当前位置:文档之家› 初中数学解题技巧综合(例程)

初中数学解题技巧综合(例程)

初中数学解题技巧综合(例程)
初中数学解题技巧综合(例程)

初中数学解题技巧综合

一:基本的解题技巧

初中数学解题技巧

浏览次数:1241次悬赏分:15 | 解决时间:2010-12-30 14:07 | 提问者:毒药样子

就是比如说做二次函数一次函数有什么快捷简便的技巧啊

比如说一看题的条件第一个想到的解题方法应该是什么的

我基础不是很好想从基础补起希望可以说的简单通俗一点谢谢了

最佳答案##########################################################################

至于你说的二次函数等的内容,要掌握好基础,把题型进行归类整理,做题自然就有思路了###########################二次函数#############

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a

III.二次函数的图像

在平面直角坐标系中作出二次函数y=x2的图像,

可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线

x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P [ -b/2a ,(4ac-b^2;)/4a ]。

当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

Δ= b^2-4ac<0时,抛物线与x轴没有交点。

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2;+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax^2;+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

画抛物线y=ax2时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。

二次函数解析式的几种形式

(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).

(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).

(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.

说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x 轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点

如果图像经过原点,并且对称轴是y轴,则设y=ax^2;如果对称轴是y轴,但不过原点,则设y=ax^2+k

定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax^2+bx+c

(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

x是自变量,y是x的函数

二次函数的三种表达式

①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

②顶点式[抛物线的顶点P(h,k) ]:y=a(x-h)^2+k

③交点式[仅限于与x轴有交点A(x1,0) 和B(x2,0) 的抛物线]:y=a(x-x1)(x-x2)

以上3种形式可进行如下转化:

①一般式和顶点式的关系

对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即

h=-b/2a=(x1+x2)/2

k=(4ac-b^2)/4a

②一般式和交点式的关系

x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)

#################另外,要掌握好一些常用的解题方法###################### 数学的解题方法是随着对数学对象的研究的深入而发展起来的。教师钻研习题、精通解题方法,可以促进教师进一步熟练地掌握中学数学教材,练好解题的基本功,提高解题技巧,积累教学资料,提高业务水平和教学能力。

1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8、面积法

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

10.客观性题的解题方法

选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。

(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。

二:浅谈解题能力培养

摘要:当今社会处于信息时代,数学教学也应适应时代的要求,走出课堂,走出题海,广泛涉猎资料,紧密贴近生活,着意提高学生的数学素养和知识应用能力.因此,在数学教学中应鼓励学生阅读.一道好题,一种妙解,一丝联系,一点变化都可能给你的解答带来简便.因此,培养学生的解题能力尤其显得重要. 关键词:审题解题能力解题思路解题策略回顾与探讨

数学解题能力是一种综合的能力,一般是指综合运用数学基础知识、基本方法和逻辑思维规律,整体发挥数学的基本能力和思维水平,对数学问题进行分析、解决的能力。对于学生来说,其中包括了思维创造的能力。因此,在教学中,要提高学生的解题能力,除了抓好基础知识、基本能力的学习与培养外,更重要的培养途径就是解题实践,就是遵循科学的解题顺序、有目的、有计划地引导学生“在游泳中学会游泳”,在亲自参与的解题实践过程中,学会解题,从中获得能力。下面就围绕解题的一般程序,来讨论如何培养学生的解题能力。

1、仔细、认真地审查题意的习惯。

仔细、认真地审题,提高审题能力是解题的首要前提。因为审题为探索解题途径提供方向,为选择解法提供决策的依据。因此,教学中要求学生养成仔细、认真的审题习惯,就是要对问题的条件、目标及有关的全部情况进行整体认识,充分理解题意,把握本质和联系,不断提高审题能力。具体地说,就是要做到以下四项要求:

l 了解题目的文字叙述,清楚地理解全部条件和目标,并能准确地复述问题、画出必要的准确图形或示意图;

l 整体考虑题目,挖掘题设条件的内涵、沟通联系、审清问题的结构特征。必要时,要会对条件或目标进行化简或转换,以利于解法的探索;

l 发现比较隐蔽的条件;

l 判明题型,预见解题的策略原则。

以上具体要求中,前两项是基本的,后两项是较高的。

事实上,审题能力主要体现在对题目的整体认识、对条件和目标的化简与转换以及发现隐蔽条件等方面的能力上。

例1 已知 a, b, c都是实数,求证;2a-(b+c), 2b-(a+c), 2c-(b+c)三个数中至少有一个数不大于零,而且至少有一个数不少于零。

如果审题中能考虑到“所证的三个数之和正好等于零”这一整体特征,则不难用反证法很容易地得出正确判断,使问题得到解决。

例2 已知△ABC,试求作一点P,使得△PAB、△PAC、△PBC的面积相等。

如果在审题中不注意P点的任意性,就会片面地、不自觉地增加条件“P点在△ABC内”,,从而求得唯一的一点P,即△ABC的重心。这就改变了原题的题意。事实上,若在平面上,P点的位置还可以有三个:分别以△ABC两相邻边为邻边的平行四边形顶点。若在空间,P点的位置就更多了。

例3 在实数范围内解方程:|x-2|+=3

审查题意就要从题目的特征——含有绝对值和算术根符号——中,善于发现隐含条件。即∵1-x≥0,∴x≤1.

有了这一条件,就可以将原方程转化为

2-x+=3, 即=x+1.

这样就成为标准的无理方程,它的解法是学生熟悉的。

2、分析解题思路、探求解题途径,发现解题规律、掌握解题方法是培养学生解题能力的核心和关键。

一个正确的解题途径、一条正确的解题思路的形成过程是比较复杂的,它涉及到学生的基础知识水平、解题经验和解题能力等因素。虽然就其思维形式而言,只有由因导果和执果索因的综合法和分析法两种,但就探索解题途径的策略、方法和技巧等问题而言,确是丰富多彩、千变万化和灵活多样的。因此,分析思路、探求途径是解题教学的重点,也是提高学生解题能力的核心、关键所在。这就要求我们教师在教学中做好以下几方面的工作:

(1)帮助学生掌握解题的科学程序。就是把整个解题过程分为前述的四个程序进行。掌握了这个科学程序,使解题过程程序化,就能使学生对解题总过程有一个有序框架,形成一种思维定势和化归的趋势,做到目标清楚、思维方向明确。为此,在教学中对于所有例题的讲解及示范解题,都要充分展现解题过程的四个程序及每个程序进行的过程,并且不断给以总结、反复强调。使学生在日积月累的熏陶中去掌握解题程序,领悟各程序中思维的方向和思维的进程。当然,这样做就必须要求教师事先要对例题的选取和设计进行深入研究,对例题的目的意图、隐含条件的析取、干扰信息的排除、思维偏差的纠正、解题策略的制定、解题关键的把握以及解题后的开拓和引申等都要做到心中有数。只要这样,才能避免就题论题、就事论事、无法展现思维过程的形式主义教学,从而真正达到解题教学的要求。

(2)帮助学生掌握解题的策略原则。探索解题途径,主要是根据审题提供的依据,制定解题策略,探索解题方向(转化命题是关键),沟通靠拢条件,把所面临的问题逐步靠拢和转化为既定解法和程序的规范问题,然后利用已知的理论、方法和技巧,实现问题的解决。因此,在教学中,必须结合例题的示范教学,有计划、有目的地帮助学生掌握解决数学问题的策略原则,培养和提高学生的探索能力。

(3)帮助学生掌握转化的数学方法。在教学中结合例题教学,帮助学生掌握一些常用的变形手段和转化方法,帮助学生理解这些方法的原理,把握方法的要点、作用、使用条件、使用范围以及这些方法的“变式”,学会灵活运用。

在初中数学中,除了上述的分析法、综合法、归纳法等推理方法外,常用的还有换元法,消元法,代定系数法等。

3、理顺解题思路、严格依据逻辑规律表达出规范化的解题过程是培养学生良好的解题习惯的重要途径。

一般来说,各种形式的数学习题都有一定的解答格式,解题中要严格按标准格式表达,当然,根据学生的不同学习阶段,标准格式的详略可以不尽相同,但逻辑顺序不能违反,证明推理中关键步骤的大前提必须表达清楚。这样做,可以培养和提高学生的逻辑思维能力和逻辑表达能力,同时也有助于学生解题能力的提高。

4、回顾与探讨解题过程,养成解题后的反思习惯,也是提高学生解题能力的基本途径。

解题后的回顾与探讨、分析与研究就是对解题的结果和解题的方法进行反省,对解题中的主要思想观点、关键因素及类同问题的解法进行概括、推广,从而帮助学生从中提炼出数学的基本思想和基本方法加以掌握,成为以后解新的问题时的有力工具。因此,使学生养成解题后的反思习惯,是解题教学非常重要的一环,

必须十分重视。

解题后的回顾,包括检验结果、讨论解法和推广三个方面。

(1)检验结果。主要是核查结果是否正确无误,推理是否有据,解答是否详尽无漏。

(2)讨论解法。主要是改进解法或寻求其它不同的解法;分析解法的特征、关键和主要思维过程;总结规律,概括为一般性的解法定势等。这将有利于开拓思维、积累经验、整理方法,有助于增强思维的灵活性和发展提高解题能力。(3)推广。解题后一般可朝三个方向进行推广。一是一般化,就是减弱问题的条件,把结果推广到条件更一般的情形,从而研究结论会有什么变化;二是特殊化,就是强化问题的条件,把结论用于条件更特殊的情形,从而研究结论又会有何变化;三是“发展性推广”,就是在原有条件、结论的基础上,进一步发展其空间形式或数量关系所得到的变化,它既不是一般化,也不是特殊化。例如,证明“任意四边形的四边中点顺次连结成一个平行四边形”以后,可进一步发展推广为:“这个平行四边形的周长等于原四边形的两条对角线长之和”。

解题后的推广,也是培养学生积极思维、发明发现、创造突破能力的有效途径。如果能让学生养成习惯,那么就可以在解题训练中跳出“题海”,通过少而精的解题,收到很大的效益。

5、合理调控解题活动,全面提高学生的解题能力素质。

学生的解题活动最能促进思维的发展,要使解题活动在发展学生思维上取得最佳效果,还必须合理地调控学生的活动,全面提高学生解题能力的素质。这是因为数学解题活动必须由学生亲自参加、独立进行,才能在实践中增长才干、提高能力;但是现代心理学的研究表明:学生的解题活动又必须置于教师的合理调控之下,依据学生思维发展的规律,为学生主动、独立地参与解题活动创设情境、启迪思维、指明方向。这就是说,要提高学生的解题能力,在教学中应该发挥教师的主导作用,引导学生发挥积极主动参与的主体作用。具体地说,应该做好以下工作:

(1)创设情境、调动学生积极思维,培养他们的学习兴趣,培养他们独立进行解题的能力。一般来说,解题教学的情境创设,主要包括问题情境的提供;解题基础知识、经验的准备;思维障碍的排除和问题情境激发的情感和动机状态等方面。在教学中,如果教师能针对这些方面,努力为教学情境的创设作好分析、奠基工作,就一定会有助于学生开展有成效的解题活动,从而提高他们的解题能力。(2)有系统、有层次地精心选配习题,合理组织训练、重点培养学生的基本数学思想和数学方法及其运用的能力。一般来说,解题教学中,除了要求例题的选配要具有目的性、典型性、启发性和延伸性等特点外,一般还应提供学生独立练习的习题,在选配时注意适用性、巩固性、实践性和发展性的原则。

这里还应指出,数学习题的题型应该多样化,提高学生的“解题胃口”。但这并不排除传统的、富有启发性的“老题”、“陈题”,不少好的题目仍然有使用价值;同时,也应该反对选编那些一味追求“新花样”的偏题、怪题和难题,这样是不利于学生发展的。

总之,培养学生的解题能力要通过掌握科学的解题程序、掌握解题的策略和方法、技巧;要通过我们教师引导下的主动参与活动;通过创设问题情境、调动学生的智力与非智力因素等基本途径。因此,要使学生的解题能力达到较高水平,并上升为一种创造才能,就要在整个的教学的过程中,始终都要注意培养和发展学生解题能力的各种因素,注意提高学生的整体素质。只有这样,解题能力的提高才

有根底和源泉,解题的功底才扎实。

三:详细解题方法教程

摘要:

在与北京地区十余位高中毕业班学生的接触后,结合我自身的经验,我发现当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学方法融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学解题方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学解题方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。

数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学解题方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学方法和思想也还是对你起作用。

数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学方法和数学思想的认识和运用,数学素质的综合体现就是“能力”。

为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本文浅陋介绍高考中常用的数学基本解题方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法。

在每节的内容中,先是对方法或者问题进行综合性的叙述,再以两种典例的形式出现。示范性典例进行详细的解答和分析,对方法和问题进行示范,再现性典例是一组简单的选择填空题进行方法的再现旨在检查学习的效果,起到巩固的作用。每个典例中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

关键词:高考解题方法数学解题技巧数学思想配方法换元法待定系数法数学归纳法参数法消去法反证法

1、配方法

配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。

最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。

配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如:

a2+b2=(a+b)2-2ab=(a-b)2+2ab;

a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b

2

)2+(

3

2

b)2;

a2+b2+c2+ab+bc+ca=1

2

[(a+b)2+(b+c)2+(c+a)2]

a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)

=…

结合其它数学知识和性质,相应有另外的一些配方形式,如:

1+sin2α=1+2sinαcosα=(sinα+cosα)2;

x2+1

2

x

=(x+

1

x

)2-2=(x-

1

x

)2+2 ;……等等。

1.1、示范性典例:

例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。

A. 23

B. 14

C. 5

D. 6

【分析】 先转换为数学表达式:设长方体长宽高分别为x,y,z ,则

211

424()()xy yz xz x y z ++=++=??

