当前位置:文档之家› 轴承套圈加工技术水平分析及解决方案

轴承套圈加工技术水平分析及解决方案

轴承套圈加工技术水平分析及解决方案
轴承套圈加工技术水平分析及解决方案

轴承套圈加工技术水平分析及解决方案

轴承套圈加工技术水平分析及解决方案

1.前言

作为整个工业基础的机械制造业,正在朝着高精度、高效率、智能化和柔性化的方向发展。磨削、超精研加工(简称“磨超加工”)往往是机械产品的终极加工环节,其机械加工的好坏直接影响到产品的质量和性能。作为机械工业基础件之一轴承的生产中,套圈的磨超加工是决定套圈零件乃至整个轴承精度的主要环节,其中滚动表面的磨超加工,则又是影响轴承寿命以及轴承减振降噪的主要环节。因此,历来磨超加工都是轴承制造技术领域的关键技术和核心技术。

国外轴承工业,60年代已形成一个稳定的套圈磨超加工工艺流程及基本方法,即:双端面磨削——无心外圆磨削——滚道切入无心磨削——

滚道超精研加工。除了结构特殊的轴承,需要附加若干工序外,大量生产的套圈均是按这一流程加工的。几十年来,工艺流程未出现根本性的变化,但是这并不意味着轴承制造技术没有发展。简要地说,60年代只是建立和发展“双端面——

无心外圆——切入磨——

超精研”这一工艺流程,并相应诞生了成系列的切入无心磨床和超精研机床,零件加工精度达到3~5um,单件加工时间13~18s(中小型尺寸)。70年代则主要是以应用60m/s高速磨削、控制力磨削技术及控制力磨床大量采用,以集成电路为特征 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

的电子控制技术的数字控制技术被大量采用,从而提高了磨床及工艺的稳定性,零件加工精度达到1~3um,零件加工时间10~12s。80年代以来,工艺及设备的加工精度已不是问题,主要发展方向是在稳定质量的前提下,追求更高的效率,{Today Hot}调整更方便以及制造系统的数控化和自动化。

2.轴承套圈的磨削加工

在轴承生产中,磨削加工劳动量约占总劳动量的60%,所用磨床数量也占全部金属切削机床的60%左右,磨削加工的成本占整个轴承成本的15%以上。对于高精度轴承,磨削加工的这些比例更大。另外,磨削加工又是整个加工过程中最复杂,对其了解至今仍是最不充分的一个环节。这个复杂性表现在:所要求的性能指标更多、精度更高;加工成形机理更复杂,影响加工精度的因素众多;加工参数在线检测困难。因此,对于轴承生产中关键工序之一的磨削加工,如何采用新工艺,新技术,以高精度、高效率、低成本地完成磨削过程,便是磨削加工的主要任务。

2.1高速磨削技术

高速磨削能实现现代制造技术追求的两大目标提高产品质量和劳动效率。实践证明:若将磨削速度由35m/s提高到50~60m/s时,一般生产效率可提高30%~60%,对砂轮的耐用度提高约~1倍,工件表面粗糙度参数值降低50%左右。

一般磨削速度达到45m/s以上称为高速磨削。国内以我所八十年代研制的ZYS—

811全自动轴承内圆磨床为代表,率先在国内轴承行业套圈磨削加工中应用高速磨削技术,配套成功研制了高刚度、高转速、大功率电主轴及高速砂轮。而国内外高速磨削早已广泛应用,并随着广泛采用高磨削比,高耐用度的超硬磨料如CBN,砂轮磨削速度已达80~120m/s,甚至更高。如:德国Mikrosa、日本KOYO公司的无心磨床,日本TOYO公司的轴承内圆磨床等,外表面磨削砂轮线速度达120m/s,内表面磨削线速度达60m/s~80m/s。

增大砂轮驱动(传动)系统的功率和提高机床的刚性,是实现高速磨削一条重要措施,而其中高速主轴单元是高速磨床最为关键的部件。在高速磨削中,砂轮除应具有足够的强度外,还需要保证具有良好的磨削性能,才能获得高磨效果。另外,冷却装置也是实现高速磨削不可缺少的{HotTag}装置之一。

2.2CBN砂轮磨削技术

立方氮化硼磨料简称CBN磨料,由其制造的砂轮称为CBN砂轮,其主要具有下列特征:⑴硬度高,导热率高,热稳定性好,可承受1300~1500℃高温。⑵耐用性高,磨耗小,磨削比可达4000~10000(磨削比是指磨削过程去除工件材料量与砂轮磨损量的比值)而普通刚玉砂轮仅为50~80。⑶磨削力小,磨削热小,加工工件应力小,表层应力薄或没有。⑷辅助时间(修整砂轮、更换砂轮)大大减少。

对我国轴承行业来说,利用CBN进行套圈磨削加工是种新的加工技术,应用前景非常广阔,但需要研究解决下列技术:CBN砂轮的制造技术、修整技术、专用轴承磨床和磨削冷却液等。

由于CBN砂轮具有良好的加工特点,利用CBN砂轮进行轴承套圈磨削国外早已进行了研制并应用于生产中,并称其为“生产加工技术的一场大革命”。从1982年以来,CBN砂轮在日本已大批应用,并且高速增长。

2.3外表面磨削砂轮自动动平衡技术

对于外表面磨削,由于砂轮较大并且为非均质组织体,砂轮系统重心总是偏离主轴中心,高速旋转时必然引起砂轮系统及其整个机床的振动,直接影响机床的使用寿命。在此情况下,磨削加工将难以达到高精度,易导致工件表面产生磨削振纹,波纹度增大。

机床砂轮上直接安装上机械的或其他方式的自动动平衡装置,开机后快速直接逼近最平衡位置,自动平衡较为完善且还可省略砂轮静平衡。该项技术的突破推动了磨削技术的发展,同时能够极大限度地延长砂轮、修整用金刚石及主轴轴承寿命,减小机床振动,长期保持机床的原有精度。

2.4快速消除内表面磨削空程的技术

在所有轴承磨加工设备中,内表面磨床的水平具有象征的意义。这主要是磨削孔径限制了砂轮尺寸及相应的系统机构集合参数,从根本上限制了工艺系统的刚性,同时其加工精度要求较高。这些都要求我们必须对内表面磨削的工艺过程进入深入的研究,除了最大限制地发挥机床与砂轮的切削能力外,减小辅助磨削时间是提高磨削效率的关键,因为磨削空程占整个磨削时间的10%左右。

目前,国内外应用较为广泛的快速消除磨削空程的技术有以下几种:控制力磨削技术,恒功率磨削技术,利用主动测量仪技术和测量电主轴电流技术。

2.5CNC数控技术及交流伺服技术

交流伺服电机与PLC可编程序控制器的定位模块,伺服放大器相连即可构成伺服系统,伺服电机本身带有光学旋转编码器,将其输出的信号反馈到伺服放大器即可构成半闭环控制系统。在高转速(3000rpm)及低速运转都能保证定位精度,使用伺服系统可以完成快跳、快趋、修整补偿、粗精磨削,使机床进给机构大大简化,性能可靠性大大提高。

2.6交流变频调速技术

在磨削中砂轮的线速度随着砂轮的消耗逐渐降低,其开始与终末的线速度之比约为3:2。目前,在砂轮磨削领域已采用高线速度磨削,为了提高磨削效率、保证磨削质量一致性,采用可编程控制器计算功能在每次修整砂轮后计算出砂轮半径,进而

