当前位置:文档之家› 向量组线性相关与线性无关

向量组线性相关与线性无关

向量组线性相关与线性无关
向量组线性相关与线性无关

向量组线性相关与线性无关的判别方法

摘要 向量组的线性相关性与线性无关性是线性代数中最为抽象的概念之一,如何判别向量组的

线性相关与线性无关是正确理解向量的关键,本文介绍了它与行列式、矩阵、线性方程组的解之间的关系.总结了向量组线性相关和线性无关的判定方法.

关键词 向量组 线性相关 线性无关 矩阵 秩

1 引言

在高等代数中,向量组的线性相关和线性无关的判定这个课题有许多的研究成果,它与行列式,矩阵,线性方程组的解,二次型,线性变换以及欧式空间都有着重要的联系,然而向量的线性相关与线性无关的判别是比较抽象和难以理解的,实际上,向量组的线性相关与线性无关是相对的,我们只要掌握了线性相关的判别,那么线性无关的判别也就迎刃而解了,至今已给出了以下几种常见的方法:利用定义法判断,利用齐次线性方程组的解判断,利用矩阵的秩判断,利用行列式的值判断等.其中,利用齐次线性方程组,利用矩阵的秩,利用行列式的值这三种方法的出发点不同但实质是一样的.

2 向量组线性相关和线性无关的定义

定义 设向量组m ααα,,,21 都为n 维向量,如果数域P 中存在一组不全为零的数

12,m k k k ,使0332211=++++m m k k k k αααα 则称向量组是线性相关, 反之,若数域

P 中没有不全为零的数12

,m k k k ,使

0332211=++++m m k k k k αααα ,

称它是线性无关.

3 向量组线性相关和线性无关的判定方法 3.1 一个向量与两个向量线性相关的判定方法

由定义可以看出,零向量的任何一个线性组合为零,只要取系数不为零,即可以得出这个向量是线性相关的.

命题1 一个向量线性相关的充分条件是它是一个零向量.

关于两个向量的线性相关性判断可以转化为向量的成比例判断.

命题2 两个n 维向量()n a a a ,,,21 =α,

()n b b b 21,=β线性相关的充要条件是i a 与()n i b i 2,1=对应成比例.

命题3 若向量组m ααα,,,21 线性相关,则任一包含这组向量的向量组都线性相关. 证明 设m ααα,,,21 线性相关,s m m m ++ααααα,,,,,,121 是包含m ααα,,,21 的一组向量,由于m ααα,,,21 线性相关,则存在一组不全为零的数12

,m k k k 使得

0332211=++++m m k k k k αααα 此时有

0001332211=+++++++++s m m m m k k k k αααααα ,

因此,s m m m ++ααααα,,,,,,121 线性相关.证毕.

由命题3可知,在多个向量构成的向量组中,如果该向量组中含有零向量或包含成比例的两向量,那么这个向量组必定线性相关.

命题4 含有零向量或成比例的两向量的向量组必线性相关.

3.2.1 运用定义判定

由定义判断向量组的线性相关性是最直接的方法,于是我们知道若想判断一个向量组的线性相关性只要求出线性表示的相关系数,并由系数的值便可以判断出向量组是否线性相关.

例1 设m m m ααβααβααβ+=+=+=--11322211,,, ,证明,当m 为偶数时,

123,,,m ββββ线性相关.

证明 令1122330ββββ+++

=m m k k k k ,即

()()()0

1322211=++++++a a k a a k a a k m m ,

又即

()()()0

121211=++++++-m m m m a k k a k k a k k ,

1,142131-========-m m k k k k k k ,

则有

0332211=++++m m k k k k ββββ .

由线性相关的定义知,m βββ,,,21 线性相关.

3.2.2 用向量组的秩和矩阵的秩判断

向量组的秩是指向量组中任一个极大无关组所含的向量个数.

命题5 一个向量组线性无关的充要条件是它的秩与它所含的向量的个数相同. 若向量组的秩等于向量的个数,则该向量组是线性无关的,若向量组的秩小于向量的个数,则该向量组是线性相关的.

例2 设向量组()()()1,4,1,2,4,5,2,4,1,3,1,2321--=-=-=ααα,判断321,,ααα的线性相关性.

()()

0,0,0,04,453,2,242321321321321332211=-+++---++=++k k k k k k k k k k k k k k k ααα得0321===k k k ,于是321,,ααα线性无关.

例3 设向量组m ααα,,,21 线性无关,且可由向量组m βββ,,,21 线性表示.证明:

m βββ,,,21 也线性无关,且与12,,,m ααα等价.

证明 如果m βββ,,,21 线性相关,假设r βββ,,,21 是它的一个极大无关组,如果

m r =,就说明了m βββ,,,21 就是它本身的极大无关组,当然是线性无关的,出现矛盾!下

面考虑m r <.又因为向量组m ααα,,,21 可由m βββ,,,21 线性表示,则m ααα,,,21 也可由m βββ,,,21 线性表示,于是有r m ≤,矛盾!

由于m βββ,,,21 线性无关,则()m R m =βββ,,,21 ,又m ααα,,,21 可由

m βββ,,,21 线性表示,所以,

{}?m βββ,,,21 {}m m βββααα,,,,,,,2121 等价,所以

()m R m m =βββααα,,,,,,,2121 .

于是m ααα,,,21 和m βββ,,,21 都是{}m m βββααα,,,,,,,2121 的极大无关组.所以

它们是等价的,证毕.

命题6 设m ααα,,,21 为n 维列向量,矩阵),,,(21m A ααα =. (i)当()m A R <时,向量组12,,m ααα线性相关; (ii)当()m A R =时,向量组12,,m ααα线性无关.

例4 判断向量组()

12,1,0,5

αT

=,()

27,5,4,1

αT

=-- ,()

33,7,4,11

αT

=--线性相关性.

解 利用矩阵的初等行变换将方程组的系数矩阵A 化为行阶梯形矩阵

=A 2731-5-70445-1-11??

??

?

???????→?

?

???

???????11-1-54403727-5-1→????????????1101101107-5-1→????????????0000001107-5-1 由行阶梯形矩阵知()

23R

A =<,所以向量组321,,ααα是线性相关的.

上面是以321,,ααα为列向量组构造矩阵,根据矩阵的行秩与列秩的关系,用321,,ααα为行向量组构造矩阵,在进行初等行或者列变换也可以得到相同的结果.

3.2.3 利用行列式的值判断

命题7 若()()()nn n n n n n a a a a a a a a a ,,,,,,,,,,,,21222212112111 ===ααα,以

n ααα,,,21 作为列向量构成的矩阵),,,(21n A ααα =是一个方阵,

?

?

???

???????=nn n n

n n a a a a a a a a a A 2122212

12111

(i)当0=A 时,向量组ααα12,,n 线性相关. (ii)当A 0≠时,向量组ααα12,,n 线性无关.

例 5 设()

αT

=11,1,1

,()

()ααT

T

==231,2,3

,1,3,t 问t 取何值时,向量组

321,,ααα线性相关.