?

,而欲求对角线长x y z 222

++,将其配凑成两已知式的组

合形式可得。

【解】设长方体长宽高分别为x,y,z ,由已知“长方体的全面积为11,其12

条棱的长度之和为24”而得:211

424()()xy yz xz x y z ++=++=???

长方体所求对角线长为:x y z 222++=()()x y z xy yz xz ++-++22=

6112-=5

所以选B 。

【注】本题解答关键是在于将两个已知和一个未知转换为三个数学表示式,观察和分析三个数学式,容易发现使用配方法将三个数学式进行联系,即联系了已知和未知,从而求解。这也是我们使用配方法的一种解题模式。 例2. 设方程x 2+kx +2=0的两实根为p 、q ,若(p q )2+(q p

)2

≤7成立,求实数k 的取值范围。

【解】方程x 2+kx +2=0的两实根为p 、q ,由韦达定理得:p +q =-k ,pq =2 ,

(p q )2+(q p )2=p q pq 44

2+()=()()p q p q pq 222222

2+-=[()]()p q pq p q pq +--2222222=()k 2248

4

--≤7, 解得k ≤-10或k ≥10 。

又 ∵p 、q 为方程x 2+kx +2=0的两实根, ∴ △=k 2-8≥0即k ≥22或k ≤-22

综合起来,k 的取值范围是:-10≤k ≤-22 或者 22≤k ≤10。 【注】 关于实系数一元二次方程问题,总是先考虑根的判别式“Δ”;已知方程有两根时,可以恰当运用韦达定理。本题由韦达定理得到p +q 、pq 后,观察已知不等式,从其结构特征联想到先通分后配方,表示成p +q 与pq 的组合式。假如本题不对“△”讨论,结果将出错,即使有些题目可能结果相同,去掉对“△”的讨论,但解答是不严密、不完整的,这一点我们要尤为注意和重视。

例3. 设非零复数a 、b 满足a 2+ab +b 2=0,求(a

a b +)1998+(b a b

+)1998 。

【分析】对已知式可以联想:变形为(a

b

)2+(

a

b

)+1=0,则

a

b

=ω(ω

为1的立方虚根);或配方为(a+b)2=ab 。则代入所求式即得。

【解】由a2+ab+b2=0变形得:(a

b

)2+(

a

b

)+1=0 ,

设ω=a

b

,则ω2+ω+1=0,可知ω为1的立方虚根,所以:

1

ω

b

a

,ω3

=ω3=1。

又由a2+ab+b2=0变形得:(a+b)2=ab ,

所以 (

a

a b

+

)1998+(

b

a b

+

)1998=(

a

ab

2

)999+(

b

ab

2

)999=(

a

b

)999+(

b

a

)999=ω

999+ω999=2 。

【注】本题通过配方,简化了所求的表达式;巧用1的立方虚根,活用ω的性质,计算表达式中的高次幂。一系列的变换过程,有较大的灵活性,要求我们善于联想和展开。

【另解】由a2+ab+b2=0变形得:(a

b

)2+(

a

b

)+1=0 ,解出

b

a

13

2

i

后,化成三角形式,代入所求表达式的变形式(a

b

)999+(

b

a

)999后,完成后面的

运算。此方法用于只是未-±

13

2

i

联想到ω时进行解题。

假如本题没有想到以上一系列变换过程时,还可由a2+ab+b2=0解出:a

=-±

13

2

i

b,直接代入所求表达式,进行分式化简后,化成复数的三角形式,

利用棣莫佛定理完成最后的计算。1.2、再现性典例:

1. 在正项等比数列{a

n }中,a

1

?a

5

+2a

3

?a

5

+a

3

?a

7

=25,则 a

3

+a

5

_______。

2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。

A. 1

4

4

或k>1 C. k∈R D. k=1

4

或k=1

3. 已知sin4α+cos4α=1,则sinα+cosα的值为______。

A. 1

B. -1

C. 1或-1

D. 0

4. 函数y=log

1

(-2x2+5x+3)的单调递增区间是_____。

A. (-∞, 5

4] B. [5

4

,+∞) C. (-1

2

,5

4

] D. [5

4

,3)

5. 已知方程x2+(a-2)x+a-1=0的两根x

1、x

2

,则点P(x

1

,x

2

)在圆x2+y2=4

上,则实数a=_____。

【简解】 1小题:利用等比数列性质a

m p

-a

m p

+

=a

m

2,将已知等式左边后配

方(a

3+a

5

)2易求。答案是:5。

2小题:配方成圆的标准方程形式(x-a)2+(y-b)2=r2,解r2>0即可,选

B。

3小题:已知等式经配方成(sin2α+cos2α)2-2sin2αcos2α=1,求出

sinαcosα,然后求出所求式的平方值,再开方求解。选C。

4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。

5小题:答案3-11。

2、换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问

题,当然有时候要通过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。

三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,

易发现x∈[0,1],设x=sin2α,α∈[0,π

2

],问题变成了熟悉的求三角函数

值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x 、y 适合条件x 2+y 2=r 2(r>0)时,则可作三角代换x =rcos θ、y =rsin θ化为三角问题。

均值换元,如遇到x +y =S 形式时,设x =

S 2+t ,y =S

2

-t 等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小

也不能扩大。如上几例中的t>0和α∈[0,π

2

]。 2.1、示范性典例:

例1. 实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求

1S m a

x +

1S min

的值。(全国高中数学联赛题)

【分析】 由S =x 2+y 2联想到cos 2α+sin 2α=1,于是进行三角换元,设

x S y S ==??