计算出保持砂轮恒线速度的变频器输入频率,并传送给交流变频器,从而保证砂轮线速度不变。

3.轴承套圈的超精研加工

超精研加工方法是从30年代中期开始发展起来的,其创立就是针对轴承滚动表面加工的,它是一种精密的、经济的加工工艺,随着机械加工零件精密度及表面质量要求的不断提高,超精研加工得到愈来愈广泛的应用。在我们轴承制造的光整加工(抛光、砂布带研磨、超精磨和超精研)中占据重要地位。

超精研加工,简称“超精加工”,一般是指在良好的润滑条件下,被加工工件按一定的速度旋转,油石按一定的压力弹性地压工件加工表面上,并在垂直于工件旋转方向按一定规律作往复振荡运动的一种能够自动完结的光整加工方法。

超精研工整个过程包括独立的区分明显的三个阶段:修整、恒定切削、磨光(也有分为:切削阶段或自锐阶段、半切削阶段、光整阶段)。并且整个过程在基本工艺参数(如切削速度、油石压力和硬度、振荡频率、磨料种类、工件材料以及润滑冷却液等)不变的条件下自动完结。

3.1超精研加工的优点

能有效的减小圆形偏差(主要是波纹度)。

能有效地改善滚道母线的直线性或加工成所需要的凸度形状。

能去除磨削变质层,降低表面粗糙度值。

能使表面具有残余的压应力。

能够在加工表面形成纹理均匀细腻的、较理想的交叉纹路。

能使工作接触支承面积增大。

3.2超精加工对滚动轴承工作性能的影响

提高轴承的旋转精度,减低轴承的振动和噪声。

提高轴承的承载能力。

提高轴承的润滑效果,减小磨损。

减小轴承工作时的发热。

3.3超精研加工技术

油石制造技术

它决定油石的使用性能,是超精研技术存在的前提,使用上要求:油石切削性能要好,损耗要慢,又要有足够的强度。

其中,陶瓷结合CBN超精油石,能够保持连续不变的高切削率,同时磨损量非常小,临界压力高,可大大提高工件加工的整体质量和统一性。金刚石超精油石,能够

获得最高的切削率,最小的磨损率和最佳的表面精研效果。立方体碳化硅油石,类似于金刚石立方体氮化硼,切削力和加工质量仅次于前两者,比一般的碳化硅高。超精加工工艺技术

超精加工工艺上将整个超精研过程分为粗超和精超二个阶段。粗超阶段中油石磨料比较锋利,油石压力较高,工件转速较低,摆头频率较高,因而切削能力强,是去除工件加工量的主要阶段。精超阶段中油石磨料相对钝化,油石压力较低,工件转速较高,摆头频率较低,因而切削能力减弱,对工件表面的抛光作用加强,大大降低表面粗糙度值。

其中,一序二段法,一序二步法,油石自动补偿技术,油石自动供给技术,粗、精超油石自动变换技术和高频小振荡加低频大往复技术等都在国内或国外设备上有所应用。

工件定位技术

目前滚道超精研机常用的工件定位方式有下列几种:端面滚轮机械压紧式无心夹紧,液压定心端面滚轮机械压紧式夹紧,双滚轮驱动端面压紧式无心夹紧。

润滑冷却技术

超精加工时润滑液主要三个作用:冲洗冷却,润滑,形成吸附油膜。

超精加工对润滑冷却的要求:适当的粘度,防锈功能,挥发性小,重复使用。

超精加工对润滑冷却液的过滤精度有严格的要求,因此必须有高精度的过滤装置来保证。

综上所述,工艺工装专业委员会围绕中轴协技术委员会“十五”攻关项目要求,打造精品滚子轴承,重点研究如下:

1.轴承滚子的磨、超问题。其中滚子凸度对数曲线超精技术在“八五”就已取得成功,目前主要是是推广应用和提高超精系统的可靠性、稳定性问题。

2.开发研究并完善的套圈滚道凸度超精机。虽然此项技术研究已取得一定的成果,但距离达到SKF公司的先进的实物水平还差一定的距离。

3.对档边的带凸度超精研技术及装备开发。

4.滚子的端面超精技术研究及设备开发。

5.推动新型油石的产业化工程和普及与应用。

6.将上述先进的、最新的专利技术应用到滚子轴承的磨超设备技术改造和新一代设备研发上来。同时大力推进滚子轴承的自动生产装配线的研发。

滚动轴承的热处理工艺设计

攀枝花学院 学生课程设计(论文) 题目:滚动轴承的热处理工艺设计 学生姓名: 学号: 所在院(系):材料工程学院 专业:级材料成型及控制工程 班级:材料成型及控制工程一班 指导教师:职称:讲师 2013年12月15日 攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书 题目滚动轴承的热处理工艺设计 1、课程设计的目的 使学生了解、设计滚动轴承的热处理工艺,融会贯通相关专业课程理论知识,培养学生综合运用所学知识、分析问题和解决问题的能力。 2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等) 内容: (1)明确设计任务(包括设计的技术要求) (2)绘出热处理件零件图 (3)给出设计方案 (4)写出设计说明 (5)设计质量检验项目 (6)设计热处理工艺卡片 (7)滚动轴承的热处理缺陷及预防或补救措施 要求: (1)通过查找资料充实、完善各项给定的设计内容。 (2)分析热处理过程中可能出现的缺陷,针对这些缺陷提出预防措施或补救措施。 (3)提交设计说明书(报告),2千字以上。报告格式请参照“毕业论文(设计)”格式。 3、主要参考文献 [1] 夏立芳主编. 金属热处理工艺学. 哈尔滨: 哈尔滨工业大学出版社, 2005 [2] 中国机械工程学会热处理分会.热处理工程师手册[M].机械工业出版社.2003.第一版. [3] 张玉庭主编.热处理技师手册[M].机械工业出版社.2006.第一版 [4] 中国机械工程学会热处理学会.热处理手册[M].机械工业出版社.2003.第三版. 4、课程设计工作进度计划 第十六周:对给定的题目进行认真分析,查阅相关文献资料,做好原始记录。 第十七周:撰写课程设计说明书,并进行修改、完善,提交设计说明书。 指导教师(签字)日期年月日 教研室意见: 年月日 学生(签字): 接受任务时间:年月日 注:任务书由指导教师填写。

深孔加工技术研究

龙源期刊网 https://www.doczj.com/doc/bc3969891.html, 深孔加工技术研究 作者:金英卓邵健 来源:《中国科技博览》2016年第05期 [摘要]深孔加工技术一直是国内机械加工技术的难点,本文探索利用枪钻在车铣加工中心上进行深孔加工,大大提高了深孔加工的质量和效率,为国内深孔加工技术填补了空白。 [关键词]深孔;枪钻;加工中心 中图分类号:TG713 文献标识码:A 文章编号:1009-914X(2016)05-0240-01 引言 随着数控设备的普及和数控技术的成熟,应用车铣复合加工中心加工深孔已成为可能。本文通过开发车铣复合加工中心深孔加工的功能,利用枪钻解决深孔加工问题,通过摸索试验设计合理的深孔加工工艺,选择合适的深孔加工刀具和切削参数,编制合理的深孔加工数控程序,为利用枪钻进行深孔加工探索出一条切实可行的方案。 1.零件的设计要求 本次加工的目标零件,毛坯为棒料,零件材料为难加工的高温合金材料,零件总长 103mm,杆部内孔为φ6mm,壁厚为2mm,内孔表面粗糙度要求为Ra3.2,长径比为20:1,外圆端面的垂直度为0.05mm。 2.工艺性分析 该零件属于深孔加工的零件,采用普通的加长钻头很难加工。由于采用棒料加工,在机加过程中取出的余量较大,故粗加工后安排消除应力热处理。零件壁厚较薄,为保证内外圆同心和外圆对端面的垂直度,将深孔,外圆和端面安排到一道机加工序进行。 3.深孔加工方案设计 3.1 枪钻加工方法简介 常用的深孔加工方法有单管钻系统(必须专用设备进行加工)、吸钻系统(加工中心等)和枪钻等,吸钻的加工直径在φ15mm以上,枪钻的加工范围为φ0.6~50mm。该零件深孔直 径为φ6mm,故选择枪钻在具有高压内冷装置的车铣复合加工中心上进行。 枪钻时先进高效的孔加工技术,可用来加工深孔(长径比250:1),也可用来加工浅孔(长径比1:1)。枪钻是由钻柄,钻杆和钻头三部分焊接在一起,中间有一个通孔,适用于

