)分别画出t =1s ,1.25s ,1.50s 各时刻的波形。

2、设有一平面简谐波

0.02cos 2(

)0.010.3

t x y π=- x ,y 以m 计,t 以s 计。

(1)求振幅、波长、频率和波速。 (2)求x =0.1m 处质点振动的初相位。

3、已知一沿x 轴正向传播的平面余弦波在t =1/3s 时的波形如右图所示,且周期T =2s 。 (1)写出O 点和P 点的振动表达式; (2)写出该波的波动表达式; (3)求P 点离O 点的距离。

练习二

一、选择题

1、当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的?( ) (A )媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒; (B )媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同; (C )媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不等; (D )媒质质元在其平衡位置处弹性势能最大。

2、下列关于电磁波说法中错误的是( ) (A)电磁波是横波 (B)电磁波具有偏振性

(C)电磁波中的电场强度和磁场强度同相位

(D)任一时刻在空间中任一点,电场强度和磁场强度在量值上无关

3、一平面简谐波沿Ox 轴负方向传播,其波长为λ,则位于λ=1x 的质点的振动与位于

2/2λ-=x 的质点的振动方程的相位差为( )

(A)π3- (B)π3 (C)2/3π- (D)2/π

4、一平面简谐波沿Ox 轴正方向传播,其波速为u ,已知在1x 处的质点的振动方程为

()0cos ?ω+=t A y ,则在2x 处的振动方程为( )

(A)??????+??? ??-+

=012cos ?ωu x x t A y (B)??????+??? ??++=012cos ?ωu x x t A y (C)??????+???

?

?--

=012cos ?ωu x x t A y (D)??

????+??? ??+-=012cos ?ωu x x t A y 二、填空题

1、已知两频率相同的平面简谐波的强度之比为a ,则这两列波的振幅之比为 。

2、介质的介电常数为ε,磁导率为μ,则电磁波在该介质中的传播速度为 。

3、若电磁波的电场强度为E ,磁场强度为H ,则该电磁波的能流密度为 。

4、一平面简谐波,频率为31.010Hz ?,波速为31.010m/s ?,振幅为41.010m ?,在截面面积为424.010m -?的管内介质中传播,若介质的密度为238.010kg m -??,则该波的能量密度__________________;该波在60 s 内垂直通过截面的总能量为_________________。

三、计算题

1、一平面简谐声波的频率为500Hz ,在空气中以速度u =340m/s 传播。到达人耳时,振幅A =10-4cm ,试求人耳接收到声波的平均能量密度和声强(空气的密度ρ=1.29kg/m 3)。

2、一波源以35000W的功率向空间均匀发射球面电磁波,在某处测得波的平均能量密度为7.8×10-15J/m3,求该处离波源的距离。电磁波的传播速度为3.0×108m/s。

3、一列沿x正向传播的简谐波,已知t1=0和t2=0.25s

时的波形如右图所示。试求:

(l)P的振动表达式;

(2)此波的波动表达式;

(3)画出O点的振动曲线。

练习三

一、选择题

1、两列波要形成干涉,要满足相干条件,下列选项中不属于相干条件的是( ) (A)频率相同 (B)振动方向相同 (C)相位差恒定 (D)振幅相同

2、在波长为 的驻波中,两个相邻波腹之间的距离为( ) (A) /4 (B) /2 (C) 3/4 (D)

3、下列关于驻波的描述中正确的是( ) (A)波节的能量为零,波腹的能量最大 (B)波节的能量最大,波腹的能量为零 (C)两波节之间各点的相位相同 (D)两波腹之间各点的相位相同

4、设声波在媒质中的传播速度为u ,声源的频率为S ν。若声源S 不动,而接收器R 相对于媒质以速度R v 沿着S 、R 连线向着声源S 运动,则位于S 、R 连线中点的质点P 的振动频率为( )

(A )S ν; (B )

R

S u v u

ν+; (C )

S R

u

u v ν+; (D )

S R

u

u v ν-。 二、填空题

1、如图所示,有两波长相同相位差为π的相干波源

1S , 2S ,发出的简谐波在距离1S 为a ,距离2S 为b

(b>a )的P 点相遇,并发生相消干涉,则这两列简

谐波的波长为 。

2、当一列弹性波由波疏介质射向波密介质,在交界面反射时,反射波与入射波间有π的相位突变,这一现象被形象化地称为 。

3、如图所示,两列相干波在P 点相遇。一列波在B 点引起的振动是 310310cos2y t -=?π;

另一列波在C 点引起的振动是3201310cos(2)2y t -=?π+π; 令0.45 m BP =,0.30 m CP =,两波的传播速度= 0.20 m/s u 。

若不考虑传播途中振幅的减小,则P 点的合振动的振动方程为 ____________________________________。

4、一列火车以20 m /s 的速度行驶,若机车汽笛的频率为600 Hz ,一静止观测者在火车前和火车后所听到的声音频率分别为______和_____________(设空气中声速为340 m/s )。 三、计算题

1、同一介质中的两个波源位于A 、B 两点,其振幅相等,频率都是100Hz ,相位差为π,若A 、B 两点相距为30m ,波在介质中的传播速度为400m/s ,试求AB 连线上因干涉而静止的各点的位置。

1S

P

2

S

P

B C

2、两个波在一很长的弦线上传播,设其波动表达式为

10.06cos (0.020.8)2

y x t π

=- 20.06cos

(0.020.8)2

y x t π

=+

用SI 单位,求:

(1)合成波的表达式; (2)波节和波腹的位置。

3、(1)火车以90km/h 的速度行驶,其汽笛的频率为500Hz 。一个人站在铁轨旁,当火车从他身旁驶过时,他听到的汽笛声的频率变化是多大?设声速为340m/s 。

(2)若此人坐在汽车里,而汽车在铁轨旁的公路上以54km/h 的速率迎着火车行驶。试问此人听到汽笛声的频率为多大?