???cos sin α

α

代入①式求S max 和S min 的值。 【解】设x S y S ==?????cos sin αα

代入①式得: 4S -5S 2sin αcos α=5

解得 S =

10

852-sin α

∵ -1≤sin2α≤1 ∴ 3≤8-5sin2α≤13 ∴ 1013≤1085-sin α≤103

1S max

1S min

310+1310=1610

=8

5

此种解法后面求S 最大值和最小值,还可由sin2α=810

S S

-的有界性而求,即解不等式:|

810

S S

-|≤1。这种方法是求函数值域时经常用到的“有界法”。 【另解】 由S =x 2

+y 2

,设x 2

=S 2+t ,y 2

=S 2-t ,t ∈[-S 2,S 2

],

则xy =±S t 22

4-代入①式得:4S ±5S t 224-=5,

移项平方整理得 100t 2+39S 2-160S +100=0 。

∴ 39S 2-160S +100≤0 解得:1013≤S ≤103

1S max

1S min

310+1310=1610

=8

5

【注】 此题第一种解法属于“三角换元法”,主要是利用已知条件S =x 2+y 2与三角公式cos 2α+sin 2α=1的联系而联想和发现用三角换元,将代数问题转化为三角函数值域问题。第二种解法属于“均值换元法”,主要是由等式S =x 2+y 2而按照均值换元的思路,设x 2=S 2

+t 、y 2=S 2

-t ,减少了元的个数,

问题且容易求解。另外,还用到了求值域的几种方法:有界法、不等式性质法、

分离参数法。

和“均值换元法”类似,我们还有一种换元法,即在题中有两个变量x 、y 时,可以设x =a +b ,y =a -b ,这称为“和差换元法”,换元后有可能简化代数式。本题设x =a +b ,y =a -b ,代入①式整理得3a 2+13b 2=5 ,求得a 2∈

[0,53],所以S =(a -b)2+(a +b)2=2(a 2+b 2)=1013+2013a 2∈[1013,103

],再

1S max

1S min

的值。

例2. △ABC 的三个内角A 、B 、C 满足:A +C =2B ,1cos A +1cos C =-2cos B

求cos

A C

-2

的值。(96年全国理) 【分析】 由已知“A +C =2B ”和“三角形内角和等于180°”的性质,可得

A C

B +=??

?12060°=°;由“A +C =120°”进行均值换元,则设A C =°α

=°-α6060+???

,再代入可求cos α即cos

A C

-2

。 【解】由△ABC 中已知A +C =2B ,可得 A C B +=???

12060°

=°,

由A+C=120°,设

A

C

=°α

=°-α

60

60

+

?

?

?

,代入已知等式得:

1 cos A +

1

cos C

1

60

cos()

?+α

1

60

cos()

?-α

1

1

2

3

2

cos sin

αα

-

+1

1 2

3

2

cos sin

αα

+

cos

cos sin

α

αα

1

4

3

4

22

-

cos

cos

α

α2

3

4

-

=-22,

解得:cosα=

2

2

,即:cos

A C

-

2

2

2

【另解】由A+C=2B,得A+C=120°,B=60°。所以

1

cos A

1

cos C

=-

2 cos B

=-22,设

1

cos A

=-2+m,

1

cos C

=-2-m ,

所以cosA=

1

2

-+m

,cosC=

1

2

--m

,两式分别相加、相减得:

cosA+cosC=2cos A C

+

2

cos

A C

-

2

=cos

A C

-

2

22

2

2

m-

cosA-cosC=-2sin A C

+

2

sin

A C

-

2

=-3sin

A C

-

2

2

2

2

m

m-

即:sin A C

-

2

=-

2

32

2

m

m

()

-

,=-

22

2

2

m-

,代入sin2

A C

-

2

+cos2

A C

-

2

1整理得:3m4-16m-12=0,解出m2=6,代入cos A C

-

2

22

2

2

m-

2

2

【注】本题两种解法由“A+C=120°”、“

1

cos A

1

cos C

=-22”分别进

行均值换元,随后结合三角形角的关系与三角公式进行运算,除由已知想到均值换元外,还要求对三角公式的运用相当熟练。假如未想到进行均值换元,也可由

三角运算直接解出:由A+C=2B,得A+C=120°,B=60°。所以

1

cos A

1

cos C

=-

2

cos B

=-22,即cosA+cosC=-22cosAcosC,和积互化得:

2cos

A C +2cos A C -2=-2[cos(A+C)+cos(A-C),即cos A C

-2=22

-2cos(A-C)=2

2

-2(2cos 2

A C

-2

-1),整理得:42cos 2

A C

-2

+2cos

A C

-2

-32=0, 解得:cos

A C -2=22

例3. 设a>0,求f(x)=2a(sinx +cosx)-sinx 2cosx

-2a 2的最大值和最小值。

【解】 设sinx +cosx =t ,则t ∈[-2,2],由(sinx +cosx)2

=1+2sinx 2cosx 得:sinx 2cosx =t 212-

∴ f(x)=g(t)=-

12(t -2a)2+1

2

(a>0),t ∈[-2,2] t =-2时,取最小值:-2a 2-22a -1

2

当2a ≥2时,t =2,取最大值:-2a 2+22a -1

2

当0<2a ≤2时,t =2a ,取最大值:1

2

∴ f(x)的最小值为-2a 2-22a -1

2

,最大值为

12022

22212222

()()<<-+-≥??

???

??a a a a 。 【注】 此题属于局部换元法,设sinx +cosx =t 后,抓住sinx +cosx 与sinx 2cosx 的内在联系,将三角函数的值域问题转化为二次函数在闭区间上的值域问题,使得容易求解。换元过程中一定要注意新的参数的范围(t ∈[-2,2])与sinx +cosx 对应,否则将会出错。本题解法中还包含了含参问题时分类讨论的数学思想方法,即由对称轴与闭区间的位置关系而确定参数分两种情况进行讨论。

一般地,在遇到题目已知和未知中含有sinx 与cosx 的和、差、积等而求三角式的最大值和最小值的题型时,即函数为f(sinx ±cosx ,sinxcsox),经常用到这样设元的换元法,转化为在闭区间上的二次函数或一次函数的研究。

例 4. 设对所于有实数x ,不等式x 2log 2

41()a a ++2x log 221

a

a ++log 2()a a +142

2

>0恒成立,求a 的取值范围。(87年全国理)