深孔加工难题例解

深孔加工难题例解 Exa mp les of So lving D ifficut P roble m s in L ong Ho le M ach in ing 西安石油学院深孔加工技术研究所(710065) 彭海 刘战锋 刘雁蜀 【摘要】介绍了超小直径的深孔加工、异形零件的深孔加工、薄壁精密零件的深孔加工、两端孔径小中间孔径大的深孔加工方法,并例举5个加工实例,阐明零件的深孔加工工艺及该深孔与其他加工面之间的主要加工难点、解决办法及加工注意事项等。关键词 深孔加工 加工实例 工艺措施 Keywords l ong ho le m ach in ing ,p ractical exa mp les of m ach in ing , techno l ogicalm easures 小直径深孔的加工 本文所指的小直径深孔是53~56mm ,长径比(L d )为80 ~300的深孔,加工这类深孔,一般可采用枪钻或深孔麻花钻。由于56mm 以下小孔的枪钻制造,目前在国内还是个难题,而进口枪钻价格高,因此受到一定的限制。在对一般加工精度的这类深孔,采用深孔麻花钻加工,也能满足孔加工尺寸精度和孔表面质量要求时,由于其不需要专用的深孔加工机床、油路系统及其附加装置,应用仍很广泛。我们就曾采用大螺旋角、厚钻芯的蜗杆形深孔麻花钻(刃形都修磨成XXZ 21刃形[1]或群钻刃形)加工此类小直径深孔,注重钻头的刃磨和操作规则,均取得了较好的效果。 如图1所示的零件,为一支撑板,上有53mm 的相交孔,若用枪钻钻孔,除钻头价较高外,在厚度只有8mm 的钢板端面上进行高压密封也十分困难,且装夹工件、定位夹紧、油路系统及密封装置都十分复杂。而用53mm 蜗杆形的深孔麻花钻加工,相对而言则较为简便。 图1 支撑板零件图 在加工中, 采用回转式的专用夹具,以工作面C ,B 定位,首先钻削孔1,2,3,4,随后,将工件随夹 具体回转90°,用表找正A 面,保证A 面与B 面平行,夹持后,钻削孔5,6;最后将工件和夹具体回转180°,找正A 面,夹持后钻削孔7,8。在钻削这些孔时,每个孔必须钻直,否则两孔就很难垂直相交,并 容易断钻;同时也难保证与大孔5154.5+0.2 0mm 间的1.25mm 最小壁厚。因此,必须对钻头修磨横刃,使横刃长度b 7≈0.2mm ;除此之外,在加工中,应及时修磨刃口,保持钻刃的锋利性,并保证缓慢匀速进给。在整个钻削过程中必须稳定可靠,对修磨钻头的刃形、提钻排屑的次数、每次钻削的深度及切削用量等都必须严格的按规程操作,否则废品率将相当高。 图2 驱动体套中有平行深孔的零件图 图2所示为驱动体套零件,材质为35C r M o 钢,在壁厚为15mm 的孔壁上分别钻削56×1880mm 和56×1835mm 两个小孔,并要求此两小孔与584+0.054 mm 大孔的平行度为50.3mm ,以便保证壁 厚能承受70M Pa 的工作压力。为满足平行度要求,采取的主要工艺步骤是: 1)按5130×2130mm 尺寸下料;2)钻562mm 通孔;3)将工件按L 1=1400mm ,L 2=730mm 截成2段;4)以内孔为基准,2段按同一尺寸车削外圆(留半精车余量);5)对较长的L 1段,采用深孔麻花 钻在其两端对钻56mm 小孔,保证560-0.1mm 检验棒能顺利通过对穿钻通的56mm 小孔;对较短的L 2段,钻56mm 盲孔,保证孔深;6)对2段加工焊接坡 ? 81?《新技术新工艺》?机械加工与自动化 2001年 第6期

轴承加工工艺

转盘轴承加工工艺流程简介 1)锻件毛坯的检查 在加工前首先了解毛坯的材质、锻后状态(一般为正回火状态,查阅锻件合格证即材质书)。其次要检查毛坯是否有叠层、裂纹等缺陷。 测量毛坯外型尺寸。测量毛坯内外径、高度尺寸、计算加工余量,较准确地估算出车削加工的分刀次数。 2)车削加工 2.1 粗车:根据车削工艺图纸进行粗车加工,切削速度、切削量严格按工艺规定执行(一般切削速度为5转/分钟。切削量为10mm~12mm)。 2.2 粗车时效:轴承零件粗车完成后,采用三点支承、平放(不允许叠放),时效时间不小于48小时后才能进行精车加工。 2.3 精车轴承零件精车时,切削速度每分钟6至8转,切削量0.3~0.5毫米。 2.4 成型精车:轴承零件最后成型精车时,为防止零件变形,须将零件固定夹紧装置松开,使零件处于无受力状态,车削速度为每分钟8转、切削量为0.2毫米。 2.5 交叉、三排滚子转盘轴承内圈特别工艺:为防止交叉、三排滚子转盘轴承内圈热处理后变形。车削加工时必须进行成对加工,即滚道背靠背加工,热处理前不进行切断,热后切断成型。 2.6 热后精车:轴承内外圈热处理后,进行精车成工序、工艺规程同2.3、2.4 3)热处理— 3.1 滚道表面淬火:轴承滚道表面中频淬火,硬度不低于55HRC,硬化层深度不小于4毫米,软带宽度小于50毫米,并在相应处作“S”标记。(有时客户要求可以渗碳、渗氮、碳氮共渗等) 3.2 热后回火处理:轴承内外圈中频淬火后需在200C度温度下48小时方可出炉。以确保内应力的消失。 4)滚、铣加工— 4.1 对有内外齿的转盘轴承,磨削加工前要进行滚铣齿工序,严格按工艺要求加工,精度等级要达到8级以上。 5)钻孔— 5.1 划线:在测量零件的外型尺寸后,按图纸规定尺寸进行划线、定位工序,各孔相互差不得大于3%0。 5.2 钻孔:对照图纸检测划线尺寸,确保尺寸正确无误后再进行钻孔工序,分体内套转盘轴承安装孔应组合加工,并使软带相间180C度各孔距误差不得大于5%0

JBT 8566-2008 滚动轴承 碳钢轴承零件 热处理技术条件

ICS 21.100.20 J 11 JB 滚动轴承 碳钢轴承零件 热处理技术条件 Rolling bearings ―Bearing parts made from carbon steel ―Specifications for heat-treatment 中华人民共和国国家发展和改革委员会 发布