答案

第十章 练习一 一、选择题 1、(C);

A 中小球没有受到回复力的作用;

B 中由于是大角度,所以θ与sin θ不能近似相等,不能看做简谐振动; D 中球形木块所受力F 与位移x 不成线性关系,故不是简谐振动 2、(C);

s

T t T x

a x a 2.2422,2

222,22===∴==

===ππ

ω

πωω

3、(D); 0=t A x -=0 00?v 则π?=

4、(A); 20002

1

A k E = 04k k = 2

42000A

k E A == 二、填空题

1、()0sin ?πω+-A 、()02

cos ?πω+-A

2、T 6

g

l

T π

20= 单摆拿到月球上, 06266

2T g l g l T =?==ππ 3、7﹒78cm 、8s 4、

34、1

4

、2±

当位移是振幅的一半时,43,412121,222

===∴=E E kA kx

E

E A x k p

当,22A x ±=k p p E E E kA kx E E ==∴==∴21

,212

121,22

三、计算题

1、解:(1)设cos()()x A t m ω?=+

由图可知,A =0.10m ,x 0=A /2=0.05m ,v 0>0,所以?π=-

t =1s 时,x 1=0,故56

π

ω=

所以质点振动的运动方程为50.10cos()()63

x m ππ

=- (2)P 点的相位为零 (3)由5063

P t ππ

?=

-=得t =0.4s

2、解:已知A =24cm ,T =4.0s ,故ω=π/2

t =0时,x 0=A =24cm ,v 0=0,故0?=

所以振动方程为0.24cos()()2

x t m π

=

(1)0.50.17t x m == (2)2220.50.5

0.419/t t d x a m s dt ====-,故30.50.5 4.1910t t F ma N -====-?指向平衡位置

(3)由振动方程得0.12

2

3

x t

ππ

?==

,因为此时v <0,相位取正值,

所以t =0.67s (4)0.120.12

0.326/x x dx v m s dt

===

=-

240.12

0.12

1 5.31102k

x x E mv J -===

=?

22240.12

0.12

0.12

11

1.78102

2

p

x x x E kx m x J ω-=====

=?

47.0910k p E E E J -=+=?

3、证明:小球平衡时有00p S mg pS +-=

小球偏离x 时,设容器内气体状态为(p 1,V 1),有2012d x

p S mg p S m dt +-=,则

212pS p S

d x dt m

-=

由于气体过程是绝热过程,有111()p V p V xS pV γγγ

=-=,则1(1)xS p p V

γ

-=-

小球作微小位移时xS 远小于V ,则上式可写为1(1)xS p p V

γ

=+ 所以,小球的运动方程为22

22d x pS x x dt mV

γω=-

=-

此式表示小球作简谐振动,振动周期为22T π

ω

=

=所以比热容比为2222

24()mV mV

p TS pS T ππγ==

练习二 一、选择题

1、(C);

2、(D);

3、(A);

4、(B); 二、填空题

1、摩擦阻尼、辐射阻尼

2、临界阻尼

3、2220d x x dt ω+=、220220d x dx x dt dt δ

ω++=、22

0022cos d F d x dx x t dt dt m

δωω++= 4、共振 三、计算题

1

、解:由阻尼振动周期2T πω'=

='

得阻尼因子为3/rad s β=

== 阻力系数为235.3/m kg s γβ== 阻力为0.353N F v γ==

2、解:阻尼振动的振幅为0t

A A e β-=

将t =0,A 0=0.03m 和t 1=10s ,A 1=0.01m 代入上式解得01111ln ln 310

A t A β=

= 则振幅减为A 2=0.003m 所需时间为0

22

1

ln

21A t s A β

=

=

3、由题意知弹簧的劲度系数为3

731010 1.2510/0.810

m g k N m x -'?===??

则车厢的固有频率为015/rad s ω=

= 当火车以速率v 匀速行驶时,受撞击的角频率为22l

υ

ωπνπ==

当ω0=ω时车厢将发生共振,此时速率即为危险速率,则

030/108/2l

m s km h υωπ

=

== 解决火车提速问题的措施之一是采用长轨无缝铁轨。

练习三 一、选择题

1、(D);

2、(C);

3、(D);

4、(C); 二、填空题

1、4×10-2 m 、π

21

2、

)1223

cos(05.0π+

t ω(SI)

3、π;由于位相差为π,合成后位相与1x 同相即为π,21A A A -=。

4、10、π-

21

三、计算题

1、解:由题可知,电容器极板上电荷量的初相为零,所以0cos q Q t ω=,其中ω=

(1)电场能和磁场能的最大值相等,即为电路的总电磁能2

40 4.5102Q W J C

-==? (2)电场能量和磁场能量相等时,有221122q Li C =,其中0sin dq i Q t dt

ωω==- 则2222

222000111cos sin sin 222Q t LQ t Q t C C

ωωωω== 所以,一个周期内电场能量和磁场能量相等时的相位为357,,,4444

t ππππ

?ω==

此时电容器上的电荷量为50 4.3102

q Q C -=±

=±? 2、解:如图下所示,由旋转矢量的合成得A =0.2m ,02?π=

所以和振动的表达式为0.2cos(10

)()2

x t SI π

=+

3、解:由题意有

21

2.12

ωω-=,

21

50.02

ωω+=

解得ω1=47.9rad/s ,ω2=47.9rad/s 所以拍的周期21

1

2 1.5s π

τνωω==

=-拍

第十一章 练习一 一、选择题 1、(A);

2、(D);由22cos()cos()2/2/y A at bx A t x a b ππππ=-=-,可知周期2T a π

=

。波长为b

π2。

3、(D);

4、(C); 二、填空题

1、()πππ--=x t y 4cos

2、2u ;T

u λ

=

2211u u λλ= u u u u 221122===λ

λ

λλ 3、0.25cos(125 3.7)y t =- (SI)、 5.55 rad ??=-。 解:(1)1= 10m x 的振动方程为 100.25cos(125 3.7)x y t ==- (2)因2= 25m x 的振动方程为 250.25cos(1259.25)x y t ==- 所以2x 与1x 两点间相位差 21 5.55 rad ????=-=- 4、向x 轴正方向传播、向上、向下、向上