解 向量组321,,ααα的个数和维数相等都为3,

=A 531321111-=t t

可见当5=t 时,0=A ,所以向量组321,,ααα线性相关.

3.2.4 利用齐次线性方程组的解判断

对于()111211,,,n a a a αT

=,()212222,,

,n a a a αT

=,()12,,

,m m m nm a a a αT

=的线性

相关判断

命题8 若m ααα,,,21 为系数向量的齐次线性方程组02211=+++m m x x x ααα 有非零解,则向量组m ααα,,,21 线性相关,若该齐次线性方程组只有零解,则向量组

m ααα,,,21 线性无关.

例6 已知()11,1,1α=,()21,2,3α= ,()

31,3,t α= (i)当t 为何值时,向量组321,,ααα线性无关? (ii)当t 为何值时,向量组321,,ααα线性相关?

(iii)当向量组321,,ααα线性相关,将3α表示为1α和2α的线性组合. 解 设有实数321,,x x x 使0332211=++αααx x x 则可以得到方程组

???

??=++=++=++0

20320

321

321321tx x x x x x x x x 其系数行列式 =D t

313211

11

(i)当5≠t 时,0≠D ,方程组只有零解,即0321===x x x ,这时,向量组123

,,a a a 线性无关.

(ii)当5=t 时0=D 方程组有非零解,即存在不全为零的数,321,,x x x 使,

0332211=++αααx x x

此时321,,ααα线性相关,

(iii)当5=t 时,由??????????531321111→???

???????0002101-01,

此时有

??

?=-=-020

3231x x x x

令2,121==x x ,有ααα-+=12320,从而3α可由12,αα,表示ααα=-+3122.

在运用定义法,秩的判别方法,齐次线性方程组和行列式法的时候,它们之间三既有联系又有区别的,联系是,运用定义法时,要解一个齐次线性方程组,由该方程组是否有非零解判定向量组的线性相关性,在运用定义法的同时,也运用了判别齐次线性方程组的有无非零解法,如上述例子中,秩法和判别齐次线性方程组有无非零解法的出发点不同,但是实质也是一样的,都是要利用矩阵的初等行变换将相应的矩阵化为阶梯形矩阵,从而分别求出向量组的秩与系数矩阵的秩,然后再做判断,如行列式法实质上是根据克莱姆法则判别以向量组各向量作为系数向量的齐次线性方程组有无非零解,所以能运用行列式法进行判定时,也可以用秩法和判别齐次线性方程组有无非零解法.区别是,适用的前提条件不同,定义法适用于各分量均未具体给出的向量组;秩法和判别齐次线性方程组有无非零解法适用于各分量都具体给出的向量组,行列式法适用于各分量都具体给出且向量组中向量的个数与向量的维数相等的向量组,因此,在对向量组的线性相关性进行判定时,要根据题设条件适当选择判定方法.

以上是从向量组的分量是否具体给出两个大的方面介绍了向量组线性相关性相关性的判断方法,由此可见,如果向量组的分量是具体给出的,则判断向量组线性相关性是比较简单的,总可用方程组的解,矩阵的秩和行列式的值得方法来判断,如果向量组的分量是没有具体给出吃的,则熟练理解和掌握向量组线性相关性的定义,定理,等知识是解题的必要条件,要灵活运用向量组线性相关性的定义,定理等知识和技巧才有助于提高分析解决问题的能力.

3.2.5 用反证法

在有些题目中,直接证明结论有时候比较困难,而从结论的反面入手却很容易推出一些与已知条件或已知定义,定理,公理,相矛盾的结果,从而结论的反面不成立,则结论成立.

例7 设向量组m ααα,,,21 中任一向量i α不是它前面1-i 向量的线性组合,且

0≠i α证明向量组m ααα,,,21 线性无关.

证明 假设向量组m ααα,,,21 线性相关,则存在不全为零的数m

k k k k ==== 321使得,

0332211=++++m m k k k k αααα , ○

1 不妨设0≠m k 由上式可得,

m

m m m m m k a k k a k k a k a 112

211------

= ,

即m α可以由它前面1-m 个向量线性表示,这与题设矛盾,因此0=m k .

于是○1式转化为011332211=++++--m m k k k k αααα ,

类似于上面的证明可得0221====--k k k m m ,

○1式转化为01

1≠αk ,但01≠α,所以01≠k 这与m k k k === 21不全为零的假设相矛盾,所以向量组线性无关. 3.2.6运用相关结论判定

定理1 向量n ααα,,,21 )2(≥n 线性相关的充要条件是这n 个向量中的一个为其余

1-n 个向量的线性组合.

例8 判断向量组1α= (0,3,1,-1), 2α= (6,0,5,1), 3α= (4,-7,1,3)是否线性相关?

解 将321,,ααα以行排成矩阵

A =??

??

?

?????--317415061130→

????

?

?????--000011302472 矩阵A 化为阶梯形矩阵后出现零行,则321,,ααα中必有一向量能被其余剩下的向量线表示,故由定理1知,向量组321,,ααα线性相关.

我们注意到,例9中的矩阵A 在初等行变换的过程中,不论是否化成了阶梯型矩阵,一旦出现零行,就可以断定n ααα,,,21 中必有一个向量能被其余剩下的1-n 个向量线性表示,从而向量组线性相关.

定理2 一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关.

例9 判断向量组:

=1α ()

1,2,4,0,1T

, =2α()

0,1,8,1,2T

, =3α ()

0,2,3,0,5T

的线性相关性.

解 取=1β()

1,0,0T

,=2β()

0,1,1T

,=3β()

0,2,0

T

,因为由321,,βββ为列向量

的行列式不为零,所以向量组321,,βββ线性无关,从而在相同位置上增加了两个分量后所得向量组321,,ααα是线性无关的.

定理3 任意1+n 个n 维向量必线性相关.

定理 4 如果向量组123,,,m αααα可由向量组s βββ,,,21 线性表示,若s m >,则

123,,,m αααα线性相关.

证明 设02211=+++n n x x x ααα ,由已知可知

()m i k

k k k j s

j ji

s si i i i 11

2211==

+++=∑=ββββα

带入上式可得

j s j m i i ji j i s j m i ji s j j ji m

i i i m

i i x k x k k x x βββα∑∑∑∑∑∑∑=======???

??==?

??? ??=1111

111

要证明123,,,m a a a a 线性相关,只需证明存在不全为零的数n x x x ,,,21 使得

02211=+++n n x x x ααα 成立,即只要存在不全为零的数n x x x ,,,21 使得

j s j m i i ji j i s j m i ji s j j ji m

i i i m

i i x k x k k x x βββα∑∑∑∑∑∑∑=======???

??==???? ??=1111111

中的每一个j β前的系数均为零即可.

要使每个j β前面的系数为零,则可得到,

???

??=+++=+++=+++0

00

2

21122221211212111m sm s s m m m m x k x k x k x k x k x k x k x k x k 因为s m >即,方程组的个数小于未知量的个数,得到方程组有非零解,所以

123,,,m a a a a 线性相关.