【分析】不等式中log 241()a a +、 log 221a

a +、log 2()a a +1422

三项有何联系?进行对数式的有关变形后不难发现,再实施换元法。

【解】 设log 221a a +=t ,则log 241()a a +=log 2812()a a +=3+log 2a a

+1

2=3

-log 221a a +=3-t ,log 2()a a +1422

=2log 2

a a +1

2=-2t , 代入后原不等式简化为(3-t )x 2+2tx -2t>0,它对一切实数x 恒成立,所以:

3048302

->=+-

t t t t ?(),解得t t t <<>???306或 ∴ t<0即log 221a

a +<0 0<21

a a +<1,解得0

换元及如何设元,关键是发现已知不等式中log 241()a a +、 log 221

a

a +、

log 2()a a +142

2

三项之间的联系。在解决不等式恒成立问题时,使用了“判别式法”。

另外,本题还要求对数运算十分熟练。一般地,解指数与对数的不等式、方程,有可能使用局部换元法,换元时也可能要对所给的已知条件进行适当变形,发现它们的联系而实施换元,这是我们思考解法时要注意的一点。

例5. 已知sin θx =cos θ

y ,且c o s 22θx +sin 22θy =10322()x y + (②式),求

x y 的值。

【解】 设sin θx =cos θ

y =k ,则sin θ=kx ,cos θ=ky ,且sin 2θ+cos 2

θ=k 2

(x 2

+y 2

)=1,代入②式得: k y x 222+k x y

222=10

322()x y +=1032k 即:y x 22+x y 2

2

=103

设x y

2

2=t ,则t +1t =103 , 解得:t =3或13 ∴x y =±3或±33

【另解】 由x y =sin cos θθ=tg θ,将等式②两边同时除以cos 22

θ

x ,再表示成

含tg θ的式子:1+tg 4θ=()()110311

22+?

+

tg tg θθ

103

tg 2

θ,设tg 2θ=t ,则3t 2—10t +3=0,

∴t =3或1

3, 解得x y =±3或±33。

【注】 第一种解法由

sin θx =cos θ

y

而进行等量代换,进行换元,减少了变量的个数。第二种解法将已知变形为

x

y

=sin cos θθ,不难发现进行结果为tg θ,再进行换元和变形。两种解法要求代数变形比较熟练。在解高次方程时,都使用

了换元法使方程次数降低。

例6. 实数x 、y 满足()x -192+()y +116

2

=1,若x +y -k>0恒成立,求k 的范

围。

【分析】由已知条件()x -192+()y +116

2

=1,可以发现它与a 2+b 2=1有相似

之处,于是实施三角换元。

【解】由()x -192+()y +116

2=1,设x -13=cos θ,y +1

4=sin θ,

即:x y =+=-+???

1314cos sin θ

θ 代入不等式x +y -k>0得:

3cos θ+4sin θ-k>0,即k<3cos θ+4sin θ=5sin(θ+ψ) 所以k<-5时不等式恒成立。

【注】本题进行三角换元,将代数问题(或者是解析几何问题)化为了含参三角不等式恒成立的问题,再运用“分离参数法”转化为三角函数的值域问题,从而求出参数范围。一般地,在遇到与圆、椭圆、双曲线的方程相似的代数式时,或者在解决圆、椭圆、双曲线等有关问题时,经常使用“三角换元法”。

本题另一种解题思路是使用数形结合法的思想方法:在平面直角坐标系,不等式ax +by +c>0 (a>0)所表示的区域为直线ax +by +c =0所分平面成两部分中含x 轴正方向的一部分。此题不等式恒成立问题化为图形问题:椭圆上的点始终位于平面上x +y -k>0的区域。即当直线x +y -k =0在与椭圆下部相切的切线之下时。当直线与椭圆相切时,方程组

16191144

22()()x y x y k -++=+-=??

?有相等的一组实数解,消元后由△=0可求得k =-3,所以k<-3时原不等式恒成立。

2.2、再现性典例:

1.y =sinx 2cosx +sinx+cosx 的最大值是_________。

2.设f(x 2+1)=log a (4-x 4) (a>1),则f(x)的值域是_______________。

3.已知数列{a n }中,a 1=-1,a n +12a n =a n +1-a n ,则数列通项a n =___________。

4.设实数x 、y 满足x 2+2xy -1=0,则x +y 的取值范围是___________。

5.方程1313++-x x

=3的解是_______________。

6.不等式log 2(2x -1) 2log 2(2x +1-2)〈2的解集是_______________。

【简解】1小题:设sinx+cosx =t ∈[-2,2],则y =t 22+t -1

2,对称

轴t =-1,当t =2,y max =1

2

+2;

2小题:设x 2+1=t (t ≥1),则f(t)=log a [-(t-1)2+4],所以值域为(-∞,log a 4]; 3小题:已知变形为

11

a n +-

1a n =-1,设b n =1

a n

,则b 1=-1,b n =-1+(n -1)(-1)=-n ,所以a n =-

1

n

; 4小题:设x +y =k ,则x 2-2kx +1=0, △=4k 2-4≥0,所以k ≥1或k ≤-1;

x

k>0

k 平面区域

中考必考知识点初中数学规律题的解题方法和技巧

一、基本方法——看增幅 (一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。 例:4、10、16、22、28……,求第n位数。 分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是: 4+(n-1)×6=6n-2 (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。 基本思路是:1、求出数列的第n-1位到第n位的增幅; 2、求出第1位到第第n位的总增幅; 3、数列的第1位数加上总增幅即是第n位数。 举例说明:2、5、10、17……,求第n位数。 分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为: [3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1 所以,第n位数是:2+ n2-1= n2+1 此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。 (三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8. (三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

初中数学解题技巧-常用的数学思想方法

初中数学解题技巧:常用的数学思想方法 初中数学解题技巧:常用的数学思想方法 1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。 2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。 4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。 5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。 6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。 7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因” 8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果” 9、演绎法:由一般到特殊的推理方法。

初中数学解题技巧(史上最全)