三、计算题

1、解:(1)由波动方程式有A =0.05m ,ν=5Hz ,λ=0.5m ,且 2.5/u m s λν==,00?=

(2)0.5 1.57/m v A m s ωπ===,222

549.3/m a A m s ωπ===

(3)x =0.2m 处质点在t =1s 时的相位为(0.2,1)(10140.2)9.2?πππ=?-?= 与t 时刻前坐标原点的相位相同,则(0,)(1040)9.2t t ?πππ=?-?= 得t =0.92s

(4)t =1s 时,0.05cos(104)0.05cos 4()y x x m πππ=-=

t =1.25s 时,0.05cos(12.54)0.05sin 4()y x x m πππ=-= t =1.50s 时,0.05cos(154)0.05cos 4()y x x m πππ=-=-

分别画出图形如下图所示

2、解:(1)由波动方程有A =0.02m ,λ=0.3m ,ν=100Hz ,00?=,且30/u m s λν== (2)0

0.1

00.122()0.010.33

x π

?π==-=-

3、解:由波形曲线可得A =0.1m ,λ=0.4m ,且0.2/u m s T

λ

==,2/rad s T

π

ωπ=

= (1)设波动表达式为0cos[()]x y A t u

ω?=-+ 由图可知O 点的振动相位为23

π,即1003

2()3

3

Ot t s t π

π?ω??==+=

+=

得O 点的初相03

π?=

所以O 点的振动表达式为0.1cos()()3

O y t m π

π=+

同样P 点的振动相位为013

[()]

3

0.2

2

P

Pt t s x x t u

ππ

π

?ω?==-+=

-

=-

,得0.233P x m =

所以P 点的振动表达式为50.1cos()()6

P y t m π

π=-

(2)波动表达式为0.1cos[(5)]()3

y t x m π

π=-+

(3)P 点离O 点的距离为0.233P x m =

练习二 一、选择题

1、(D);

2、(D);

3、(B);

4、(C); 二、填空题

1

2

3、S E H =?

4、521.5810W m -??、33.7910 J ?。 解:(1)2522222m W 1058.122

1

-??===

νρμπωρμA A I (2)33.7910 J w P t IS t =??=?=?v

。 三、计算题

1、解:人耳接收到声波的平均能量密度为22631

6.3710/2

w A J m ρω-=

=? 人耳接收到声波的声强为3

2

2.1610/I wu W m -==?

2、解:设该处距波源r ,单位时间内通过整个球面的能量为2

4P SA S r π==

则43.4510r m =

==?

3、解:由波形图可知A =0.2m ,20.6x m πλ?=

?=?,1t T s x λ?==?,1

1Hz T

ν==,0.6/u m s λν==

(1) 由P 点的振动状态知02

P π

?=-

,故P 点的振动表达式为

0.2cos(2)()2

P y t m π

π=-

(2)由O 点的振动状态知02

O π

?=

,故O 点的振动表达式为0.2cos(2)()2

O y t m π

π=+

所以波动表达式为100.2cos[2()]0.2cos(2)()0.6232

x y t t x m ππ

πππ=-+=-+ (3)O 点的振动曲线如下图所示

练习三 一、选择题

1、(D);

2、(B );

3、(C);

4、(A); 二、填空题 1、

2()(0,1,2)21

b a k k -=+L

2、半波损失

3、31

610cos(2)2

y t -=?-ππ(SI)

解:第一列波在P 点引起的振动的振动方程为

311

310cos(2)2

y t -=?-ππ

第二列波在P 点引起的振动的振动方程为

321

310cos(2)2

y t -=?-ππ

所以,P 点的合振动的振动方程

3121

610cos(2)2

y y y t -=+=?-ππ

4、637.5 Hz 、566.7 Hz 三、计算题

1、解:建立如下图所示的坐标轴,根据题意,设0A ?=,B ?π=,且4u

m λν

=

=,

2400/rad s ωπνπ==

在A 、B 间任选一点C ,两波在C 点引起的振动分别为

cos[()]cos ()AC A x x

y A t A t u u ω?ω=-+=-

()

cos[()]cos[()]BC B x x L y A t A t u u

ω?ωπ'-=-+=++

两振动使C 点静止的相位差应为(21)C BC AC k ???π?=-=+ 即()2[()]()(2)(21)x L x t t x L k u u πωπωππλ

-+

+--=-+=+ 解得215,0,1,2,,7x k k =+=±±±L

即AB 连线间因干涉而静止的点距A 点为(1,3,5,…,29)m ,共有15个。

在A 、B 两点外侧连线上的其他任意点,比如D 点和E 点,A 、B 两相于波的传播方向相

大学物理活页作业答案(全套)

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r )(21m j i r )(242m j i r )(3212m j i r r r )/(32s m j i t r v (2))(22SI j t i dt r d v )(2SI j dt v d a )/(422s m j i v )/(222 s m j a 8.解: t A tdt A adt v t o t o sin cos 2 t A tdt A A vdt A x t o t o cos sin

9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5 s m t h dt ds v /1094.1cos 32 (2)当旗杆与投影等长时,4/ t h s t 0.31008.144 10.解: ky y v v t y y v t dv a d d d d d d d -k y v d v / d y C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2 020 2 121ky v C )(22 22y y k v v o o