前 言 本标准代替JB/T 8566-1997《滚动轴承零件碳钢球轴承套圈热处理技术条件》和JB/T 8569-1997《滚动轴承零件碳钢球渗碳热处理技术条件》。 本标准与JB/T 8566-1997和JB/T 8569-1997相比,主要变化如下: ——修改了标准名称,并把JB/T 8566-1997和JB/T 8569-1997加以合并(1997年版和本版的封面及首页); ——增加了渗碳钢球压碎载荷值(见附录A); ——修改了检验方法(1997年版和本版的第5章)。 本标准的附录A为规范性附录。 本标准由中国机械工业联合会提出。 本标准由全国滚动轴承标准化技术委员会(SAC/TC 98)归口。 本标准起草单位:万向钱潮股份有限公司、洛阳轴承研究所、洛阳轴研科技股份有限公司。 本标准主要起草人:叶健熠、郑晓敏、王智勇、范围广、仇亚军、屠国青、梁林霞。 本标准所代替标准的历次版本发布情况为: ——JB/T 8566-1997; ——JB/T 8569-1997。 I 标准分享网 https://www.doczj.com/doc/bc3969891.html, 免费下载

滚动轴承 碳钢轴承零件 热处理技术条件 1 范围 本标准规定了采用符合GB/T 699-1999中的45钢或性能与之相当的优质碳素结构钢制造的轴承套圈锻造或锻造退火和淬、回火后的技术要求、检验方法与检验规则以及10、15优质碳素结构钢或含碳量和力学性能与其接近的碳钢制造的碳钢球的渗碳和淬、回火技术要求、检验方法与检验规则。 本标准适用于上述钢制轴承零件的热处理质量检验。对有特殊要求的轴承零件以及其他用途的碳钢球,应按产品图样的规定。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 230.1-2004 金属洛氏硬度试验第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺)(ISO 6508-1:1999,MOD) GB/T 231.1-2002 金属布氏硬度试验第1部分:试验方法(eqv ISO 6506-1:1999) GB/T 699-1999 优质碳素结构钢 JB/T 1255-2001 高碳铬轴承钢滚动轴承零件热处理技术条件 JB/T 7361-2007 滚动轴承零件硬度试验方法 JB/T 7362-2007 滚动轴承零件脱碳层深度测定法 JB/T 8881-2001 滚动轴承零件渗碳热处理技术条件 3 套圈技术要求 3.1 锻造或退火 套圈锻造或锻造退火后的硬度不应大于241HBW,压痕直径不应小于3.9mm。 3.2 淬、回火 3.2.1 硬度 3.2.1.1 淬、回火后的硬度 套圈淬、回火后的硬度不应低于50HRC。 3.2.1.2 同一零件的硬度差 套圈外径不大于100mm,同一个零件硬度差不应大于2HRC;套圈外径大于100mm,同一零件硬度差不应大于3HRC。 3.2.2 显微组织 轴承套圈淬、回火后显微组织应为马氏体+少量残余奥氏体。淬、回火后显微组织的马氏体粗细程度按第一级别图评定:第1级~第3级为合格组织,大于第3级为不合格组织。在硬度合格的情况下,屈氏体组织不予控制。 1

轴承加工工艺流程附图

轴承加工工艺流程(附图) 轴承是当代机械设备中一种重要零部件。它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。 按运动元件摩擦性质的不同,轴承可分为滚动轴承和滑动轴承两大类.轴承可同时承受径向负荷和轴向负荷.能在较高的转速下工作。接触角越大,轴向承载能力越高。那么轴承是怎么加工出来的呢? 轴承制造加工基本过程(以套圈制造基本流程为重点,材料选用高碳铬轴承钢Gcr15SiMn) <1>滚动体(钢球)制造基本流程: 原材料——冷镦-—光磨—-热处理——硬磨-—初研——外观——精研 〈2>保持架(钢板)制造基本流程: 原材料——剪料——裁环--光整--成形——整形——冲铆钉孔 〈3>套圈(内圈、外圈)制造基本流程: 原材料—-锻造--退火——车削——淬火—-回火—-磨削--装配

汇普轴承加工流程图 (1)锻造加工:锻造加工是轴承套圈加工中的初加工,也称毛坯加工。 套圈锻造加工的主要目的是: (a)获得与产品形状相似的毛坯,从而提高金属材料利用率,节约原材料,减少机械加工量,降低成本. (b)消除金属内在缺陷,改善金属组织,使金属流线分布合理,金属紧密度好,从而提高轴承的使用寿命。 锻造方式:一般是在感应加热炉、压力机、扩孔机和整形机组成连线的设备体进行流水作业 (2)退火:套圈退火的主要目的是:高碳铬轴承钢的球化退火是为了获得铁素体基体上均匀分布着细、小、匀、圆的碳化物颗粒的组织,为以后的冷加工及最终的淬回火作组织准备。 Gcr15SiMn退火基本工序:

在790-810℃保温2-6h, 以10—30℃/h,冷至600℃以下,出炉空冷 (3)车削加工:车削加工是轴承套圈的半成品加工,也可以说是成型加工。 车削加工的主要目的是: (a)使加工后的套圈与最终产品形状完全相同。 (b)为后面的磨削加工创造有利条件。 车削加工的方法: 集中工序法:在一台设备上完成所有车削工序的小批量生产。 分散工序法:在一台设备上完成某一种车削工序的大批量生产。 (4)热处理:热处理是提高轴承内在质量的关键加工工序。 热处理的主要目的是: (a)通过热处理使材料组织转变,提高材料机械性能。 (b)提高轴承内在质量(耐磨性、强韧性),从而提高轴承寿命。 对于高碳铬轴承钢Gcr15SiMn,热处理包括淬火和低温回火淬火: 加热温度:820—840(℃)保温时间: 1—2h 冷却介质:油低温回火:

轴承钢的热处理工艺及参数和发展

轴承钢热处理工艺参数 时间:2010-06-14 08:59:46 来源:机械社区作者:

时间:2010-04-19 16:29:25 来源:中国金属加工在线作者:轴承钢是质量要求很严格的钢类。目前对轴承钢提出的要求有:用户免加工和检查、提高质量、规格细化和提高尺寸精度等,而且,对这些要求的重要程度越来越高。为满足这些要求,JFE制钢使用了各种保证产品质量和进行精加工的设备生产轴承钢。这些设备与新开发的提高质量的技术相结合,可以生产尺寸范围宽、质量高、附加值高的热处理和热轧轴承钢。 JFE轴承钢制造技术的特点是: 1)表面质量精细加工和质量检查体系 用对钢坯进行火焰清理和将连铸坯轧制成小型圆坯的方法,均匀去除表面瑕疵、皮下夹杂物和脱碳层。对质量要求特别高的材料,实施钢坯扒皮作业高度清除缺陷。为保证小型圆坯的表面质量,用自动涡流探伤仪和磁粉探伤仪进行检查;对内部缺陷,用圆坯全断面超声波探伤仪检测内部孔隙和夹杂物。 2)轴承钢的精细制造技术和质量保证 在线材-棒材厂,在棒材轧制线上增设线材轧制线,进行联合轧制。对棒材和线材都采用4辊精轧机进行精轧,棒钢的尺寸精度在0.01mm以下,用户可以省略扒皮和拉拔加工。对线材可进行自由尺寸轧制,并可以生产Φ4.2mm的小尺寸线材。由于把线材已经轧制到锻造的尺寸,所以用户可以省略拔丝、热处理和表面处理工序。 3)提高钢的洁净度 近年来,JFE制钢为了提高钢的洁净度,采用了PERM(加减压精炼)、LF(炉外精炼炉)对钢的生产工艺进行了改进。PERM法是在转炉冶炼时,使氮、氢等气体溶解在钢中,然后,用RH炉(真空脱气)迅速减压,使钢中产生气体,利用这种气体捕捉并排除钢液中的夹杂物。 JFE制钢还在2008年新建LF炉,大大提高了夹杂物的去除能力。采用上述工艺和设备的效果是:与原有工艺相比,夹杂物个数预测指数减少34%、夹杂物最大直径指数减少29%、夹杂物最大直径指数分布的标准偏差减少了73%。 由于采用了具有上述特点的制造技术,JFE制钢今后将继续向用户 轴承钢资料 时间:2010-08-17 11:44:25 来源:热加工行业论坛作者:轴承钢全名叫滚动轴承钢,具有高的抗压强度与疲劳极限,高硬度,高耐磨性及一定韧性,淬透性好,对硫和磷控制极严,是一种高级优质钢,可做冷做摸具钢。 比重:7.81 (一)轴承钢锻造温度