初中数学选择题、填空题解题技巧(完美版) 选择题目在初中数学试题中所占的比重不是很大,但是又不能失去这些分数,还要保证这些分数全部得到。因此,要特别掌握初中数学选择题的答题技巧,帮助我们更好的答题,选择填空题与大题有所不同,只求正确结论,不用遵循步骤。我们从日常的做题过程中得出以下答题技巧,跟同学们分享一下。 1.排除选项法: 选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。 2.赋予特殊值法: 即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。 3.通过猜想、测量的方法,直接观察或得出结果: 这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。 4、直接求解法: 有些选择题本身就是由一些填空题,判断题,解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。我们在做解答题时大部分都是采用这种方法。如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元 5、数形结合法: 解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。 6、代入法: 将选择支代入题干或题代入选择支进行检验,然后作出判断。 7、观察法:观察题干及选择支特点,区别各选择支差异及相互关系作出选择。 8、枚举法:列举所有可能的情况,然后作出正确的判断。 例如,把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( ) (A)5种(B)6种(C)8种(D)10种。分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B. 9、待定系数法: 要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。 10、不完全归纳法: 当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。 以上是我们给同学们介绍的初中数学选择题的答题技巧,希望同学们认真掌握,选择题的分数一定要拿下。初中数学答题技巧有以上十种,能全部掌握的最好;不能的话,建议同学们选择集中适合自己的初中数学选择题做题方法。 初中填空题解法大全 一.数学填空题的特点: 与选择题同属客观性试题的填空题,具有客观性试题的所有特点,即题目短小精干,考查目标集中明确,答案唯一正确,答卷方式简便,评分客观公正等。但是它又有本身的特点,即没有备选答案可供选择,这就避免了选择项所起的暗示或干扰的作用,及考生存在的瞎估乱猜的侥幸心理,从这个角度看,它能够比较真实地考查出学生的真正水平。考查内容多是“双基”方面,知识复盖面广。但在考查同样内容时,难度一般比择题略大。 二.主要题型: 初中填空题主要题型一是定量型填空题,二是定性型填空题,前者主要考查计算能力的计算题,同时也考查考生对题目中所涉及到数学公式的掌握的熟练程度,后者考查考生对重要的数学概念、定理和性质等数学基础知识的理解和熟练程度。当然这两类填空题也是互相渗透的,对于具体知识的理解和熟练程度

初中数学解题技巧

初中数学解题技巧 一、数学思想方法在解题中有不可忽视的作用 解题的学习过程通常的程序是:阅读数学知识,理解概念;在对例题和老师的讲解进 行反思,思考例题的方法、技巧和解题的规范过程;然后做数学练习题。 基本题要练程序和速度;典型题尝试一题多解开发数学思维;最后要及时总结反思改错,交流学习好的解法和技巧。著名的数学教育家波利亚说“如果没有反思,就错过了解题的 的一次重要而有意义的方面。” 教师在教学设计中要让解学生好数学问题,就要对数学思想方法有清楚的认识,才能 更好的挖掘题目的功能,引导学生发现总结题目的解法和技巧,提高解题能力。 1. 函数与方程的思想 函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点 去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去 分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。 2. 数形结合的思想 数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以 借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特 征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。 3. 分类讨论的思想 分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识 点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问 题中常常需要分类讨论各种可能性。 解决分类讨论问题的关键是化整为零,在局部讨论降低难度。常见的类型:类型 1 :由数学概念引起的的讨论,如实数、有理数、绝对值、点直线、圆与圆的位置关系等概念 的分类讨论;类型 2 :由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;类型 3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应 用引起的讨论;类型 4 :由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形 中的相关问题引起的讨论。类型 5 :由某些字母系数对方程的影响造成的分类讨论,如 二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶 点坐标的影响,常数项对截距的影响等。

初中数学常用的十种解题方法

初中数学常用的十种解题方法 数学的解题方法是随着对数学对象的研究的深入而发展起来的。教师钻研习题、精通解题方法,可以促进教师进一步熟练地掌握中学数学教材,练好解题的基本功,提高解题技巧,积累教学资料,提高业务水平和教学能力。 下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系

初中数学几何解题技巧

学习总结:中考几何题证明思路总结 几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的基本证明题做了一个较为全面的思路总结。

五、证明线段的和、差、倍、分 1.作两条线段的和,证明与第三条线段相等。 2.在第三条线段上截取一段等于第一条线段,证明余下部分 等于第二条线段。 3.延长短线段为其二倍,再证明它与较长的线段相等。 4.取长线段的中点,再证其一半等于短线段。 5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。 六、证明角的和、差、倍、分 1.作两个角的和,证明与第三角相等。 2.作两个角的差,证明余下部分等于第三角。 3.利用角平分线的定义。 4.三角形的一个外角等于和它不相邻的两个内角的和。 七、证明两线段不等 1.同一三角形中,大角对大边。 2.垂线段最短。 3.三角形两边之和大于第三边,两边之差小于第三边。 4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。 5.同圆或等圆中,弧大弦大,弦心距小。 6.全量大于它的任何一部分。 八、证明两角不等 1.同一三角形中,大边对大角。 2.三角形的外角大于和它不相邻的任一内角。 3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。 4.同圆或等圆中,弧大则圆周角、圆心角大。 5.全量大于它的任何一部分。 九、证明比例式 1.利用相似三角形对应线段成比例。 2.利用内外角平分线定理。 3.平行线截线段成比例。 以上九项是中考几何证明题中最常出现的基本证明思路的总结,但这些思路仅能称为某种“固定的套路”。几何证明题需要学生具有严密的逻辑思维。考试是活的,知识点和套路是死的,学生只有掌握了对应的方法,再根据题目中的条件进行合理选择,才能顺利把题目攻破。

史上最全的初中数学解题方法大全

一、选择题的解法 1、直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。 2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关; 在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。 3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。 4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。 5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。 二、常用的数学思想方法 1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。 2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。 在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。 如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。 4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。 为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。 5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