大学物理试卷及答案

2005─2006学年第二学期 《 大学物理》(上)考试试卷( A 卷) 注意:1、本试卷共4页; 2、考试时间: 120分钟; 3、姓名、序号必须写在指定地方; 4、考试为闭卷考试; 5、可用计算器,但不准借用; 6、考试日期: 7、答题答在答题纸上有效, 答在试卷上无效; b =2.897×10?3m·K R =8.31J·mol ?1·K ?1 k=1.38×10?23J·K ?1 c=3.00×108m/s ? = 5.67×10-8 W·m ?2·K ?4 1n 2=0.693 1n 3=1.099 g=9.8m/s 2 N A =6.02×1023mol ?1 R =8.31J·mol ?1·K ?1 1atm=1.013×105Pa 一.选择题(每小题3分,共30分) 1.在如图所示的单缝夫琅禾费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹 (A) 间距变大. (B) 间距变小. (C) 不发生变化. (D) 间距不变,但明暗条纹的位置交替变化. 2. 热力学第一定律只适用于 (A) 准静态过程(或平衡过程). (B) 初、终态为平衡态的一切过程. (C) 封闭系统(或孤立系统). (D) 一切热力学系统的任意过程. 3.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的 (A) 角动量守恒,动能不变. (B) 角动量守恒,动能改变. (C) 角动量不守恒,动能不变. (D) 角动量不守恒,动量也不守恒. (E) 角动量守恒,动量也守恒. 4.质量为m 的物体由劲度系数为k 1和k 2的两个轻弹簧串联连接在水平光滑导轨上作微小振 动,则该系统的振动频率为 (A) m k k 212+π =ν. (B) m k k 2 121+π=ν . (C) 2 12 121k mk k k +π=ν. (D) )(212 121k k m k k +π=ν 5. 波长? = 5500 ?的单色光垂直照射到光栅常数d = 2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为 (A) 2. (B) 3. (C) 4. (D) 5.

大学物理试题及答案

第2章刚体得转动 一、选择题 1、如图所示,A、B为两个相同得绕着轻绳得定滑轮.A滑轮挂一质量为M得物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮得角加速度分别为βA与βB,不计滑轮轴得摩擦,则有 (A) βA=βB。(B)βA>βB. (C)βA<βB.(D)开始时βA=βB,以后βA<βB。 [] 2、有两个半径相同,质量相等得细圆环A与B。A环得质量分布均匀,B环得质量分布不均匀。它们对通过环心并与环面垂直得轴得转动惯量分别为JA与J B,则 (A)JA>J B.(B) JA

大学物理作业(二)答案

班级___ ___学号____ ____姓名____ _____成绩______________ 一、选择题 1. m 与M 水平桌面间都是光滑接触,为维持m 与M 相对静止,则推动M 的水平力F 为:( B ) (A)(m +M )g ctg θ (B)(m +M )g tg θ (C)mg tg θ (D)Mg tg θ 2. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为:( B ) (A)R mv 2 (B)R mv 232 (C)R mv 22 (D)R mv 252 3. 如图,作匀速圆周运动的物体,从A 运动到B 的过程中,物体所受合外力的冲量:( C ) (A) 大小为零 (B ) 大小不等于零,方向与v A 相同 (C) 大小不等于零,方向与v B 相同 (D) 大小不等于零,方向与物体在B 点所受合力相同 二、填空题 1. 已知m A =2kg ,m B =1kg ,m A 、m B 与桌面间的摩擦系数μ=0.5,(1)今用水平力F =10N 推m B ,则m A 与m B 的摩擦力f =_______0______,m A 的加速度a A =_____0_______. (2)今用水平力F =20N 推m B ,则m A 与m B 的摩擦力f =____5N____,m A 的加速度a A =_____1.7____. (g =10m/s 2) 2. 设有三个质量完全相同的物体,在某时刻t 它们的速度分别为v 1、v 2、v 3,并且v 1=v 2=v 3 ,v 1与v 2方向相反,v 3与v 1相垂直,设它们的质量全为m ,试问该时刻三物体组成的系统的总动量为_______m v 3________. 3.两质量分别为m 1、m 2的物体用一倔强系数为K 的轻弹簧相连放在光滑水平桌面上(如图),当两物体相距为x 时,系统由静止释放,已知弹簧的自然长度为x 0,当两物体相距为x 0时,m 1的速度大小为 2 2 121 Km x m m m + . 4. 一弹簧变形量为x 时,其恢复力为F =2ax -3bx 2,现让该弹簧由x =0变形到x =L ,其弹力的功为: 2 3 aL bL - . 5. 如图,质量为m 的小球,拴于不可伸长的轻绳上,在光滑水平桌面上作匀速圆周运动,其半径为R ,角速度为ω,绳的另一端通过光 滑的竖直管用手拉住,如把绳向下拉R /2时角速度ω’为 F m A m B m M F θ A O B R v A v B x m 1 m 2 F m R

大学物理习题及答案

x L h 书中例题:1.2, 1.6(p.7;p.17)(重点) 直杆AB 两端可以分别在两固定且相互垂直的直导线槽上滑动,已知杆的倾角φ=ωt 随时间变化,其中ω为常量。 求:杆中M 点的运动学方程。 解:运动学方程为: x=a cos(ωt) y=b sin(ωt) 消去时间t 得到轨迹方程: x 2/a 2 + y 2/b 2 = 1 椭圆 运动学方程对时间t 求导数得速度: v x =dx/dt =-a ωsin(ωt) v y =dy/dt =b ωcos(ωt) 速度对时间t 求导数得加速度: a x =d v x /dt =-a ω2cos(ωt) a y =d v y /dt =-b ω2sin(ωt) 加速度的大小: a 2=a x 2+a y 2 习题指导P9. 1.4(重点) 在湖中有一小船,岸边有人用绳子跨过一高处的滑轮拉船靠岸,当绳子以v 通过滑轮时, 求:船速比v 大还是比v 小? 若v 不变,船是否作匀速运动? 如果不是匀速运动,其加速度是多少? 解: l =(h2+x2)1/2 221/2 122()d l x d x v d t h x d t ==+ 221/2()d x h x v d t x += 当x>>h 时,dx/dt =v ,船速=绳速 当x →0时,dx/dt →∞ 加速度: x y M A B a b φ x h

220d x d t =2221/22221/2221/2221/2221/22221/2()1()11()()1112()2()d x d h x v dt dt x d h x v dt x d dx d h x dx h x v v dx x dt x dx dt dx x dx h x v v x dt x h x dt ?? +=??????=?+???? +??=?++ ???=-?+++ 将221/2()d x h x v d t x +=代入得: 2221/2221/2 221/2 22221/21()112()()2()d x h x x h x h xv v v v d t x x x h x x ++=-?+++3222232222)(x v h x v v x x h dt x d -=++-= 分析: 当x ∞, 变力问题的处理方法(重点) 力随时间变化:F =f (t ) 在直角坐标系下,以x 方向为例,由牛顿第二定律: ()x dv m f t dt = 且:t =t 0 时,v x =v 0 ;x =x 0 则: 1 ()x dv f t dt m = 直接积分得: 1 ()()x x v dv f t dt m v t c ===+?? 其中c 由初条件确定。 由速度求积分可得到运动学方程:

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理 习题分析与解答

第八章 恒定磁场 8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。 (A) B r 22π (B) B r 2π (C) 0 (D) 无法确定 分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。正确答案为(B )。 8-2 下列说法正确的是[ ]。 (A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零 分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。正确答案为(B )。 8-3 磁场中的安培环路定理∑?=μ=?n L I 1i i 0d l B 说明稳恒电流的磁场是[ ]。 (A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场

分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。正确答案为(B )。 8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。 (A) B R I 2π (B) B R I 221π (C) B R I 24 1π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ?=n IS ,而且对任意形状的平面线圈都是适用的。正确答案为(B )。 8-5 一长直螺线管是由直径d =0.2mm 的漆包线密绕而成。当它通以I =0.5A 的电流时,其内部的磁感强度B =_____________。(忽略绝缘层厚度,μ0=4π×10-7N/A 2) 分析与解 根据磁场中的安培环路定理可求得长直螺线管内部的磁感强度大小为nI B 0μ=,方向由右螺旋关系确定。正确答安为(T 1014.33-?)。 8-6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处的磁感强度大小为_____________,方向为 _____________ 。 分析与解 根据圆形电流和长直电 流的磁感强度公式,并作矢量叠加,可得圆心O 点的总

大学物理期末试卷(带答案)

大学物理期末试卷(A) (2012年6月29日 9: 00-11: 30) 专业 ____组 学号 姓名 成绩 (闭卷) 一、 选择题(40%) 1.对室温下定体摩尔热容m V C ,=2.5R 的理想气体,在等压膨胀情况下,系统对外所做的功与系统从外界吸收的热量之比W/Q 等于: 【 D 】 (A ) 1/3; (B)1/4; (C)2/5; (D)2/7 。 2. 如图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A B 等压过程; A C 等温过程; A D 绝热过程 . 其中吸热最多的 过程 【 A 】 (A) 是A B. (B) 是A C. (C) 是A D. (D) 既是A B,也是A C ,两者一样多. 3.用公式E =νC V T (式中C V 为定容摩尔热容量,ν为气体摩尔数)计算理想气体内能 增 量 时 , 此 式 : 【 B 】 (A) 只适用于准静态的等容过程. (B) 只适用于一切等容过程. (C) 只适用于一切准静态过程. (D) 适用于一切始末态为平衡态的过程. 4气缸中有一定量的氦气(视为理想气体),经过绝热压缩,体积变为原来的一半,问气体 分 子 的 平 均 速 率 变 为 原 来 的 几 倍 ? p V V 1 V 2 A B C D . 题2图

【 B 】 (A)2 2 / 5 (B)2 1 / 5 (C)2 1 / 3 (D) 2 2 / 3 5.根据热力学第二定律可知: 【 D 】 (A )功可以全部转化为热, 但热不能全部转化为功。 (B )热可以由高温物体传到低温物体,但不能由低温物体传到高温物体。 (C )不可逆过程就是不能向相反方向进行的过程。 (D )一切自发过程都是不可逆。 6. 如图所示,用波长600=λnm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央 明纹极大的位置,则此玻璃片厚度为: 【 B 】 (A) 5.0×10-4 cm (B) 6.0×10-4cm (C) 7.0×10-4cm (D) 8.0×10-4cm 7.下列论述错误..的是: 【 D 】 (A) 当波从波疏媒质( u 较小)向波密媒质(u 较大)传播,在界面上反射时,反射 波中产生半波损失,其实质是位相突变。 (B) 机械波相干加强与减弱的条件是:加强 π?2k =?;π?1)2k (+=?。 (C) 惠更斯原理:任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波;在以后的任何时刻,所有这些次波面的包络面形成整个波在该时刻的新波面 (D) 真空中波长为500nm 绿光在折射率为1.5的介质中从A 点传播到B 点时,相位改变了5π,则光从A 点传到B 点经过的实际路程为1250nm 。 8. 在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长 的透射光能量。假设光线垂直入射,则介质膜的最小厚度应为: 【 D 】 (A)/n λ (B)/2n λ (C)/3n λ (D)/4n λ P O 1 S 2 S 6. 题图

大学物理上册试卷及答案(完整版)

大学物理(I )试题汇总 《大学物理》(上)统考试题 一、填空题(52分) 1、一质点沿x 轴作直线运动,它的运动学方程为 x =3+5t +6t 2-t 3 (SI) 则 (1) 质点在t =0时刻的速度=v __________________; (2) 加速度为零时,该质点的速度=v ____________________. 2、一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为: 2 2 14πt += θ (SI) 则其切向加速度为t a =__________________________. 3、如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =____________________. 4、一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动, 摆线与铅直线夹角θ,则 (1) 摆线的张力T =_____________________; (2) 摆锤的速率v =_____________________. 5、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时, 各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =_______;它们各自收拢绳索,到绳长为 5 m 时,各自的速率v =_______. 6、一电子以0.99 c 的速率运动(电子静止质量为9.11310-31 kg ,则电子的总能量是__________J ,电子的经典力学的动能与相对论动能之比是_____________. 7、一铁球由10 m 高处落到地面,回升到 0.5 m 高处.假定铁球与地面碰撞时 损失的宏观机械能全部转变为铁球的内能,则铁球的温度将升高__________.(已知铁的比 热c = 501.6 J 2kg -12K -1 ) 8、某理想气体在温度为T = 273 K 时,压强为p =1.0310-2 atm ,密度ρ = 1.24310-2 kg/m 3,则该气体分子的方均根速率为___________. (1 atm = 1.0133105 Pa) 9、右图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中: (1) 温度升高的是__________过程; (2) 气体吸热的是__________过程. 10、两个同方向同频率的简谐振动,其合振动的振幅为20 cm , 与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅 为310 cm = 17.3 cm ,则第二个简谐振动的振幅为 ___________________ cm ,第一、二两个简谐振动的相位 差φ1 - φ2为____________. 11、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时,波

