当前位置:文档之家› 凝结器铜管内的结垢及防止

凝结器铜管内的结垢及防止

凝结器铜管内的结垢及防止
凝结器铜管内的结垢及防止

凝结器铜管内的结垢及防止

一、引言

冷却水的供水方式分为开放式和循环式两种,开放式供水,是由水源来的生水一次性的经过凝结器设备后,排掉不在利用,一般在水源充足的地方,如江、河、湖、海或水库的地方,大都采用这种方式。循环式供水是冷却水经凝结器后,通过冷水塔或喷水池,降低温度后再作为冷却介质使用。这种给水方式的冷却水又称为循环水。

2014年设备进行大修期间,对循环水系统的凝结器铜管进行检查,发现凝结器有程度不同的结垢及粘泥情况存在,下面着重从检查机组凝结器铜管的情况来分析:从这次的检查记录中可以看出,主要存在着的情况是有少量的碳酸盐垢和淤泥存在,并在个别铜管内有轻微的腐蚀现象发生,淤泥在凝结器铜管内很容易形成水垢或是在微生物的作用下形成有机附着物附着在管壁上,由于这些附着物的传热性很差,会导致凝结水的温度升高,而使凝结器的真空度下降,影响汽轮机的出力和经济运行。因此对循环冷却水中的碳酸盐垢和淤泥引起的附着物腐蚀情况进行初步的论述。

二、形成机理

循环水在运行过程中,由于有许多水量要损失(蒸发、泄漏、风吹和排污等),为了是循环水保持一定的水量,循环水在运行中不断加以补充,在循环水的运行过程中,有些盐类不会生成沉淀物,如氯化物,所以它在循环水中的浓度和其在补充水浓度之比,就代表循环水在运行中因蒸发而使盐类浓缩的倍率。所以由循环水和补充水的分析数据,可求得循环水的浓缩倍率。淤泥和碳酸盐垢的形成是一种复杂的热量、动量、和质量交换过程。一般来说,淤泥和碳酸盐垢可以粗略按沉积物的形成机理分为二大类:水垢、泥垢等。水中含有能溶解在水中的盐类、灰尘、泥砂、微生物等杂质,循环水系统的冷却水由于蒸发损失、风吹损失等不断浓缩,杂质在水中的比例也不断增高,因此淤泥和碳酸盐垢的形成概率也高。尽管水垢和泥垢的物理形态、形成机理、沉积区域和化学活性等都不相同,但对换热过程的影响却是相同的,它们都增加了换热面的热阻,减小了传热系数。

三、危害

淤泥和碳酸盐垢所带来的危害是巨大的,也是多方面的。首先,热阻增大:循环水在凝汽器铜管内流动,吸收大量的热量,保证了汽轮机的正常运行。

1.在相同的汽侧放热系数情况下,随垢层厚度的增加,低压、高压凝汽器的真空近

似成正比例下降,而机组的发出功率减小量和机组的热耗率增加量近似成正比例增大。这说明垢层的厚度增量越大,对机组经济性的影响就越大。

2、使排汽温度升高:污垢造成传热系数降低,使循环冷却水吸热不良,减缓了排汽的凝结速度,致使排汽压力升高、排汽温度升高。而排汽温度的升高又导致有更多的热量需要冷却水带走,使循环冷却水温度升得很快。冷却水温度升高后又进一步恶化真空,形成恶性循环。凝汽器真空是评价凝汽器运行状态优劣和运行检测中的一个很重要的指标。凝汽器真空过低会严重影响机组的安全经济运行,对于一台已经投运的抽汽凝汽式机组,凝汽器的冷却面积、冷却水量、凝汽器热负荷等已基本固定,冷却水系统的特性、冷却方式、冷却水温也受到电厂的地理位置、季节气候污垢对火力发电厂节能减排的影响等因素限制,凝汽器铜管水侧的脏污和结垢是导致凝汽器真空恶化的最主要最常见的原因。