浅谈初中数学证明题解题技巧

浅谈初中数学证明题解题技巧 【摘要】初中数学的知识体系相对比较系统、完整,教学的难点当中,有一个就是关于数学证明题的有关解答。在实际的教学过程中,我们发现,中学生基本能够达到教学大纲的要求,但是往往不能够做到一点不差,总是出现这样或者那样的问题。本文从实际情况出发,针对中学生在数学证明题中常出现的错误和主要存在的问题进行分析,浅谈数学证明题目的解题技巧。 【关键词】初中数学证明题解题技巧 一、学生在数学证明题中主要出现的问题 数学证明题一直是初中数学的教学重点,也是教学难点。因为数学证明不仅要求学生对于理论知识要有很强的理解能力,还要求学生要有空间的形象构造和强大的知识理论体系做后盾,同时还要具备分析问题的技能、严密的语言表达和敏锐的逻辑思维。这些限制因素都给正处于思维发育期的中学生带来了困难。学生往往是学一条会一条,不能触类旁通,不能纵向整合。举个例子,让学生证明两条直线平行,可以有多少种方法?如果用同旁内角证明,需要什么条件?如果是内错角呢?同位角行不行?这并不是一个具体的证明题题目,但是却可以提示学生,引导他们进行知识整合,仔细的梳理理论体系。 二、解题技巧 (一仔细审题,确定题意 审题是做题的第一步,这个过程就像翻译机的工作原理,要把纯文字语言转换成我们所理解的数学模型。首先要仔细的读题,标注出重点词,分清已知和求证。比如讲题目中的要求改写成“如果在等腰三角形中,做出两底角的角平分线,那么可以推出这两条角平分线长度相等”。如果有图就最好结合图形,如果题目没有给图,就要求学生根据题意做出合理图形,将图形模型建立起来,切忌凭空想象,一定要动手画图。再次就是已知数学语言和符号写出“已知”和“求证”,“已知”是命题的条件,“求证”是命题的结论,一定要注意已知和求证的表达方式是数学语言、符号。 审题中需要注意的是,除了要标记题目的重点,还要学会适当的引申。在审题的过程中将一些课堂上学过的基本定理和基本图形、特殊图形与题目相结合,便于后面进行解题时提高正确率和速度。这也是对学生构建知识体系提出了更高的要求。 整个思维过程图如下: (二用多种思维方式,分析已知、求证和图形 数学证明题的思路是非常广阔的,有逆向思维、正向思维以及正逆结合三种主要思考方式: 正向思维是最常用的方式,也就是审题之后顺着题目要求,从前到后一点点求证,这是证明题的基本方法,中等难度题目、简单难度题目中较多使用的就是这种方法。

初中数学各题型解题方法和技巧

初中数学各题型解题方法和技巧 选择题的解法 1.直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。 2.特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关; 在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。 3.淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。 4.逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。 5.数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。常用的数学思想方法 1.数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。 2.联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。 如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3.分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。 4.待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。 5.配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。 6.换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。 7.分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因” 8.综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果” 9.演绎法:由一般到特殊的推理方法。

初中数学十大解题提分技巧

1、配方法: 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法: 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法: 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理: 一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法: 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。 6、构造法: 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。 7、反证法:

中学数学常用的解题方法

2019中学数学常用的解题方法下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个

部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文 水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。知道“是这样”,就是讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇一律便成了中

初中数学解题方法归纳总结

初中数学知识点归纳总结 一、基本运算方法 (2) 1、配方法 (2) 2、因式分解法 (2) 3、换元法 (2) 4、判别式法与韦达定理 (2) 5、待定系数法 (3) 6、构造法 (3) 7、反证法 (3) 8、面积法 (3) 9、几何变换法 (4) 10、客观性题的解题方法 (4) 二、基本定理 (5) 三、常用数学公式 (10)

一、基本运算方法 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等

初中数学各类题型解题技巧

初中数学各类题型解题技巧 1.数形结合思想就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。 2.联系与转化的思想事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3.分类讨论的思想在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。 4.待定系数法当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。 5.配方法就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。 6.换元法在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。 7.分析法在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因” 8.综合法在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”

初中数学解题技巧总结大全_答题技巧

初中数学解题技巧总结大全_答题技巧 今天小编为大家整理了一篇有关初中数学解题技巧总结大全的相关内容,以供大家阅读! 一、选择题的解法 1、直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。 2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关; 在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。 3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。 4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。 5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。 二、常用的数学思想方法 1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。 2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。 在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。 如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。 3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

初中数学几何题解题技巧

初中数学几何题解题技巧 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整 时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的 线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基 本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则 可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果 出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添 加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。 当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一 直线时可添加中心对称形全等三角形加以证明,添加方法是将四个 端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加 平行线得平行线型相似三角形。若平行线过端点添则可以分点或另 一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形 当出现30,45,60,135,150度特殊角时可添加特殊角直角三 角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角 形三边比为1:2:√3进行证明 (9)半圆上的圆周角 出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角 则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像 房子不外有一砧,瓦,水泥,石灰,木等组成一样。 1.三角形问题添加辅助线方法

初中数学证明题的解题技巧

浅谈初中数学证明题解题技巧与步骤 北师大版初中数学教材中《证明》占三章节,教材这样安排的目地是想:通过对《证明》的学习,让学生通过对图形的性质及相互关系进行大量的探索,在探索的同时,使学生经历推理的过程,进行了简单的推理训练,从而具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。但生活很丰满,现实很骨干,许多学生在实际解决证明题的过程中,却因为种种原因而感到无从下手!那如何求解证明题呢?如何让学生不再畏惧证明题呢?通过对教材中《证明》的教学,根据学生的认知水平,本人认为可以从以下六个方面来解决: [例题] 证明:等腰三角形两底角的平分线相等 1.弄清题意 此为“文字型”数学证明题,既没有图形,也无直观的已知与求证。如何弄清题意呢?根据命题的定义可知,命题由条件与结论两部分组成,因此区分命题的条件与结论至关重要,是解题成败的关键。命题可以改写成“如果………..,那么……….”的形式,其中“如果………..”就是命题的条件,“那么…….”就是命题的结论,据此对题目进行改写:如果在等腰三角形中分别作两底角的平

分线,那么这两条平分线长度相等。于是题目的意思就很清晰了,就是在等腰三角形中作两底角平分线,然后根据已知的条件去求证这两条平分线相等。这样题目要求我们做什么就一目了然了! 2.根据题意,画出图形。 图形对解决证明题,能起到直观形象的提示,所以画图因尽量与题意相符合。并且把题中已知的条件,能标在图形上的尽量标在图形上。 3.根据题意与图形,用数学的语言与符号写出已知和求证。 众所周知,命题的条件---已知,命题的结论---求证,但要特别注意的是,已知、求证必须用数学的语言和符号来表示。 已知:如图(1),在△ABC中,AB=AC, BD、CE分别是△ABC的角平分线。 求证:BD=CE 4.分析已知、求证与图形,探索证明的思路。 对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

初中数学解题技巧(史上最全)

目录 一选择填空题解题技巧(一) 二选择填空题解题技巧(二) 三初中数学常用十大解题技巧举例 四数学思想在初中数学解题中的应用 选择题与填空题解题技巧(一)选择题和填空题是中考中必考的题目,主要考查对概念、基础知识的理解、掌握及其应用.填空题所占的比例较大,是学生得分的重要来源.近几年,随着中考命题的创新、改革,相继推出了一些题意新颖、构思精巧、具有一定难度的新题型.这就要求同学切实抓好基础知识的掌握,强化训练,提高解题的能力,才能在中考中减少失误,有的放矢,从容应对. 解题规律:要想迅速、正确地解选择题、填空题,除了具有准确计算能力、严密的推理能力外,还要有解选择题、填空题的方法与技巧.常用方法有以下几种: (1)直接推演法:直接从命题给出的条件出发,运用概念,公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法. (2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代人条件中去验证,找出正确答案.此法称为验证法(也称代入法).当遇到定量命题时,常用此法. (3)特值法:用合适的特殊元素(如数或图形)代人题设条件或结论中去,从而获得解