大学物理-作业与答案

《大学物理》课后作业题 专业班级: 姓名: 学号: 作业要求:题目可打印,答案要求手写,该课程考试时交作业。 第一章 质点力学 1、质点的运动函数为: 5 4;22 +==t y t x , 式中的量均采用SI 单位制。求:(1)质点运动的轨道方程;(2)s 11=t 和s 22=t 时,质点的位置、速度和加速度。 1、用消元法 t=x/2 轨迹方程为 y=x2+5 2、运动的合成 x 方向上的速度为x'=2, y 方向上的速度为y'=8t+5 将t 带入分别求出x 和y 方向上的速度 然后合成 x 方向上的加速度为x''=0 y 方向上的加速度为y''=8 所以加速度为8 2、如图所示,把质量为m 的小球悬挂在以恒加速度水平运动的小车上,悬线与竖直方向的夹角为θ,求小车的加速度和绳的张力。 绳子的拉力F ,将其水平和竖直正交分解为 Fsinα 和 Fcosα 竖直:Fcosα=mg 水平:Fsinα=ma a=gtanα 方向水平向右 3、一质量为0.10kg 的质点由静止开始运动,运动函数为j i 23 53 += t r (SI 单位) 求在t=0到t=2s 时间内,作用在该质点上的合力所做的功。 质点的速度就是 V =dr / dt =5* t^2 i +0 j 即质点是做直线运动,在 t =0时速度为V0=0;在 t =2秒时,速度为 V1=5*2^2=20 m/s 由动能定理得所求合力做的功是 W 合=(m*V1^2 / 2)-(m*V0^2 / 2)= m*V1^2 / 2=0.1*20^2 / 2=20 焦耳 第二章 刚体力学 T 1

1、在图示系统中,滑轮可视为半径为R、质量为m0的匀质圆盘。设绳与滑轮之间无滑动, 水平面光滑,并且m1=50kg,m2=200kg,m0=15kg,R=0.10m,求物体的加速度及绳中的张力。 解将体系隔离为 1 m, m, 2 m三个部分,对 1 m和 2 m分别列牛顿方程,有 a m T g m 2 2 2 = - a m T 1 1 = β2 1 22 1 MR R T R T= - 因滑轮与绳子间无滑动,则有运动学条件 R aβ = 联立求解由以上四式,可得 R M m m g m ? ? ? ? ? + + = 2 1 2 1 2 β 由此得物体的加速度和绳中的张力为 2 2 1 262 .7 15 5.0 200 50 81 .9 200 2 1 - ? = ? + + ? = + + = =s m M m m g m R aβ N a m T381 62 .7 50 1 1 = ? = =N a g m T438 ) 62 .7 81 .9( 200 ) ( 2 2 = - ? = - = 第四章静止电荷的电场 1、如图所示:一半径为R的半圆环上均匀分布电 荷Q(>0),求环心处的电场强度。 解:由上述分析,点O的电场强度 由几何关系θd d R l=,统一积分变量后,有 y x O

大学物理(下)试题及答案

全国2007年4月高等教育自学考试 物理(工)试题 课程代码:00420 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.以大小为F的力推一静止物体,力的作用时间为Δt,而物体始终处于静止状态,则在Δt时间内恒力F对物体的冲量和物体所受合力的冲量大小分别为() A.0,0B.FΔt,0 C.FΔt,FΔt D.0,FΔt 2.一瓶单原子分子理想气体与一瓶双原子分子理想气体,它们的温度相同,且一个单原子分子的质量与一个双原子分子的质量相同,则单原子气体分子的平均速率与双原子气体分子的平均速率()A.相同,且两种分子的平均平动动能也相同 B.相同,而两种分子的平均平动动能不同 C.不同,而两种分子的平均平动动能相同 D.不同,且两种分子的平均平动动能也不同 3.系统在某一状态变化过程中,放热80J,外界对系统作功60J,经此过程,系统内能增量为()A.140J B.70J C.20J D.-20J 4.自感系数为L的线圈通有稳恒电流I时所储存的磁能为() A.LI2 1 B.2 LI 2 C.LI 1 D.LI 2 5.如图,真空中存在多个电流,则沿闭合路径L磁感应强度的环流为() A.μ0(I3-I4) B.μ0(I4-I3) C.μ0(I2+I3-I1-I4) D.μ0(I2+I3+I1+I4)

6.如图,在静电场中有P 1、P 2两点,P 1点的电场强度大小比P 2点的( ) A .大,P 1点的电势比P 2点高 B .小,P 1点的电势比P 2点高 C .大,P 1点的电势比P 2点低 D .小,P 1点的电势比P 2点低7.一质点作简谐振动,其振动表达式为x=0.02cos(4)2 t π+π(SI),则其周期和t=0.5s 时的相位分别为()A .2s 2π B .2s π25 C .0.5s 2π D .0.5s π258.平面电磁波的电矢量 E 和磁矢量B () A .相互平行相位差为0 B .相互平行相位差为 2πC .相互垂直相位差为0 D .相互垂直相位差为2π 9.μ子相对地球以0.8c(c 为光速)的速度运动,若μ子静止时的平均寿命为τ,则在地球上观测到的μ子的平均 寿命为( )A .τ5 4B .τC .τ35D .τ2 510.按照爱因斯坦关于光电效应的理论,金属中电子的逸出功为A ,普朗克常数为h ,产生光电效应的截止频率 为( )A .v 0=0 B .v 0=A/2h C .v 0=A/h D .v 0=2A/h 二、填空题Ⅰ(本大题共8小题,每空2分,共22分) 请在每小题的空格中填上正确答案。错填、不填均无分。 11.地球半径为R ,绕轴自转,周期为T ,地球表面纬度为?的某点的运动速率为_____,法向加速度大小为_____。