定理 5 如果向量组r βββ,,,21 可以由123,,,r αααα线性表示为且123,,,r

αααα是线性无关的,设r j a r

j j

ij i ,,2,1,1

==

∑=α

β

rr

r r r r a a a a a a a a a A 21

2222111211

=

若0≠A 则r βββ,,,21 线性无关.

证明 设02211=+++r r k k k βββ ,

将()r i a a a a r ir i i r

j j

ij i 2,122111

=+++==

∑=αααα

β代入上式,得

()()()0

22112222211211221111=++++++++++++r r rr r r r r r r k a k a k a k a k a k a k a k a k a ααα 由123,,,

r αααα线性无关,得

???????=+++=+++=+++0

00221122221121221111r rr r r r

r r r k a k a k a k a k a k a k a k a k a

则r βββ,,,21 线性无关,所以系数全为零,即方程组只有零解,

021

2222111211212221212111≠=

rr

r r r r

rr

r r

r r a a a a a a a a a a a a a a a a a a

得证!

例10 设r r αααβααβαβ+++=+== 2121211,,,且向量组123,,,r αααα线

性无关,求向量组r βββ,,,21 的线性相关性.

解 因为r βββ,,,21 由123,,,r αααα线性表示,由定理5可得,

011

001

101

1≠== A

因为123,,,

r αααα线性无关,且0≠A 所以r βββ,,,21 线性无关.

结束语

本文着重介绍了向量组线性相关和线性无关的判定方法,总介绍定义入手,介绍了它与行列式,矩阵,线性方程组的解,二次型,线性变换以及欧式空间的重要联系,深入了解各种方法在解决向量组线性相关和线性无关的解题中的要领,掌握方法本质,最后总结了一些方法,例如;利用定义法判断,利用齐次线性方程组的解判断,利用矩阵的秩判断,利用行列式的值判断等.

参考文献

[1]姚慕生,吴泉水,高等代数学[M],第2版,上海,复旦大学出版社,2008.

[2]刘仲奎,杨永保,程辉,等,高等代数[M],北京,高等教育出版社,2003.

[3]钱吉林,高等代数题解精粹[M],北京,中央民族大学出版社,2002.

[4]北京大学数学系几何与代数教研室前代数小组,高等代数[M],北京,高等教育出版社,2003.

[5]董明秀,判断向量组线性相关与线性无关[J],考试周刊,12;7(2013), 61-63.

[6]黄娟霞,关于向量组线性相关性的初步探讨[J],广东石油化工学报,18;11(2012), 40-44.

[7]段辉明,李永红,线性相关性若干问题的分析和探究[J],科技创新导报,15;9(2013),20-23.

Identification Method of Linear Dependence and Linear Independence

Abstract The vector group’s Linear dependence and linear independence are most abstract concepts in linear algebra. How to determine Linear dependence and linear independence is the key factor to understand vector correctly. This paper introduces the relationship between determinant, matrix, the solution of linear equations and it, also concludes the methods to determine the vector's linear dependence and linear independent.

Keywords Vector group Linear dependence Linear independence Matrix Rank

向量组的线性相互与线性无关

向量组的线性相关与线性无关 1.线性组合 设12,,,n t a a a R ???∈,12,,,t k k k R ???∈,称1122t t k a k a k a ++???+为12,,,t a a a ???的一个线性组合。 【备注1】按分块矩阵的运算规则,12112212(,,,)t t t t k k k a k a k a a a a k ?? ? ?++???+=??? ? ???M 。这 样的表示是有好处的。 2.线性表示 设12,,,n t a a a R ???∈,n b R ∈,如果存在12,,,t k k k R ???∈,使得 1122t t b k a k a k a =++???+ 则称b 可由12,,,t a a a ???线性表示。 1122t t b k a k a k a =++???+,写成矩阵形式,即1212(,,,)t t k k b a a a k ?? ? ?=??? ? ???M 。因此,b 可由12,,,t a a a ???线性表示即线性方程组1212(,,,)t t k k a a a b k ?? ? ????= ? ???M 有解,而该方程组有解 当且仅当1212(,,,)(,,,,)t t r a a a r a a a b ???=???。 3.向量组等价 设1212,,,,,,,n t s a a a b b b R ??????∈,如果12,,,t a a a ???中每一个向量都可以由 12,,,s b b b ???线性表示,则称向量组12,,,t a a a ???可以由向量组12,,,s b b b ???线性表示。 如果向量组12,,,t a a a ???和向量组12,,,s b b b ???可以相互线性表示,则称这两个向量组是等价的。

向量组的线性有关性归纳

第四章 向量组的线性相关性 §1 n 维向量概念 一、向量的概念 定义1 n 个有次序的数12,, ,n a a a 所组成的数组称为n 维向量,这n 个数称为该向量的n 个分量,第i 个数 i a 称为第i 个分量. 注1分量全为实数的向量称为实向量.分量不全为实数的向量称为复向量. 注2 n 维向量可以写成一行的形式() 12,, ,n a a a a =,出可以写成一列的形式 12n a a a a ?? ? ? = ? ??? ,前者称为行向量,而后者称为列向量.行向量可看作是一个1n ?矩阵,故又称行矩阵;而列向量可看作一个1n ?矩阵,故又称作列矩阵.因此它们之间的运算就是矩阵之间的运算,从而符合矩阵运算的一切性质.向量之间的运算只涉及到线性运算和转置运算.为叙述方便,特别约定:在不特别声明时说到的向量均为列向量,行向量视为列向量的转置. 注3 用小写黑体字母,,,a b αβ 等表示列向量,用,,,T T T T a b αβ表示行向量. 例1 设123(1,1,0),(0,1,1),(3,4,0)T T T v v v ===,求12v v -及12332v v v +-. 解 12v v -(1,1, 0)(0,1,1)T T =-(10,11,01)T =---(1,0,1)T =- 12332v v v +-3(1,1,0)2(0,1,1)(3,4,0)T T T =+- (31203,31214,30210)T =?+?-?+?-?+?- (0,1,2)T = 定义 设v 为n 维向量的集合,如果集合v 非空,且集合v 对于加法与数乘两种运算封闭(即若α∈v,β∈v ,有α+β∈v ;若α∈v, k ∈R ,有k α∈v ),称v 为向量空间。 §2 向量组的线性相关性 一、向量组的线性组合 定义3 给定向量组A :12,, ,m a a a ,对于任何一组实数12,,,m k k k ,称向量 1122m m a a a k k k +++ 为向量组A 的一个线性组合,12,, ,m k k k 称为这个线性组合的系数. 定义4 给定向量组A :12,, ,m a a a 和向量b ,若存在一组实数12,, ,m λλλ,使得 1122m m a a a b λλλ=++ +

1、向量组线性无关的充要条件为( )