基于机械加工的深孔加工技术探析

基于机械加工的深孔加工技术探析 机械加工中有三分之一的加工是孔加工,而深孔加工则占孔加工的四成,所以深孔加工是一种重要的加工形式。同时深孔加工的工艺较为特殊,不能直接观察成孔的过程和内部状况,所以必须对其工艺进行合理选择与设计,文章对深孔加工技术进行分析,阐述关键工艺对加工过程的影响。 标签:机械加工;深孔加工;工艺路线;刀具 1 机械加工中深孔加工的特征分析 机械加工中的深孔加工是针对孔深与直径之比(L/d≥5)较大的孔进行钻孔加工,因为孔的深度大直径小,因此工艺特征也较其他普通孔有所差异,特征如下: 1.1 加工难度大:深孔加工的过程多数都是在半封闭和全封闭的工况,不能直接观察刀具切削的过程和走刀的情况;深孔加工因为半径和孔深比例差异大,因此形成的金属屑不易排出,容易堵塞而影响加工;钻头长度大刚性也就低,容易出现抖动和偏孔的情况,且表面精度不易保证;散热也是影响加工的重要因素,相对封闭的孔内易导致温度升高而造成钻头磨损。 1.2 运动方式:在加工中工件与刀具的运行与进给方式有多种选择,如工件转动而刀具进给;工件固定而刀具旋转进给;工件与刀具按照相反的方向进行旋转并进行进给;工件旋转并进给而刀具静止,此方式很少应用。 1.3 深孔加工的排屑:在加工中应用的排屑方式有两种,一种是外排屑,冷却液进入空心钻杆从切削区域将切屑带出,从加工零件的孔和钻杆外壁排除;一种是内排屑:冷却液从零件的孔和钻杆外壁进入,经过切削区域带出切屑,从空心钻杆的孔中排除;两种方式中通常先考虑选择内排屑的方式,此类方式不会对孔壁形成二次摩擦,而影响加工表面质量,钻杆的刚性也高。 2 机械加工中深孔加工技术的分析 2.1 工艺路线的设计与选择 机械加工中工艺路线是必要的指导思路,深孔加工也不例外,首先应综合考虑深孔加工方法和刀具的适应性,针对加工零件的特征选择相关工艺方法,同时还应考虑零件的材料性质,针对其特征再精细设计工艺过程。其次,对加工过程进行段落划分,通常分为:粗加工、半精加工、精加工、光整加工,进行工艺设计,选择合适的技术措施,并以此提高加工效率和质量,如果质量要求和薄壁零件、工余量不大的则不需要分段。第三,工艺路线的设计,深孔加工的工艺路线应按照其结构特征和加工方法、设备因素等来设置,因为深孔刀具技术的发展,深孔加工已经进入了精密加工时代,集中安排工序可以优化加工的过程,从而避

深孔加工的编程及技巧

深孔加工的编程及技巧 本文通过对深孔加工指令G73和G83动作过程的分析,提出设置合理参数的方法,总结了特殊深孔加工的编程技巧,并给出了应用技巧方法处理的实例。 在数控加工中常遇到孔的加工,如定位销孔、螺纹底孔、挖槽加工预钻孔等。采用立式加工中心和数控铣床进行孔加工是最普通的加工方法。但深孔加工,则较为困难,在深孔加工中除合理选择切削用量外,还需解决三个主要问题:排屑、冷却钻头和使加工周期最小化。本文将从编程方面讨论解决有关深孔加工的主要问题。 一、深孔加工的编程指令及自动编程 1. 深孔加工指令格式 大多数的数控系统都提供了深孔加工指令,这里以FANUC系统为例来进行叙述。FANUC系统提供了G73和G83两个指令:G73为高速深孔往复排屑钻指令,G83为深孔往复排屑钻指令。其指令格式为: 式中X、Y——待加工孔的位置; Z——孔底坐标值(若是通孔,则钻尖应超出工件底面); R——参考点的坐标值(R点高出工件顶面2~5mm); Q——每一次的加工深度; F——进给速度(mm / min); G98——钻孔完毕返回初始平面; G99——钻孔完时返回参考平面(即R点所在平面)。 2.深孔加工的动作 深孔加工动作是通过Z轴方向的间断进给,即采用啄钻的方式,实现断屑与排屑的。虽然G73和G83指令均能实现深孔加工,而且指令格式也相同,但二者在Z向的进给动作是有区别的,图1和图2分别是G73和G83指令的动作过程。

图1 G73指令动作过程 图2 G83指令动作过程 从图1和图2可以看出,执行G73指令时,每次进给后令刀具退回一个d值(用参数设定);而G83指令则每次进给后均退回至R点,即从孔内完全退出,然后再钻入孔中。深孔加工与退刀相结合可以破碎钻屑,令其小得足以从钻槽顺利排出,并且不会造成表面的损伤,可避免钻头的过早磨损。

滚动轴承工作温度的介绍

滚动轴承工作温度的介绍(一)滚动轴承根据其材质选用和热处理工艺以及使用工作时的润滑条件,在产品设计阶段和生产加工制造过程中其工作温度即已给定。具体情况如下: 一.材质选用 1.通用轴承在正常工作温度下(室温)可按照国家标准GB/T18254-2002《高碳铬轴承钢》选材。 2.高温轴承工作温度超过300℃以上可按照YB688-2000《高温轴承钢 Cr4 M O4V技术条件》选材。 3.低温轴承(工作温度低于-60℃以下的轴承),常用不锈轴承钢9Cr18、9Cr18Mo材料制造,可按照GB/T3086-1982《高碳铬不锈轴承钢技术条件》选材,也可选用铍青铜、陶瓷等材料制造。二.热处理工艺 1.通用轴承选用高碳铬轴承钢时,其热处理工艺按照国家机械行业标准JB/T1255-2001《高碳铬轴承钢滚动轴承零件热处理技术条件》进行。 2.高温轴承工作温度高于300℃时可按JB/T2850-1993《Cr4M O4V 高温轴承钢滚动轴承零件热处理技术条件》处理后,予以应用。 3.低温轴承,可按JB/T1460-2002《高碳铬不锈钢滚动轴承零件热处理技术条件》处理后,予以应用。 三.滚动轴承工作温度 1.通用轴承选用高碳铬轴承钢并按上述热处理工艺加工后滚动轴