大学物理作业参考答案.docx

电势、导体与 ※ 电介质中的静电场 (参考答案) 班级: 学号: 姓名: 成绩: 一 选择题 1.真空中一半径为 R 的球面均匀带电 Q ,在球心 O 处有一带电量为 q 的点电荷, 如图所示, 设无穷远处为电势零点,则在球内离球心 O 距离为 r 的 P 点处的电势为: (A ) q ; ( B ) 1 ( q Q ) ; 4 0 r O r P 4 0r R Q q R (C ) q Q ; ( D ) 1 ( q Q q ) ; 4 0 r 4 0r R 参考:电势叠加原理。 [ B ] 2.在带电量为 -Q 的点电荷 A 的静电场中,将另一 带电量为 q 的点电荷 B 从 a 点移动到 b , a 、 b 两点距离点电荷 A 的距离分别为 r 和 r ,如 1 2 图,则移动过程中电场力做功为: (A ) Q ( 1 4 0 r 1 qQ ( 1 (C ) 4 0 r 1 1 ) ; ( B ) qQ r 2 4 r 1 ) ; (D ) 4 2 ( 1 1 ) ;(-Q)A r 1 B a 0 r 1 r 2 qQ r 2 ( q ) b r ) 。 0 ( r 2 1 参考:电场力做功=势能的减小量。 A=W-W =q(U -U ) [ C ] ab a b 。 3.某电场的电力线分布情况如图所示,一负电荷从 M 点移到 N 点,有人根据这个图做出以 下几点结论,其中哪点是正确的? (A )电场强度 E <E ; ( B )电势 U < U ; MN M N (C )电势能 W M < W N ; ( D )电场力的功 A > 0。 N M [ C ] 4.一个未带电的空腔导体球壳内半径为 R ,在腔内离球心距离为 d ( d < R )处,固定一电 量为 +q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心 O 处的点势为: (A ) 0; ( B ) 4 q d ; R q q ( 1 1 ) 。 O +q (C ) - ; ( D ) d 4 0R 4 0 d R 参考:如图,先用高斯定理可知导体内表面电荷为 -q ,导体 外表面无电荷(可分析) 。虽然内表面电荷分布不均,但到 O 点的距离相同,故由电势叠加 原理可得。 [ D ] ※ 5.在半径为 R 的球的介质球心处有电荷 +Q ,在球面上均匀分布电荷 -Q ,则在球内外处的电势分别为: Q Q Q (A ) 4 r 内 , 4 r 外 ; ( B ) 4 r 内 , 0; 参考:电势叠加原理。注:原题中ε为ε0 (C ) 4 Q Q r 内 4 R ,0; ( D ) 0, 0 。 [ C ]

大学物理试卷及答案

2005─2006学年第二学期 《 大学物理》(上)考试试卷( A 卷) 注意:1、本试卷共4页; 2、考试时间: 120分钟; 3、姓名、序号必须写在指定地方; 4、考试为闭卷考试; 5、可用计算器,但不准借用; 6、考试日期: 7、答题答在答题纸上有效, 答在试卷上无效; b =×10?3m·K R =·mol ?1·K ?1 k=×10?23J·K ?1 c=×108m/s ? = ×10-8 W·m ?2·K ?4 1n 2= 1n 3= g=s 2 N A =×1023mol ?1 R =·mol ?1·K ?1 1atm=×105Pa 一.选择题(每小题3分,共30分) 1.在如图所示的单缝夫琅禾费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹 (A) 间距变大. (B) 间距变小. (C) 不发生变化. (D) 间距不变,但明暗条纹的位置交替变化. 2. 热力学第一定律只适用于 (A) 准静态过程(或平衡过程). (B) 初、终态为平衡态的一切过程. (C) 封闭系统(或孤立系统). (D) 一切热力学系统的任意过程. 3.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的 (A) 角动量守恒,动能不变. (B) 角动量守恒,动能改变. (C) 角动量不守恒,动能不变. (D) 角动量不守恒,动量也不守恒. (E) 角动量守恒,动量也守恒. 4.质量为m 的物体由劲度系数为k 1和k 2的两个轻弹簧串联连接在水平光滑导轨上作微小振 动,则该系统的振动频率为 (A) m k k 212+π =ν. (B) m k k 2 121+π=ν . (C) 2 12 121k mk k k +π=ν. (D) )(212121k k m k k +π=ν 5. 波长? = 5500 ?的单色光垂直照射到光栅常数d = 2×10-4cm 的平面衍射光栅上,可能观 察到的光谱线的最大级次为 (A) 2. (B) 3. (C) 4. (D) 5. 6.某物体的运动规律为d v /dt =-k v 2t ,式中的k 为大于零的常量.当t =0时,初速为v 0,则

大学物理试题及答案

《大学物理》试题及答案 一、填空题(每空1分,共22分) 1.基本的自然力分为四种:即强力、、、。 2.有一只电容器,其电容C=50微法,当给它加上200V电压时,这个电容储存的能量是______焦耳。 3.一个人沿半径为R 的圆形轨道跑了半圈,他的位移大小为,路程为。 4.静电场的环路定理公式为:。5.避雷针是利用的原理来防止雷击对建筑物的破坏。 6.无限大平面附近任一点的电场强度E为 7.电力线稀疏的地方,电场强度。稠密的地方,电场强度。 8.无限长均匀带电直导线,带电线密度+λ。距离导线为d处的一点的电场强度为。 9.均匀带电细圆环在圆心处的场强为。 10.一质量为M=10Kg的物体静止地放在光滑的水平面上,今有一质量为m=10g的子弹沿水平方向以速度v=1000m/s射入并停留在其中。求其 后它们的运动速度为________m/s。 11.一质量M=10Kg的物体,正在以速度v=10m/s运动,其具有的动能是_____________焦耳 12.一细杆的质量为m=1Kg,其长度为3m,当它绕通过一端且垂直于细杆 的转轴转动时,它的转动惯量为_____Kgm2。 13.一电偶极子,带电量为q=2×105-库仑,间距L=0.5cm,则它的电距为________库仑米。 14.一个均匀带电球面,半径为10厘米,带电量为2×109-库仑。在距球心 6厘米处的电势为____________V。 15.一载流线圈在稳恒磁场中处于稳定平衡时,线圈平面的法线方向与磁场强度B的夹角等于。此时线圈所受的磁力矩最。 16.一圆形载流导线圆心处的磁感应强度为1B,若保持导线中的电流强度不