第四章复习题答案 一、选择题 1、向量组ααα1 23,,线性无关的充要条件为( C ) A 、ααα1 23,,均不是零向量 B 、ααα1 23,,中任意两个向量的分量不成比例 C 、ααα1 23,,中任意一个向量均不能由其余两个向量线性表出 D 、123,,ααα中一部分向量线性无关 解析:(1)线性相关?至少一个向量能由其余两个向量线性表出 (2)线性无关?任意一个向量均不能由其余两个向量线性表出 2、设A 为n 阶方阵,且A =0,则下列结论错误是( C ) A 、R(A)<n B 、A的n个列向量线性相关 C 、A的两行元素成比例 D 、A的一个行向量是其余n-1个行向量的线性组合 3、已知矩阵A 的秩为r ,则下列说法不正确的是( A ) A 、矩阵A 中任意r 阶子式不等于0 B 、矩阵A 列向量组的r 个列向量线性无关 C 、矩阵A 列向量组的任意r+1个列向量线性相关 D 、矩阵A 中所有高于r 阶的子式全等于0 解析:只是存在一个r 阶子式不等于0 4、设12,s ααα均为n 维向量,则下列结论中不正确的是( D ) A 、当维数n 小于向量个数s 时,则向量组12,s ααα线性相关 B 、若向量组12 ,s ααα线性无关,则其中任意一个向量都不能由其余s-1个向量线性表示 C 、若对任意一组不全为零的数12,s k k k 都有11220s s k k ααα+++≠k ,则向量组12 ,s ααα线性无关 D 、若向量组12 ,s ααα线性相关,则其中任意一个向量都可由其余s-1个向量线性表示 解析:(1)线性相关?至少一有个向量能由其余两个向量线性表出 不是任意 二、填空 1、设12311112010ααα===T T T (,-,),(,,),(,,a)线性无关(相关),则a 取值22 ()33 a a ≠ = 2、设A为35?的矩阵,且()3R A =,则齐次线性方程组Ax=0基础解系所含向量个数是 2 3、若12312αααββ,,,,都为四维向量,且四阶行列式1231m αααβ=,,,,1232n αααβ=,,,, 则四阶行列式12312αααββ+=,,,()m n + 4、n 维向量组1,2m ααα,当m n >时线性相关。 5、线性方程组Ax b =有解的充分必要条件是()(,)R A R A b = 三、判断 1、若向量组123 ,,n αααα线性相关,则1α可有23 n ααα,线性表示。 ( × ) 2、两个向量线性相关的充分必要条件是这两个向量成比例。 ( √ ) 3、线性无关的向量组中可以包含两个成比例的向量。 ( × ) 4、当向量组的维数小于向量个数时,向量组线性相关 ( √ ) 5、向量组12,,m ααα线性相关,则向量组12,,,m αααβ也线性相关。 (√ ) 6、一个向量组线性无关的充分必要条件是任何一个向量都不能由其余向量线性表示 (√ ) 7、齐次线性方程组的基础解系不唯一,但基础解系所含向量个数是唯一确定的 (√ ) 8、若12,ξξ为齐次线性方程组 0Ax =的解,则12ξξ-也是0Ax =的解 (√ ) 三、计算及证明 1、设向量组1(1,1,2,4)T α=-,2(0,3,1,2)T α=,3(3,0,7,4)T α=,4(1,1,2,0)T α=-,5(2,1,5,6)T α= 求向量组的秩及其一个最大无关组。 解:设12345(,,,,)A ααααα=

线性代数 向量组的线性相关性

第三节 向量组的线性相关性 分布图示 ★ 线性相关与线性无关 ★ 例1 ★ 例2 ★ 证明线性无关的一种方法 线性相关性的判定 ★ 定理1 ★ 定理2 ★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 定理3 ★ 定理4 ★ 定理5 ★ 例7 ★ 内容小结 ★ 课堂练习 ★ 习题3-3 内容要点 一、线性相关性概念 定义1 给定向量组,,,,:21s A ααα 如果存在不全为零的数,,,,21s k k k 使 ,02211=+++s s k k k ααα (1) 则称向量组A 线性相关, 否则称为线性无关. 注: ① 当且仅当021====s k k k 时,(1)式成立, 向量组s ααα,,,21 线性无关; ② 包含零向量的任何向量组是线性相关的; ③ 向量组只含有一个向量α时,则 (1)0≠α的充分必要条件是α是线性无关的; (2)0=α的充分必要条件是α是线性相关的; ④ 仅含两个向量的向量组线性相关的充分必要条件是这两个向量的对应分量成比例;反之,仅含两个向量的向量组线性无关的充分必要条件是这两个向量的对应分量不成比例. ⑤ 两个向量线性相关的几何意义是这两个向量共线, 三个向量线性相关的几何意义是这三个向量共面. 二、线性相关性的判定 定理1 向量组)2(,,,21≥s s ααα 线性相关的充必要条件是向量组中至少有一个向量可由其余1-s 个向量线性表示. 定理 2 设有列向量组),,,2,1(,21s j a a a nj j j j =???? ?? ? ??=α 则向量组s ααα,,,21 线性相关的充要条件是: 是矩阵),,,(21s A ααα =的秩小于向量的个数s .

向量组的线性相关性 线性代数习题集

线性代数练习题 第四章 向量组的线性相关性 系 专业 班 姓名 学号 第一节 向量组及其线性组合 第二节 向量组的线性相关性 一.选择题 1.n 维向量s ααα,,, 21)(01≠α线性相关的充分必要条件是 [ D ] (A )对于任何一组不全为零的数组都有02211=+++s s k k k ααα (B )s ααα,,, 21中任何)(s j j ≤个向量线性相关 (C )设),,,(s A ααα 21=,非齐次线性方程组B AX =有唯一解 (D )设),,,(s A ααα 21=,A 的行秩 < s . 2.若向量组γβα,,线性无关,向量组δβα,,线性相关,则 [ C ] (A )α必可由δγβ,,线性表示 (B )β必不可由δγα,,线性表示 (C )δ必可由γβα,,线性表示 (D )δ比不可由γβα,,线性表示 二.填空题: 1. 设T T T ),,(,),,(,),,(0431********===ααα 则=-21αα (1,0,1)T - =-+32123ααα (0,1,2)T 2. 设)()()(αααααα+=++-321523,其中T ),,,(31521=α,T )10,5,1,10(2=α T ),,,(11143-=α,则=α (1,2,3,4)T 3. 已知T T T k ),,,(,),,,(,),,,(84120011211321---===ααα线性相关,则=k 2 4. 设向量组),,(,),,(,),,(b a c b c a 000321===ααα线性无关,则c b a ,,满足关系式 0abc ≠ 三.计算题: 1. 设向量()11,1,1T αλ=+,2(1,1,1)T αλ=+,3(1,1,1)T αλ=+,2(1,,)T βλλ=,试问当λ为何值时 (1)β可由321ααα,,线性表示,且表示式是唯一? (2)β可由321ααα,,线性表示,且表示式不唯一? (3)β不能由321ααα,,线性表示? 线性代数练习题 第四章 向量组的线性相关性 系 专业 班 姓名 学号