承在正常工作状态下(室温)的工作温度按照相关标准要求,即通过寿命和可靠性试验及评定后,即可按此予以控制。 a. 试验规定见JB/T50013-2000《滚动轴承寿命及可靠性试验规程》中第5条试验条件,第5.4项:轴承外圈温度脂润滑时,不允许超过80℃;油润滑时,不允许超过95℃。 b. 试验及评定见GB/T24607-2009《滚动轴承寿命与可靠性试验及评定》国家标准第6条试验条件,第6.2项:循环油润滑时,轴承外圈温度一般不应超过95℃;脂润滑时,轴承外圈温度一般不应超过80℃。 2. 高温条件下轴承工作温度: a. 滚动轴承选用高碳铬轴承钢,工作温度在150℃~350℃之间,按照JB/T2974标准,当工作温度在150℃~350℃之间时,在轴承型号后缀可分别标注S0~S4予以表示。 b. 滚动轴承选用高温轴承钢,其工作温度可达300℃以上,具体工作温度依据工作条件另行给定。 3.低温轴承工作温度: 滚动轴承选用高碳铬不锈轴承钢,其工作温度低于零下60℃以下,具体工作温度依据工作条件另行给定。

轴承套圈工艺改进技术专题报告1

目录 引言: (1) 一.轴承零部件加工过程中的防锈 (2) (一)轴承零部件加工中的防锈 (2) (二) 轴承零部件工序间的防锈 ................................... 3 (三)常用的中间库(制品库)的防锈方法 . (4) 二.防锈包装前的处理 (5) (一)清洗的对象 (5) (二)清洗用的介质 (6) (三)清洗工艺 (6) (四)清洁度检测与标准 (6) (五)清洗后的干燥 (7) 三.暂时性保护(封存防锈)材料 (7) (一)防锈油品 (7) (二)气相防锈材料 (7) 四.轴承润滑油 (8) 五、轴承成品防锈包装 (9) 六、轴承工厂的防锈管理 (10) 结束语 (11) 参考文献: (12)

深沟球轴承轴承内外圈磨加工工艺过程改进 作者:刘圣斌指导老师:余军合 宁波大学科学技术学院 摘要:通过改进轴承内外圈磨工工艺过程和使用的设备,可以使产品磨加工工艺过程和在制 品周转更加合理,解决了冷却水、精研油、清洗煤油交叉相混现象,降低了生产成本,降低社会劳动生产时间的同时提高了社会劳动生产率和产品质量。进一步扩大了轴承产品的竞争优势。 关键字:深沟球轴承;内圈、外圈、磨削、工艺 一、轴承介绍: 轴承是一种精度高、互换性很强的标准零件,因此,为获得高的生产效率和产品质量,常采用专用加工设备。达克公司公司专业化生产深沟球轴承,对内外圈的磨加工工艺过程进行了多次改进,提高了工效和产品质量。 1原设备及工艺存在的问题 原内、外圈磨超工艺如下: 外圈:磨端面(MB7480)→退磁、清洗→磨外径(M1080,MG10200)→支外径磨外沟道(3MZ146)→退磁、清洗→支外径超精外沟道(四轴超精机)。 内圈:磨端面(MB7480)→退磁、清洗→磨内圈挡边(M1050,MGT1050)→支内沟道磨内沟道

轴承套圈加工技术水平分析及解决方案

轴承套圈加工技术水平分析及解决方案 1.?前言 作为整个工业基础的机械制造业,正在朝着高精度、高效率、智能化和柔性化的方向发展。磨削、超精研加工(简称“磨超加工”)往往是机械产品的终极加工环节,其机械加工的好坏直接影响到产品的质量和性能。作为机械工业基础件之一轴承的生产中,套圈的磨超加工是决定套圈零件乃至整个轴承精度的主要环节,其中滚动表面的磨超加工,则又是影响轴承寿命以及轴承减振降噪的主要环节。因此,历来磨超加工都是轴承制造技术领域的关键技术和核心技术。? 国外轴承工业,60年代已形成一个稳定的套圈磨超加工工艺流程及基本方法,即:双端面磨削——无心外圆磨削——滚道切入无心磨削——滚道超精研加工。除了结构特殊的轴承,需要附加若干工序外,大量生产的套圈均是按这一流程加工的。几十年来,工艺流程未出现根本性的变化,但是这并不意味着轴承制造技术没有发展。简要地说,60年代只是建立和发展“双端面——无心外圆——切入磨——超精研”这一工艺流程,并相应诞生了成系列的切入无心磨床和超精研机床,零件加工精度达到3~5um,单件加工时间13~18s(中小型尺寸)。70年代则主要是以应用60m/s高速磨削、控制力磨削技术及控制力磨床大量采用,以集成电路为特征的电子控制技术的数字控制技术被大量采用,从而提高了磨床及工艺的稳定性,零件加工精度达到1~3um,零件加工时间10~12s。80年代以来,工艺及设备的加工精度已不是问题,主要发展方向是在稳定质量的前提下,追求更高的效率,{TodayHot}调整更方便以及制造系统的数控化和自动化。? 2.?轴承套圈的磨削加工 在轴承生产中,磨削加工劳动量约占总劳动量的60%,所用磨床数量也占全部金属切削机床的60%左右,磨削加工的成本占整个轴承成本的15%以上。对于高精度轴承,磨削加工的这些比例更大。另外,磨削加工又是整个加工过程中最复杂,对其了解至今仍是最不充分的一个环节。这个复杂性表现在:所要求的性能指标更多、精度更高;加工成形机理更复杂,影响加工精度的因素众多;加工参数在线检测困难。因此,对于轴承生产中关键工序之一的磨削加工,如何采用新工艺,新技术,以高精度、高效率、低成本地完成磨削过程,便是磨削加工的主要任务。 2.1?高速磨削技术 高速磨削能实现现代制造技术追求的两大目标提高产品质量和劳动效率。实践证明:若将磨削速度由35m/s提高到50~60m/s时,一般生产效率可提高30%~60%,对砂轮的耐用度提高约0.7~1倍,工件表面粗糙度参数值降低50%左右。?一般磨削速度达到45m/s以上称为高速磨削。国内以我所八十年代研制的ZYS—811全自动轴承内圆磨床为代表,率先在国内轴承行业套圈磨削加工中应用高速

轴承加工工艺流程

轴承是当代机械设备中一种重要零部件。它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。 按运动元件摩擦性质的不同,轴承可分为滚动轴承和滑动轴承两大类。轴承可同时承受径向负荷和轴向负荷。能在较高的转速下工作。接触角越大,轴向承载能力越高。那么轴承是怎么加工出来的呢? 轴承制造加工基本过程(以套圈制造基本流程为重点,材料选用高碳铬轴承钢Gcr15SiMn)? <1>滚动体(钢球)制造基本流程: 原材料——冷镦——光磨——热处理——硬磨——初研——外观?——精研? <2>保持架(钢板)制造基本流程: 原材料——剪料——裁环——光整——成形——整形——冲铆钉孔? <3>套圈(内圈、外圈)制造基本流程:? 原材料——锻造——退火——车削——淬火——回火——磨削——装配 汇普轴承加工流程图 (1)锻造加工:锻造加工是轴承套圈加工中的初加工,也称毛坯加工。? 套圈锻造加工的主要目的是:?