答.这种方法叫特殊元素法. (4)排除、筛选法;对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法. (5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法.图解法是解选择题常用方法之一. (6)分析法:直接通过对选择题的条件和结论,作详尽地分析、归纳和判断,从而选出正确的结果,称为分析法. (7)整体代入法:把某一代数式进行化简,然后并不求出某个字母的取值,而是直接把化简的结果作为一个整体代入。 【典例剖析】 1.(直接推演法)下列命题中,真命题的个数为( ) ①对角线互相垂直平分且相等的四边形是正方形,②如果四边形的两条对角线互相垂直,那么它的面积等于两条对角线长的积的一半,③在一个圆中,如果弦相等,那么所对的圆周角相等,④已知两圆半径分别为5,3,圆心距为2,那么两圆内切( ) A .1 B .2 C .3 D .4 2.(整体代入法)已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式 22008m m -+的值为( ) A .2006 B .2007 C .2008 D .2009 3.(图解法)已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5, 7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3<y 2

初中数学解题技巧(史上最全)

初中数学解题技巧(史上最全) 目录一选择填空题解题技巧二选择填空题解题技巧三初中数学常用十大解题技巧举例四数学思想在初中数学解题中的应用选择题与填空题解题技巧选择题和填空题是中考中必考的题目,主要考查对概念、基础知识的理解、掌握及其应用.填空题所占的比例较大,是学生得分的重要来源.近几年,随着中考命题的创新、改革,相继推出了一些题意新颖、构思精巧、具有一定难度的新题型.这就要求同学切实抓好基础知识的掌握,强化训练,提高解题的能力,才能在中考中减少失误,有的放矢,从容应对.解题规律:要想迅速、正确地解选择题、填空题,除了具有准确计算能力、严密的推理能力外,还要有解选择题、填空题的方法与技巧.常用方法有以下几种:(1)直接推演法:直

接从命题给出的条件出发,运用概念,公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法.(2)验证法:题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代人条件中去验证,找出正确答案.此法称为验证法(也称代入法).当遇到定量命题时,常用此法.(3)特值法:用合适的特殊元素(如数或图形)代人题设条件或结论中去,从而获得解答.这种方法叫特殊元素法.- 1 -(4)排除、筛选法;对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法.(5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法.图解法是解选择题常用方法之一.(6)分析法:直接通过对选择题的条件和结论,

初中数学解题技巧

初中数学解题技巧(详细) 一、答题原则 大家拿到考卷后,先清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。如果发现问题,要及时报告监考老师处理。 答题时,一般遵循如下原则: 1.从前向后,先易后难。通常试题的难易分布是按每一类题型从前向后,由易到难。因此,解题顺序也宜按试卷题号从小到大,从前至后依次解答。当然,有时但也不能机械地按部就班。中间有难题出现时,可先跳过去,到最后攻它或放弃它。先把容易得到的分数拿到手,不要“一条胡同走到黑”,总的原则是先易后难,先选择、填空题,后解答题。 2.规范答题,分分计较。数学分I、II卷,第I卷客观性试题,用计算机阅读,一要严格按规定涂卡,二要认真选择答案。第II卷为主观性试题,一般情况下,除填空题外,大多解答题一题设若干小题,通常独立给分。解答时要分步骤(层次)解答,争取步步得分。解题中遇到困难时,能做几步做几步,一分一分地争取,也可以跳过某一小题直接做下一小题。 3.得分优先、随机应变。在答题时掌握的基本原则是“熟题细做,生题慢做”,保证能得分的地方绝不丢分,不易得分的地方争取得分,但是要防止被难题耗时过多而影响总分。 4.填充实地,不留空白。考试阅卷是连续性的流水作业,如果你在试卷上留下的空白太多,会给阅卷老师留下不好印象,会认为你确实不行。另外每道题都有若干采分点,触到采分点便可给分,未能触到采分点也没有倒扣分的规定。因此只要时间允许,应尽量把试题提问下面的空白处写上相应的公式或定理等有关结论。 5.观点正确,理性答卷。不能因为答题过于求新,结果造成观点错误,逻辑不严密;或在试卷上即兴发挥,涂写与试卷内容无关的字画,可能会给自己带来意想不到的损失。胡乱涂写可以认为是在试卷上做记号,而判作弊。因此,要理性答卷。 6.字迹清晰,合理规划。这对任何一科考试都很重要,尤其是对“精确度”较高的数理化,若字迹不清无法辨认极易造成阅卷老师的误判,如填空题填写带圈的序号、数字等,如不清晰就可能使本来正确的失了分。另外,卷面答题书写的位置和大小要计划好,尽量让卷面安排做到“前紧后松”而不是“前松后紧”。特别注意只能在规定位置答题,转页答题不予计分。 二、审题要点 审题包括浏览全卷和细读试题两个方面。 一是开考前浏览。开考前5分钟开始发卷,大家利用发卷至开始答题这段有限的时间,通过答前浏览对全卷有大致的了解,初步估算试卷难度和时间分配,据此统筹安排答题顺序,做到心中有数。此时考生要做到“宠辱不惊”,也就是说,看到一道似曾相识的题时,心中不要窃喜,而要提醒自己,“这道题做时不可轻敌,小心有什么陷阱,或者做的题目只是相似,稍微的不易觉察的改动都会引起答案的不同”。碰到一道从未见过,猛然没思路的题时,更不要受到干扰,相反,此时应开心,“我没做过,别人也没有。这是我的机会。”时刻提醒自己:我易人易,我不大意;我难人难,我不畏难。 二是答题过程中的仔细审题。这是关键步骤,要求不漏题,看准题,弄清题意,了解题目所给条件和要求回答的问题。不同的题型,考察不同的能力,具有不同的解题方法和策略,评分方式也不同,对不同的题型,审题时侧重点有所不同。 1.选择题是所占比例较大的客观性试题,考察的内容具体,知识点多,“双基”与能力并重。对选择题的审题,要搞清楚是选择正确陈述还是选择错误陈述,采用特殊什么方法求解等。 2.填空题属于客观性试题。一般是中档题,但是由于没有中间解题过程,也就没有过程分,稍微出现点错误就和一点不会做结果相同,“后果严重”。审题时注意题目考查的知识点、

相关主题
文本预览
相关文档 最新文档