知识点1——向量组及其线性相关性

知识点4 向量的线性相关性 1、 向量组的线性相关性 1).向量组线性相关的概念 定义: 给定向量组12,, ,:m a a a A ,若存在不全为零的数12,,,m k k k ,使 11220m m k k k ααα+++= 则称向量组A 是线性相关的.否则称它为线性无关. 注1 向量组1, ,m a a 线性无关 ? 10n λλ= ==时,才有11220n n λαλαλα++ +=. 注2 对于一个向量组,不是线性相关,就是线性无关. 注3 只含一个向量a 的向量组,若0a =,则它线性相关;若0a ≠,则它线性无关. 注4 任一含有零向量的向量组线性相关. 注5 两个向量线性相关的充要条件是其对应分量成比例. 注6 两向量线性相关的几何意义是两个向量共线;三个向量线性相关的几何意义是三个向量共面. 2).向量组线性相关的条件 定理1 向量组12,, ,m ααα线性相关的充分必要条件是它所构成的矩阵 12(,,,)m =A ααα的秩小于向量的个数m (()R m

第四章向量组的线性相关性目标测试题(参考答案)

第四章 向量组的线性相关性目标测试题 (参考答案) 一、填空题. 1. 设向量组) , ,0( ),0 , ,( ), ,0 ,(321b a c b c a ===ααα线性无关,则c b a ,,必满足关系式0abc ≠. 2. 已知向量组)1 ,1 ,3 ,4( ),2 ,6 ,2 ,4( ),0 ,2 ,1 ,3( ),1 ,3 ,1 ,2(4321-=-=-=-=αααα,则该向量组的秩为___2__. 3. 设三阶矩阵122212304A -?? ?= ? ???,三维向量11a α?? ?= ? ??? ,若向量A α与α线性相关,则a = -1 . 4. 已知向量组123(1,2,1,1),(2,0,,0),(0,4,5,2)T T T t ααα=-==--的秩为2,则t = 3 . 5. 设321,,ααα线性无关,问=k __1_时,312312,,αααααα---k 线性相关. 6.设12,,s ηηηL 为非齐次线性方程组Ax b =的解,若1122s s k k k ηηη+++L 也是方程组Ax b =的解, 则12s k k k L ,,,应满足条件12s + 1k k k ++=L . 二、选择题. 1.设有向量组 ),0 ,2 ,2 ,1( ),14 ,7 ,0 ,3( ),2 ,1 ,3 ,0( ),4 ,2 ,1 ,1(4321-===-=αααα),10 ,5 ,1 ,2(5=α 则该向量组的最大线性无关组( B ). (A ) 321 , ,ααα, (B ) 421 , ,ααα, (C ) 521 , ,ααα, (D ) 5421 , , ,αααα. 2. 设向量组321,,ααα线性无关,则下列向量组线性相关的是(C ). (A ) 21αα+,,32αα+13αα+, (B ) ,1α21αα+,321a ++αα, (C ) 21αα-,,32αα-13αα-, (D ) 21αα+,,231αα+133αα+.

向量组以及线性相关性

资料考点大提纲 请按照编号顺序阅读,方便建立知识点结构。 注:本资料只有技巧总结,不涉及概念性的基础类总结.若要复习基础性概念请查阅教材. 主要掌握: 1.向量的基本概念:(注意:不加说明的向量α是指列向量) 2.向量组的基本概念. 3.向量的基本运算:( 加减、数乘 ) 4.向量的线性相关性的概念: i. 线性组合的概念 ii. 线性表出的概念 iii. 线性相关和线性无关的概念. 5.矩阵秩的概念、向量组秩的概念. 4.向量的线性相关无关的基本判定方式: i. 向量β可以由向量组α1,α2,……,αn 线性表出 ? 非齐次线性方程组 []βαα=????? ?????????n n x x x a 2121,,,有解 ?.],,,,[],,,[2121βααααααn n r r ??=?? ii 向量组α1,α2,…,αn 线性相关?齐次线性方程组 0],,,[2121=???? ? ????????n n x x x ααα有解?n r n =n )必定相关. r(A)

向量组线性相关性判定

安阳师范学院本科学生毕业论文向量组线性相关性的判定方法 作者 院(系)数学与统计学院 专业数学与应用数学 年级2011级 学号 指导教师郭亚梅 论文成绩 日期2015年月日

学生诚信承诺书 本人郑重承诺:所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得安阳师范学院或其他教育机构的学位或证书所使用过的材料.所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意. 作者签名:日期: 导师签名:日期: 院长签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文. 作者签名:导师签名:日期:

向量组线性相关性的判定方法 (安阳师范学院 数学与统计学院 河南 安阳 455002) 摘要:向量组线性相关性在高等代数中是一块基石,在它的基础上我们推导和衍生出其他 许多理论。所以熟练地掌握向量组线性相关性的判定方法,可以让我们更好的理解其他理论知识.本文将向量组内向量之间的线性关系、齐次线性方程组的解、矩阵的秩、行列式的值及已知结论等知识运用于向量组线性相关性的判定,进而归纳出判定向量组线性相关性的若干方法. 关键词:向量组 线性相关 线性无关 判定方法 1 引言 线性相关性的内容是线性代数课程中的重点和难点,线性相关性的有关结论,对我们来说是很难理解的.本文总结出了判定向量组线性相关和线性无关的几种方法. 2.1 n 维向量的定义 (一维、二维、三维向量,推广到n 维向量) 定义: n 个有次序的数12,a ,,a n a 所组成的数组12(a ,a ,)n a 或12(a ,a ,)T n a 分别称为n 维行向量或列向量.这n 个数称为向量的n 个分量, 第i 个数i a 称为第i 个分量.显然,行向量即为行距阵,列向量即为列矩阵.向量通常用黑体小写希腊字母,αβ等表示.分量全为实数的向量称为实向量,分量全为复数的向量称为复向量. 2.2 向量的线性运算 行向量与列向量都按矩阵的运算规则进行运算. 特别地,向量的加法,向量的数乘,称为向量的线性运算.向量的线性运算满足8条运算律. 全体的n 维向量的集合关于线性运算是封闭的,我们将该集合称为n 维向量空间(或线性空间). 例如,全体3维向量的集合;闭区域上的连续函数的集合;一元n 次多项式的集合;实数域上可导函数的集合等,皆为向量空间. 3.向量组线性相关性的定义 3.1向量组 有限个或无限个同维数列向量(或同维数的行向量)所组成的集合称为一个向量组. 例如一个m n ?矩阵对应一个m 维列向量组, 也对应一个n 维行向量组

向量组线性相关性判定

向量组线性相关性判定 安阳师范学院本科学生毕业论文向量组线性相关性的判定方法作者院数学与统计学院专业数学与应用数学年级2011级学号指导教师郭亚梅论文成绩日期2015年月日学生诚信承诺书本人郑重承诺:所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得安阳师范学院或其他教育机构的学位或证书所使用过的材料.所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意. 作者签名:日期:导师签名:

日期:院长签名:日期:论文使用授权说明本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文. 作者签名:导师签名:日期:向量组线性相关性的判定方法摘要:向量组线性相关性在高等代数中是一块基石,在它的基础上我们推导和衍生出其他许多理论。所以熟练地掌握向量组线性相关性的判定方法,可以让我们更好的理解其他理论知识.将向量组内向量之间的线性关系、齐次线性方程组的解、矩阵的秩、行列式的值及已知结论等知识运用于向量组线性相关性的判定,进而归纳出判定向量组线性相关性的若干方法. 关键词:向量组线性相关线性无关判定方法 1 引言线性相关性的内容是线性代数课程中的

重点和难点,线性相关性的有关结论,对我们来说是很难理解的.总结出了判定向量组线性相关和线性无关的几种方法. n维向量的定义定义:n个有次序的数a1,a2,?,an所组成的数组(a1,a2,?an)或(a1,a2,?an)T分别称为n维行向量或列向量.这n个数称为向量的n 个分量? 第i个数ai称为第i个分量?显然,行向量即为行距阵,列向量即为列矩阵.向量通常用黑体小写希腊字母?,?等表示.分量全为实数的向量称为实向量,分量全为复数的向量称为复向量. 向量的线性运算行向量与列向量都按矩阵的运算规则进行运算? 特别地,向量的加法,向量的数乘,称为向量的线性运算.向量的线性运算满足8条运算律. 全体的n维向量的集合关于线性运算是封闭的,我们将该集合称为n维向量空间. 例如,全体3维向量的集合;闭区域上的连续函数的集合;一元n次多项式的集合;实数域上可导函数的集合等,皆为向量空间. 3.向量组线性相关性

线性相关和线性无关的结论

§性质定理总结: 一、线性相关的判别: 1、m αααΛ,,21线性相关?存在不全为零的数m k k k ,,,21Λ,使得 1122m m k k k .ααα++=L 0 2、1α线性相关? 1α=0. 3、12,αα线性相关? 1α与2α的对应分量成比例. 4、m αααΛ,,21线性相关?其中至少有一个向量能用其余向量线性表示. 5、n 个n 维向量线性相关?它们构成的行列式等于零. 6、m αααΛ,,21线性相关 ?m αααΛ,,21的秩小于m . 7、对调坐标不改变向量组的线性相关性. 8、部分相关?整体相关. 9、m 个n 维 (m >n ) 向量线性相关. 二、线性无关的判别: 1、m αααΛ,,21线性无关?如果1122,m m k k k ααα++=L 0则有 .021====m k k k Λ 2、整体无关?部分无关. 3、无关则加长无关 三、线性相关的性质: m αααΛ,,21线性无关,12m ,,,αααβL 线性相关?β可由m αααΛ,,21线性表 示,且表示法唯一. 四、线性无关的性质: 1、若向量组Ⅰ能由向量组Ⅱ线性表示,且向量组Ⅰ线性无关,则Ⅰ的元素个数≤Ⅱ的元素个数. 2、等价线性无关向量组的向量个数相同.

五、向量组的秩的性质: 1、矩阵A的秩等于A的行(列)向量组的秩. A的不等于零的子式对应于A的行(列)向量组的线性无关组; A的行(列)向量组的线性无关组对应于A的不等于零的子式. 2、若向量组Ⅰ能由向量组Ⅱ线性表示,则Ⅰ的秩≤Ⅱ的秩. 3、等价向量组的秩相同. 六、矩阵的初等行(列)变换不改变列(行)向量组的线性关系.

向量组的线性相关性

线性相关性 一、填空题 例设向量组1234(1,2,1),(2,3,1),(,3,1),(2,,3),T T T T x y αααα====的秩为2,则x = 2 , y = 5 . 例已知向量组()11,2,1T α=-,()22,0,T t α=,()30,4,5T α=-线性相关,则t = 3 . 例若向量组123(1,2,3),(2,3,4),(3,4,)T T T t ααα===线性相关,则t =5. 二、 选择题 例设矩阵A 、B 、C 均为n 阶方阵,若AB C =,且B 可逆,以下正确的是【B】. (A) 矩阵C 的行向量组与矩阵A 的行向量组等价; (B )矩阵C 的列向量组与矩阵A 的列向量组等价; (C 矩阵C 的行向量组与矩阵B 的行向量组等价; (D )矩阵C 的列向量组与矩阵B 的列向量组等价. 例1234123400110,1,1,1C C C C αααα-???????? ? ? ? ? ===-= ? ? ? ? ? ? ? ????????? ,其中1234,,,C C C C 为任意常数,则下列向量组线性相 关的为( C ) (A ) 123,,ααα;(B )124,,ααα; (C) 134,,ααα; (D) 234,,ααα. 例设12,,,s a a a 均为n 维列向量,下列选项不正确的是【B 】. (A )对于任意一组不全为0的数12,,,s k k k 都有s s k a k a k a 1122,0+++≠ ,则12,,,s a a a 线性无关; (B )若12,,,s a a a 线性相关,则对于任意一组不全为0数12,,,s k k k 都有 s s k a k a k a 1122,0+++= ; (C )12,,,s a a a 线性无关的充分必要条件是此向量组的秩为s ; (D )若12,,,s a a a 线性无关的必要条件是其中任意两个向量线性无关. 例设12,,,s a a a 均为n 维列向量,A 是m n ?矩阵,下列选项正确的是【A 】. (A )若12,,,s a a a 线性相关,则12,,,s Aa Aa Aa 线性相关; (B )若12,,,s a a a 线性相关,则12,,,s Aa Aa Aa 线性无关;

向量组线性相关与线性无关

向量组线性相关与线性无关的判别方法 摘要 向量组的线性相关性与线性无关性是线性代数中最为抽象的概念之一,如何判别向量组的 线性相关与线性无关是正确理解向量的关键,本文介绍了它与行列式、矩阵、线性方程组的解之间的关系.总结了向量组线性相关和线性无关的判定方法. 关键词 向量组 线性相关 线性无关 矩阵 秩 1 引言 在高等代数中,向量组的线性相关和线性无关的判定这个课题有许多的研究成果,它与行列式,矩阵,线性方程组的解,二次型,线性变换以及欧式空间都有着重要的联系,然而向量的线性相关与线性无关的判别是比较抽象和难以理解的,实际上,向量组的线性相关与线性无关是相对的,我们只要掌握了线性相关的判别,那么线性无关的判别也就迎刃而解了,至今已给出了以下几种常见的方法:利用定义法判断,利用齐次线性方程组的解判断,利用矩阵的秩判断,利用行列式的值判断等.其中,利用齐次线性方程组,利用矩阵的秩,利用行列式的值这三种方法的出发点不同但实质是一样的. 2 向量组线性相关和线性无关的定义 定义 设向量组m ααα,,,21 都为n 维向量,如果数域P 中存在一组不全为零的数 12,m k k k ,使0332211=++++m m k k k k αααα 则称向量组是线性相关, 反之,若数域 P 中没有不全为零的数12 ,m k k k ,使 0332211=++++m m k k k k αααα , 称它是线性无关. 3 向量组线性相关和线性无关的判定方法 3.1 一个向量与两个向量线性相关的判定方法 由定义可以看出,零向量的任何一个线性组合为零,只要取系数不为零,即可以得出这个向量是线性相关的. 命题1 一个向量线性相关的充分条件是它是一个零向量. 关于两个向量的线性相关性判断可以转化为向量的成比例判断. 命题2 两个n 维向量()n a a a ,,,21 =α, ()n b b b 21,=β线性相关的充要条件是i a 与()n i b i 2,1=对应成比例.