(a)获得与产品形状相似的毛坯,从而提高金属材料利用?率,节约原材料,减少机械加工量,降低成本。 (b)消除金属内在缺陷,改善金属组织,使金属流线分布合理,金属紧密度好,从而提高轴承的使用寿命。 锻造方式:一般是在感应加热炉、压力机、扩孔机和整形机组成连线的设备体进行流水作业? (2)退火:套圈退火的主要目的是:高碳铬轴承钢的球化退火是为了获得铁素体基体上均匀分布着细、小、匀、圆的碳化物颗粒的组织,为以后的冷加工及最终的淬回火作组织准备。? Gcr15SiMn退火基本工序:? 在790—810℃保温2-6h,?以10—30℃/h,冷至600℃以下,出炉空冷? (3)车削加工:车削加工是轴承套圈的半成品加工,也可以说是成型加工。 车削加工的主要目的是:? (a)使加工后的套圈与最终产品形状完全相同。? (b)为后面的磨削加工创造有利条件。? 车削加工的方法:? 集中工序法:在一台设备上完成所有车削工序的小批量生产。? 分散工序法:在一台设备上完成某一种车削工序的大批量生产。

滚动轴承工作温度的介绍

滚动轴承工作温度的介绍-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

滚动轴承工作温度的介绍(一)滚动轴承根据其材质选用和热处理工艺以及使用工作时的润滑条件,在产品设计阶段和生产加工制造过程中其工作温度即已给定。具体情况如下: 一.材质选用 1.通用轴承在正常工作温度下(室温)可按照国家标准GB/T18254-2002《高碳铬轴承钢》选材。 2.高温轴承工作温度超过300℃以上可按照YB688-2000《高温轴承钢 Cr4 M O4V技术条件》选材。 3.低温轴承(工作温度低于-60℃以下的轴承),常用不锈轴承钢9Cr18、9Cr18Mo材料制造,可按照GB/T3086-1982《高碳铬不锈轴承钢技术条件》选材,也可选用铍青铜、陶瓷等材料制造。 二.热处理工艺 1.通用轴承选用高碳铬轴承钢时,其热处理工艺按照国家机械行业标准JB/T1255-2001《高碳铬轴承钢滚动轴承零件热处理技术条件》进行。 2.高温轴承工作温度高于300℃时可按JB/T2850-1993《Cr4M O4V高温轴承钢滚动轴承零件热处理技术条件》处理后,予以应用。 3.低温轴承,可按JB/T1460-2002《高碳铬不锈钢滚动轴承零件热处理技术条件》处理后,予以应用。 三.滚动轴承工作温度

1.通用轴承选用高碳铬轴承钢并按上述热处理工艺加工后滚动轴承在正常工作状态下(室温)的工作温度按照相关标准要求,即通过寿命和可靠性试验及评定后,即可按此予以控制。 a. 试验规定见JB/T50013-2000《滚动轴承寿命及可靠性试验规程》中第5条试验条件,第5.4项:轴承外圈温度脂润滑时,不允许超过80℃;油润滑时,不允许超过95℃。 b. 试验及评定见GB/T24607-2009《滚动轴承寿命与可靠性试验及评定》国家标准第6条试验条件,第6.2项:循环油润滑时,轴承外圈温度一般不应超过95℃;脂润滑时,轴承外圈温度一般不应超过80℃。 2. 高温条件下轴承工作温度: a. 滚动轴承选用高碳铬轴承钢,工作温度在150℃~350℃之间,按照JB/T2974标准,当工作温度在150℃~350℃之间时,在轴承型号后缀可分别标注S0~S4予以表示。 b. 滚动轴承选用高温轴承钢,其工作温度可达300℃以上,具体工作温度依据工作条件另行给定。 3.低温轴承工作温度: 滚动轴承选用高碳铬不锈轴承钢,其工作温度低于零下60℃以下,具体工作温度依据工作条件另行给定。

深孔加工技术研究毕业论文

深孔加工技术研究毕业论文 目录 目录......................................................................... I 摘要....................................................................... III ABSTRACT.................................................................... IV 第一章绪论 (1) 1.1引言 (1) 1.2深孔加工技术国外现状 (1) 1.2.1国外深孔加工技术发展现状 (1) 1.2.2国深孔加工技术发展现状 (3) 1.3 深孔加工的特点 (4) 1.4课题研究的背景、意义以及发展趋势 (5) 1.5 课题的研究容 (6) 第二章深孔加工方法及问题分析 (7) 2.1 深孔加工方法 (7) 2.1.1 扁钻 (7) 2.1.2 枪钻 (8) 2.1.3 BTA深孔加工系统 (9) 2.1.4 双管喷吸钻系统 (10) 2.1.5 DF(Double Feeder system)系统 (11) 2.1.6 单管排屑深孔喷吸加工技术(SIED技术) (12) 2.1.7 深孔扩钻(Counterboring)技术 (12) 2.2 常用深孔加工方法对比分析 (13) 2.3 深孔加工注意事项与问题分析 (14) 2.3.1加工时应注意的问题 (14) 2.3.2深孔钻常见问题及产生原因 (14) 2.4深孔加工系统的选用 (15) 2.5本章小结 (15) 第三章深孔钻削的力学特性分析 (15) 3.1深孔钻削刀具的力学模型 (16) 3.1.1 BTA排屑深孔钻的力学模型 (16) 3.2深孔钻削各切削力的求解 (18) 3.2.1钻削力的测量 (18) 3. 2. 2钻削力分量求解 (19) 3. 3导向块位置角的分布分析 (20) 3.4 本章小结 (22) 4.1 深孔钻削加工的动态钻削力 (22)

轴承套圈加工工艺介绍

轴承是当代机械设备中一种重要零部件,它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。滚动轴承一般由外圈、内圈、滚动体和保持架四部分组成。按滚动体的形状,滚动轴承分为球轴承和滚子轴承两大类。 虽然滚动轴承类型众多,其结构型式、公差等级、材料选用、加工方法存在差异,但其基本制造过程类似,下面小编简单介绍下轴承零件的加工工艺: 轴承制造工艺顺序 (1)轴承零件制造-轴承零件检查-轴承零件退磁、清洗、防锈—轴承装配-轴承成品检查—轴承成品退磁、清洗-轴承成品涂油包装斗成品入库。 (2)套圈是滚动轴承的重要零件,由于滚动轴承的品种繁多,使得不同类型轴承的套圈尺寸、结构、制造使用的设备、工艺方法等各不相同。又由于套圈加工工序多、工艺复杂、加工精度要求高,因此套圈的加工质量对轴承的精度、使用寿命和性能有着重要的影响。 轴承套圈工艺顺序

套圈制造的原材料为圆柱形棒料或管料,目前根据成型工艺不同,滚动轴承套圈一般有以下几种制造过程。 (1)棒料:下料-锻造-退火(或正火)-车削(冷压成型)-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配。 (2)棒料、管料:下料-冷辗成型-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配。 (3)管料:下料-车削成型-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配 (4)棒料:下料-冷(温)挤压成型-车削-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配 套圈成型方法 目前在套圈加工中成型方法主要有以下几种:锻造成型、车削成型、冷辗扩成型和冷(温)挤压成型。

(1)锻造成型通过锻造加工可以消除金属内在缺陷,改善金属组织使金属流线分布合理,金属紧密度好。锻造成型加工工艺广泛应用于轴承成型加工中,常见的锻造成型方法有:热锻加工、冷锻加工、温锻加工。 (2)冲压成型工艺是一种能提高材料利用率,提高金属组织致密性,保持金属流线性的先进工艺方法,它是一种无屑加工方法。采用冲压工艺和锻造成型工艺时,产品的精度除了受设备精度影响外,还要受成型模具精度的影响。 (3)传统的车削成型技术是使用专用车床,采用集中工序法完成成型加工。一些外形复杂、精度要求高的产品正越来越多地采用数控车削成型技术。 轴承加工油的选用 轴承配件除在使用热锻工艺时通常都会根据工艺的不同选用适合的金属加工油以提高工件精度和加工效率。