大学物理试题及答案

大学物理试题及答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

第1部分:选择题 习题1 1-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +?时间内的位移为r ?,路程为s ?,位矢大小的变化量为r ?(或称r ?),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有( ) (A )r s r ?=?=? (B )r s r ?≠?≠?,当0t ?→时有dr ds dr =≠ (C )r r s ?≠?≠?,当0t ?→时有dr dr ds =≠ (D )r s r ?=?≠?,当0t ?→时有dr dr ds == (2)根据上述情况,则必有( ) (A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠= 1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即 (1) dr dt ;(2)dr dt ;(3)ds dt ;(4下列判断正确的是: (A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。对下列表达式,即 (1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。

下述判断正确的是( ) (A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变 (D )切向加速度一定改变,法向加速度不变 * 1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向 岸边运动。设该人以匀速率0v 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( ) (A )匀加速运动,0 cos v v θ= (B )匀减速运动,0cos v v θ= (C )变加速运动,0cos v v θ = (D )变减速运动,0cos v v θ= (E )匀速直线运动,0v v = 1-6 以下五种运动形式中,a 保持不变的运动是 ( ) (A)单摆的运动. (B)匀速率圆周运动. (C)行星的椭圆轨道运动. (D)抛体运动. (E)圆锥摆运动. 1-7一质点作直线运动,某时刻的瞬时速度v=2m/s,瞬时加速度22/a m s -=-,则一秒钟后质点的速度 ( ) (A)等于零. (B)等于-2m/s. (C)等于2m/s. (D)不能确定.

大学物理考试卷及答案下

汉A 一、单项选择题(本大题共5小题,每题只有一个正确答案,答对一题得 3 分,共15 分) 1、强度为0I 的自然光,经两平行放置的偏振片,透射光强变为 ,若不考虑偏振片的反 射和吸收,这两块偏振片偏振化方向的夹角为【 】 A.30o; B. 45o ; C.60o; D. 90o。 2、下列描述中正确的是【 】 A.感生电场和静电场一样,属于无旋场; B.感生电场和静电场的一个共同点,就是对场中的电荷具有作用力; C.感生电场中可类似于静电场一样引入电势; D.感生电场和静电场一样,是能脱离电荷而单独存在。 3、一半径为R 的金属圆环,载有电流0I ,则在其所围绕的平面内各点的磁感应强度的关系为【 】 A.方向相同,数值相等; B.方向不同,但数值相等; C.方向相同,但数值不等; D.方向不同,数值也不相等。 4、麦克斯韦为建立统一的电磁场理论而提出的两个基本假设是【 】 A.感生电场和涡旋磁场; B.位移电流和位移电流密度; C.位移电流和涡旋磁场; D.位移电流和感生电场。 5、当波长为λ的单色光垂直照射空气中一薄膜(n>1)的表面时,从入射光方向观察到反射光被加强,此膜的最薄厚度为【 】 A. ; B. ; C. ; D. ; 二、填空题(本大题共15小空,每空 2分,共 30 分。) 6、设杨氏双缝缝距为1mm ,双缝与光源的间距为20cm ,双缝与光屏的距离为1m 。当波长为0.6μm 的光正入射时,屏上相邻暗条纹的中心间距为 。 7、一螺线管的自感系数为0.01亨,通过它的电流为4安,则它储藏的磁场能量为 焦耳。 8、一质点的振动方程为 (SI 制),则它的周期是 ,频率是 ,最大速度是 。 9、半径为R 的圆柱形空间分布均匀磁场,如图,磁感应强度随时间以恒定速率变化,设 dt dB 为已知,则感生电场在rR 区域为 。 4 I n 4λn 32λn 2λn 43λ)6 100cos(1052 π π-?=-t x

大学物理(普通物理)考试试题及答案

任课教师: 系(室)负责人: 普通物理试卷第1页,共7页 《普通物理》考试题 开卷( )闭卷(∨ ) 适用专业年级 姓名: 学号: ;考试座号 年级: ; 本试题一共3道大题,共7页,满分100分。考试时间120分钟。 注:1、答题前,请准确、清楚地填各项,涂改及模糊不清者,试卷作废。 2、试卷若有雷同以零分记。 3、常数用相应的符号表示,不用带入具体数字运算。 4、把题答在答题卡上。 一、选择(共15小题,每小题2分,共30分) 1、一质点在某瞬时位于位矢(,)r x y r 的端点处,对其速度的大小有四种意见,即 (1)dr dt (2)d r dt r (3) ds dt (4) 下列判断正确的是( D ) A.只有(1)(2)正确; B. 只有(2)正确; C. 只有(2)(3)正确; D. 只有(3)(4)正确。 2、下列关于经典力学基本观念描述正确的是 ( B )

A、牛顿运动定律在非惯性系中也成立, B、牛顿运动定律适合于宏观低速情况, C、时间是相对的, D、空间是相对的。 3、关于势能的描述不正确的是( D ) A、势能是状态的函数 B、势能具有相对性 C、势能属于系统的 D、保守力做功等于势能的增量 4、一个质点在做圆周运动时,则有:(B) A切向加速度一定改变,法向加速度也改变。B切向加速度可能不变,法向加速度一定改变。 C切向加速的可能不变,法向加速度不变。D 切向加速度一定改变,法向加速度不变。 5、假设卫星环绕地球中心做椭圆运动,则在运动的过程中,卫星对地球中心的( B ) A.角动量守恒,动能守恒;B .角动量守恒,机械能守恒。 C.角动量守恒,动量守恒; D 角动量不守恒,动量也不守恒。 6、一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,两个质量相同、速度大小相同、方向相反并在一条直线上(不通过盘心)的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L和圆盘的角速度ω则有( C ) A.L不变,ω增大; B.两者均不变m m

相关主题
文本预览
相关文档 最新文档