向量组的线性关系

第十讲 向量组的线性关系 一、考试内容与考试要求 考试内容 向量的概念;向量的线性组合与线性表示;向量组线性相关与线性无关. 考试要求 (1)理解n 维向量的概念; (2)理解向量的线性组合与线性表示的概念; (3)理解向量组线性相关与线性无关的概念; (4)掌握向量组线性相关与线性无关的有关性质及判别法; 注 适合于第十讲和第十一讲. 二、知识要点 引入 学习向量组的线性相关和线性无关,直接的目的是为探讨当方程组Ax o =(Ax b =)有无穷解时,它的所有解能否用有限个解表示出来?且这些有限个解之间的关系是什么? 线性表示(线性组合):探讨消除线性方程组中的多余方程(即无效方程); 矩阵秩:探讨矩阵所对应的线性方程组中的有效方程个数; 线性相关:方程组Ax o =有无穷解时,能否用有限个解表示出来; 线性无关:这有限个解之间的关系,引出基础解系和最大线性无关向量组. 复习 (1)非齐次方程组Ax b =有解的条件:()(,)R A R A b m =≤ 其中A =(12,,,m αααL ),要特别注意m 是未知量个数,也是向量组12,,,m αααL 中向量的个数. (2)齐次方程组Ax o =?? ?唯一零解 无穷解(有非零解) ,o 是向量. 1.线性组合(线性表示) 定义1 线性组合(线性表示) 给定向量12,,,,m βαααL ,如果存在数12,,,m k k k L ,使关系式成立 1122m m k k k βααα=+++L

则称β是向量组12,,,m αααL 的线性组合,或称β可以由向量组12,,,m αααL 线性表示: 注意1 (1)线性组合(或线性表示)对12,,,m k k k L 没有要求,可以全为零; (2)零向量可由任一同维的向量组线性表示; (3)判断β是否可由向量组12,,,m αααL 线性表示转化为求Ax β=是否有解,一个具体表示就是Ax β=有一个特解. (4)表示式可以不惟一,但若12,,,m αααL 线性无关时,表示式惟一; (5)任一n 维向量可由同维的单位坐标向量组12,,,n e e e L 线性表示; (6)向量组12,,,m αααL 中每个向量都可由自身向量组线性表示: 11100100j j j j m αααααα-+=?++?+?+?+?L L 定义2 向量组的等价 向量组(I ):12,,,s αααL 中每个向量都可由向量组(II ):12,,,t βββL 线性表示,而向量组(II )中每个向量都可由向量组(I )线性表示,则称两个向量组的等价,记为(I ):(II ). 向量组的等价具有 ① 反身性:每个向量组都和自身等价,即(I ):(I ); ② 对称性:若(I ):(II ),则(II ):(I ); ③ 传递性:若(I ):(II ),(II ):(III ),则(I ):(III ). 注意 2 记()12,,,s A ααα=L ,()12,,t B βββ=L ,则 (1)向量组(II )可以由向量组(I )线性表示的充分必要条件是()(,)R A R A B = 这是单个向量β可由向量组12,,,s αααL 线性表示的推广. (2)向量组(I )与向量组(II )等价的充分必要条件是()()(,)R A R B R A B == (3)若向量组(I ):12r αααL ,,,(2)r ≥可由向量组(II ):s βββ,,, Λ21线性表示,则当r s >时,向量组(I )必线性相关; (4)若向量组(I ):12r αααL ,,,(2)r ≥可由向量组(II ):s βββ,,, Λ21线性表

向量组秩和最大线性无关组

向量组的秩和最大线性无关组 引例:对于方程组 12312312 321221332x x x x x x x -+=-??+-=??-+=-? 容易发现其有效方程的个数为2个,因为第3个方程可由第1个方程减去第2个方程得到(或者第3个方程是第1个方程和第2个方程的线性组合); 由于本章的内容是用向量的关系来研究方程组解的情况,进而从方程组3个方程对应的3个向量来说“有用”(或者也可以说成等价有效)的最少的向量是2个。 因此,对于一个给定的向量组,其中“有用”(或者也可以说成等价有效)的最少的向量应该有多少个呢?在此我们提出最大线性无关组的概念: 最大线性无关组:在s ααα,,,21 中,存在ip i i ααα,,,21 满足: (1)ip i i ααα,,,21 线性无关; (2)在ip i i ααα,,,21 中再添加一个向量就线性相关。 则称ip i i ααα,,,21 是s ααα,,,21 的一个最大线性无关组, 注: Ⅰ、不难看出条件(2)等价的说法还有s ααα,,,21 中任一向量均可由 ip i i ααα,,,21 线性表示; 或者亦可以说成s ααα,,,21 中任意1p +个向量均线性相关; Ⅱ、从最大线性无关组的定义可以看出最大线性无关组与原先的向量组可以相互线性表示,进而最大线性无关组与原先的向量组是等价的(即

有效的最少的方程构成的方程组与原先的方程组是等价的); Ⅲ、从上面的方程组可以看出同解的有效方程组可以是第1、2两个方程构成,也可以是第2、3两个方程构成(因为第1个方程可以看成第2、3两个方程的和),因此从其对应的向量组来说,向量组的最大线性无关组是不唯一的; Ⅳ、可以发现,虽然同解的有效方程组的形式可以不一样,但是同解的有效方程组中所含的方程的个数是唯一的,即从其对应的向量组来说,最大线性无关组虽然不唯一,但是最大线性无关组中所含向量的个数唯一的。这是从数的角度反映了向量组的性质,在此给出向量组的秩的概念: 向量组的秩:称最大线性无关组中所含向量的个数为向量组的秩,如上面定义中ip i i ααα,,,21 是s ααα,,,21 的一个最大线性无关组,则称 s ααα,,,21 的秩为p ,记为12(,,,)s R p ααα=。 例:求向量组123(3,6,4,2,1),(2,4,3,1,0),(1,2,1,2,3),T T T ααα=-=--=-- 4(1,2,1,3,1)T α=-的秩及一个最大线性无关组,并将其余的向量用最大线性无关组表示。 分析:容易发现用定义的形式很难求秩和最大线性无关组,为此我们从方程组和矩阵之间的关系以及方程组和向量组之间的关系可以得到,向量组的秩及其最大线性无关组应该与其对应的矩阵的秩以及矩阵的最高阶非零子式之间有某种关系,为此我们给出: 定理:矩阵的秩等于其行向量组的秩,也等于其列向量组的秩. 略证:设A 的秩为r ,则在A 中存在r 阶子式0r D ≠,从而r D 所在的r 列线性无关,又A 中的所有的1r +阶子式10r D +=,因此A 中的任意1r +个列向量