轴承加工工艺流程附图

轴承加工工艺流程附图 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

轴承加工工艺流程(附图)轴承是当代机械设备中一种重要零部件。它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。 按运动元件摩擦性质的不同,轴承可分为滚动轴承和滑动轴承两大类。轴承可同时承受径向负荷和轴向负荷。能在较高的转速下工作。接触角越大,轴向承载能力越高。那么轴承是怎么加工出来的呢轴承制造加工基本过程(以套圈制造基本流程为重点,材料选用高碳铬轴承钢Gcr15SiMn) <1>滚动体(钢球)制造基本流程: 原材料——冷镦——光磨——热处理——硬磨——初研——外观——精研 <2>保持架(钢板)制造基本流程: 原材料——剪料——裁环——光整——成形——整形——冲铆钉孔 <3>套圈(内圈、外圈)制造基本流程: 原材料——锻造——退火——车削——淬火——回火——磨削——装配 汇普轴承加工流程图 (1)锻造加工:锻造加工是轴承套圈加工中的初加工,也称毛坯加工。 套圈锻造加工的主要目的是:

(a)获得与产品形状相似的毛坯,从而提高金属材料利用率,节约原材料,减少机械加工量,降低成本。 (b)消除金属内在缺陷,改善金属组织,使金属流线分布合理,金属紧密度好,从而提高轴承的使用寿命。 锻造方式:一般是在感应加热炉、压力机、扩孔机和整形机组成连线的设备体进行流水作业 (2)退火:套圈退火的主要目的是:高碳铬轴承钢的球化退火是为了获得铁素体基体上均匀分布着细、小、匀、圆的碳化物颗粒的组织,为以后的冷加工及最终的淬回火作组织准备。 Gcr15SiMn退火基本工序: 在790—810℃保温2-6h,以10—30℃/h,冷至600℃以下,出炉空冷 (3)车削加工:车削加工是轴承套圈的半成品加工,也可以说是成型加工。 车削加工的主要目的是: (a)使加工后的套圈与最终产品形状完全相同。 (b)为后面的磨削加工创造有利条件。 车削加工的方法: 集中工序法:在一台设备上完成所有车削工序的小批量生产。 分散工序法:在一台设备上完成某一种车削工序的大批量生产。 (4)热处理:热处理是提高轴承内在质量的关键加工工序。 热处理的主要目的是:

轴承钢热处理工艺

轴承钢热处理工艺EE轴承钢gcr15介绍 轴承钢GCr15,经调质和表面高频淬火后,表面硬度可达50~58HRC,并具有较高的耐疲劳性能和较好的耐磨性能。。GCr15(滚铬15,轴承钢),在临沂市场比45号钢还便宜,硬度、耐磨性、热处理工艺性都好。 有些特殊用钢,则用专门的表示方法,如滚动轴承钢,其牌号以G表示,不标含碳量,铬的平均含量用千分之几表示。如GCr15,表示含铬量为1.5%的滚动轴承钢。 GCr15钢是一种合金含量较少、具有良好性能、应用最广泛的高碳铬轴承钢。经过淬火加回火后具有高而均匀的硬度、良好的耐磨性、高的接触疲劳性能。该钢冷加工塑性中等,切削性能一般,焊接性能差,对形成白点敏感性能大,有回火脆性。 化学成分/元素含量(%)C:0.95-1.05 Mn:0.20-0.40 Si:0.15-0.35 S:<;=0.020 P:<;=0.027 Cr:1.30-1.65 其热处理制度为:钢棒退火,钢丝退火或830-840度油淬。热处理工艺参数: 1.普通退火:790-810度加热,炉冷至650度后,空冷—HB170-207 2.等温退火:790-810度加热,710-720度等温,空冷—HB207-229 3.正火:900-920度加热,空冷—HB270-390 4.高温回火:650-700度加热,空冷—HB229-285 5.淬火:860度加热,油淬—HRC62-66 6.低温回火:150-170度回火,空冷—HRC61-66 7.碳氮共渗:820-830度共渗1.5-3小时,油淬,-60度至-70度深冷处理+150度至+160回火,空冷—HRC&asymp;67 GCr15是滚动轴承轴. W(Cr) = 1.5%; 与不锈钢的区别: a.含碳量: 滚动轴承轴0.95%-1.15%;不锈钢0.1%-0.2%; b.含铬量: 滚动轴承轴0.4%-1.65%;不锈钢12.7%以上<;优点所在>;; —提示:含碳量和含铬量是防锈的关键—- 可以对比发现,滚动轴承轴的防锈能力远不及不锈钢. 轴承钢GCR15是否导磁:有磁性。 1CR17都有磁性。

滚动轴承套圈加工工艺

滚动轴承(深沟球轴承)套圈的热处理工艺一.选择零件

二.零件的服役条件及性能要求 滚动轴承的机械及工作环境千差万别,套圈要在拉伸、冲击、压缩、剪切、弯曲等交变复杂应力状态下长期工作。一般情况下,套圈的主要破坏形式是在交变应力作用下的疲劳剥落以及摩擦磨损,裂纹压痕锈蚀。所以,这就要求套圈具有高的抗塑性变形的能力,较少的摩擦磨损,良好的尺寸精度及稳定性和较长的接触疲劳寿命。 综上所诉,要求套圈要有1)高的接触疲劳强度2)高的耐磨性3)高的弹性极限4)适宜的硬度5)一定的韧性6)良好的尺寸稳定性7)良好的防锈能力8)良好的工艺性能 三.材料选择 套圈的材料选择一般有6种GCr4 ,GCr15 ,GCr15SiMn ,GCr15SiMo ,GCr18Mo 在这里我们选用的是GCr15,因为我们此次制造的是小尺寸套圈,GCr15SiMn和℃℃GCr15SiMo一般是用来制造壁厚的大轴承的套圈。GCr15SiMn一般用来制造壁厚在15mm~35mm的轴承的套圈。GCr15SiMo一般用来制造壁厚大于35mm的大型和特大型轴承的套圈。GCr4是限制淬透性轴承钢,各方面性能较好。GCr18Mo的淬透性比较高

,性能优越,但价格较高。GCr15是高碳铬轴承钢的代表钢种,综合性能良好,淬火和回火后具有高而均匀的硬度,良好的耐磨性能和高的接触疲劳寿命,热加工变形性能和削切加工性能均良好,但焊接性差,对白点形成较敏感,有回火脆性倾向,价格相对便宜。 四.加工工艺 棒料→锻制→正火→球化退火→车削加工→去应力退火→淬火→冷处理→低温回火→粗磨→补加回火→精磨→成品 1.正火 正火的目的 (1)消除网状碳化物及线条状组织 (2)返修退火的不合格品 (3)为满足特殊性能的需要 (4)为退火做组织准备 加热温度 正火加热温度主要依据正火目的和正火前组织状态来决定。此处正火主要是为了消除或减少粗大网状碳化物,所以正火温度选在930~950℃之间。如果一次正火不能消除粗大网状碳化物,可以以相同温度二次正火。 保温时间 保温时间在40min~60min 冷却速度 正火冷却过程中如果冷却速度过慢非但不能改善组织,还会再次析出网状碳化物;冷却速度过大,将会出现大量马氏体组织及裂纹。所以本材料正火冷却速不应该小于50℃/min。 冷却方法 (1)分散空冷 (2)强制吹风 (3)喷雾冷却 (4)乳化液中(70~100℃)或油中循环冷却 (5)70~80℃水中冷却

相关主题
文本预览
相关文档 最新文档