向量组的线性相关性的判定

向量组的线性相关性的判定 摘 要:向量组的线性相关性是线性代数中的一块基石,在它的基础上我们推导和衍生出其它许多理论.本文利用线性相关性的定义,行列式的值,矩阵的秩,齐次线性方程组的解,弗朗斯基判别法等知识对向量组的线性相关性进行了判定,并比较了几种不同判定方法的适用条件. 关键词:向量组;线性相关;行列式 引言 向量组的线性相关性在线性代数中起到贯穿始终的作用.线性相关性这个概念在许多数学专业课程中都有体现,如微分几何,高等代数和偏微分方程等等.它是线性代数理论的基本概念,它与向量空间(包括基,维数),子空间等概念有密切关系,同时在微分几何以及偏微分方程中都有广泛的应用.因此,掌握线性相关性这个概念有着非常重要的意义,也是解决其它问题的重要理论依据. 向量组的线性相关与线性无关判定方法是非常灵活的.本文参考文献[2]介绍了线性相关的定义及其性质,并给出了证明.文献[1]、[3]、[4]、[5]则是介绍了关于向量组线性相关判定的几种方法,给出了证明并举出了几个例子. 本文从线性相关性的定义出发,分别运用了定义法、线性关系、向量空间的性质、矩阵的秩、行列式的值、反证法、线性变换的性质等几种方法对向量组的线性相关性进行了判定.如果向量组是函数,那么可用弗朗斯基判别法判定.特别是反证法,线性变换的性质,弗朗斯基判别法运用于一些复杂和特殊的题目,是比较方便的. 1.向量组线性相关性的相关定义及性质 定义 1.1]1[ 定义在P 上的线性空间V ,对于给定的一组向量12,,,n x x x L ,如果存在n 个不全为0的数12,,,n λλλL ,使得 11220n n x x x λλλ+++=L . 那么称12,,,n x x x L 是线性相关的.否则称12,,,n x x x L 是线性无关的.

向量组线性相关性判定

师学院本科学生毕业论文向量组线性相关性的判定方法 作者 院(系)数学与统计学院 专业数学与应用数学 年级2011级 学号 指导教师郭亚梅 论文成绩 日期2015年月日

学生诚信承诺书 本人重承诺:所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得师学院或其他教育机构的学位或证书所使用过的材料.所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了意. 作者签名:日期: 导师签名:日期: 院长签名:日期: 论文使用授权说明 本人完全了解师学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分容,可以采用影印、缩印或其他复制手段保存论文. 作者签名:导师签名:日期: 向量组线性相关性的判定方法

(师学院 数学与统计学院 455002) 摘要:向量组线性相关性在高等代数中是一块基石,在它的基础上我们推导和衍生出其他 许多理论。所以熟练地掌握向量组线性相关性的判定方法,可以让我们更好的理解其他理论知识.本文将向量组向量之间的线性关系、齐次线性方程组的解、矩阵的秩、行列式的值及已知结论等知识运用于向量组线性相关性的判定,进而归纳出判定向量组线性相关性的若干方法. 关键词:向量组 线性相关 线性无关 判定方法 1 引言 线性相关性的容是线性代数课程中的重点和难点,线性相关性的有关结论,对我们来说是很难理解的.本文总结出了判定向量组线性相关和线性无关的几种方法. 2.1 n 维向量的定义 (一维、二维、三维向量,推广到n 维向量) 定义: n 个有次序的数12,a , ,a n a 所组成的数组12(a ,a , )n a 或12(a ,a , )T n a 分别称为n 维行向量或列向量.这n 个数称为向量的n 个分量, 第i 个数i a 称为第i 个分量.显然,行向量即为行距阵,列向量即为列矩阵.向量通常用黑体小写希腊字母,αβ等表示.分量全为实数的向量称为实向量,分量全为复数的向量称为复向量. 2.2 向量的线性运算行向量与列向量都按矩阵的运算规则进行运算. 特别地,向量的加法,向量的数乘,称为向量的线性运算.向量的线性运算满足8条运算律. 全体的n 维向量的集合关于线性运算是封闭的,我们将该集合称为n 维向量空间(或线性空间). 例如,全体3维向量的集合;闭区域上的连续函数的集合;一元n 次多项式的集合;实数域上可导函数的集合等,皆为向量空间. 3.向量组线性相关性的定义 3.1向量组 有限个或无限个同维数列向量(或同维数的行向量)所组成的集合称为一个向量组. 例如一个m n ?矩阵对应一个m 维列向量组, 也对应一个n 维行向量组

知识点1——向量组及其线性相关性

知识点3 向量的线性组合 一、向量组 定义1 :若干个同维数的列向量(行向量)所组成的集合称为向量组. 例:n 个n 维向量12(1,0, ,0),(0,1, ,0), ,(0,0, ,1)T T T n e e e ===称为n 维单位向 量组。m n A ?矩阵按行分块可以看做是m 个n 维向量;按列分块可以看做是n 个m 维向 量. ()11 12131413421 2223241234231 32 33 343,,,βααααββT T T a a a a A a a a a a a a a ???? ? ?=== ? ? ? ????? 二、线性组合 定义: 给定向量组A :12,, ,m a a a ,对于任何一组实数12,,,m k k k ,称向量 1122m m a a a k k k +++ 为向量组A 的一个线性组合,12,,,m k k k 称为这个线性组合的组合系数. 定义: 给定向量组A :12,, ,m a a a 和向量β,若存在一组实数12,, ,m λλλ,使得 1122m m a a a βλλλ=+++ 则称向量β是向量组A 的一个线性组合,或称向量β可由向量组A 线性表示. 注1 任一个n 维向量12 n a a a a ?? ? ?= ? ??? 都可由n 维单位坐标向量组12,, ,n e e e 线性表示: 1122n n a a a a e e e =+++ . 注2 向量β可由向量组A :12,,,n a a a 线性表示 ?方程组1122n n a a a x x x β+++=有解 m n A x β??=有解()(,)R A R A β?= 例1 设12311111210,,,21432301a a a b ???????? ? ? ? ? - ? ? ? ?==== ? ? ? ? ? ? ? ????????? 证明向量b 能由向量组123,,a a a 线性表示,并求出表示式. 证明 1231111103212100 121(,)(,,,)~2143000023010 000A b a a a b ???? ? ?--- ? ?== ? ? ? ? ???? ()(,)2R A R A b ∴== ∴ 向量b 能由向量组123,,a a a 线性表示

相关主题
文本预览
相关文档 最新文档