四、控制方法

除垢、防垢是提高换热效率的最主要途径。为了使冷却水系统不结垢,就应使循环水中碳酸盐硬度的浓缩现象有所限制。为了防止水垢的生成控制好循环水的排污率,使其碳酸盐硬度低于极限碳酸盐硬度。方法有两种:加酸处理;添加阻垢剂。从目前机组大修检查凝结器铜管的情况来看,相对从前的机组凝结器检查,碳酸盐垢的多少来看,阻垢剂的效果还不错,另外为了防止淤泥的产生要控制循环水中的微生物,可根据它们的生长条件采取不同的方法。如防止阳光照射、采用旁流过滤(或处理)以及对补充水进行预处理等,但目前采用最多的是投加杀菌剂。从而提高机组的热经济性,减少冷源损失,就可以减少发电汽耗,也就节省了发电成本。降低生产热能量的成本不仅仅有技术和经济上的意义,而且具有社会意义。

水环式真空泵的结垢原因及防范措施

编号:AQ-Lw-03511 ( 安全论文) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 水环式真空泵的结垢原因及防 范措施 Scaling causes and preventive measures of water ring vacuum pump

水环式真空泵的结垢原因及防范措 施 备注:加强安全教育培训,是确保企业生产安全的重要举措,也是培育安全生产文化之路。安全事故的发生,除了员工安全意识淡薄是其根源外,还有一个重要的原因是员工的自觉安全行为规范缺失、自我防范能力不强。 【摘要】瓦斯抽放泵站,为高瓦斯矿井必有的基本设施。负责抽取井下瓦斯气体,防止瓦斯超限。它的正常运行,直接影响井下人员的生命安全、以及全矿的正常安全生产问题,因此,应确定为要害部位,通过对水环式真空泵结垢原因的分析,提出了相应的防范措施,有效地为瓦斯泵站创造好的条件。 【关键词】真空泵循环水结垢硬度温度水处理 1引言 水环式真空泵是瓦斯抽放泵站主要工具,担负着提全矿抽放瓦斯重要任务,水环式真空泵在煤矿占有举足轻重的地位,水环真空泵及压缩机是用来抽吸或压送气体和其它无腐蚀性、不溶于水、不含有固体颗粒的气体,以便在密闭容器中形成真空或压力,从而满

足具体工艺流程要求的设备。吸入或压送的气体中允许含有少量液体。SK系列水环式真空泵及压缩机广泛应用于机械、石油、化工、制药、食品、陶瓷、制糖、印染、冶金、环保及电子等行业。由于在工作过程中,该类泵对气体的压缩是在等温状态下进行的,因此在压送或抽吸易燃、易爆的气体时,不易发生危险,所以其应用更加广泛。所以分析水环式真空泵的结垢原因及防范措施有很大的应用价值。 2水环式真空泵简介 系列水环式真空泵及压缩机系统由真空泵(压缩机)、联轴器、电动机、汽水分离器及管路等组成。真空泵及压缩机与汽水分主器的工作过程如下:气体由管路经阀门进入真空泵或压缩机,然后经导气弯管排入汽水分离器中,经汽水分离器排气管排出。当作为压缩机使用时,压缩机排出的汽水混合物在汽水分离器中分离后,气体经阀门输送到需要压缩的气体的系统,而水则留在汽水分离器内,汽水分离器内的水位通过自动溢水开关进行调整,当水位高于所要求水位时,溢水开关打开,水从溢水管溢出;当水位低于要求水位

循环冷却水操作规程

循环冷却水操作规程 1。 前言 造气循环冷却水长期以来受到循环水品质得影响,循环水腐蚀、结垢情况较为严重。为解决循环水得腐蚀结垢问题,经过实验室配方筛选试验工作确认通过化学水处理得方法就是可以解决上述技术问题。根据配方操作要求,提供本操作规程仅供造气分厂造气循环水装置从事水处理工作与管理人员进行操作管理使用。 本操作规程中所记载得内容乃就是一些基本得东西,当设备得运行条件变动时水处理得方法也要作些相应得变更、因此,双方有必要加强经常性得技术上得联系,定期交换技术情报、?2.?系统概况?2。1 补充水质状况,补充水为自备水厂,水质见表一。 表一补充水质

2.2 运行条件:循环水系统运行条件见表二。 表二循环水系统得运行条件 2、3 循环水运行水质:循环水运行水质控制标准见表三

表三循环水冷却水质监控制指标 2、4 系统材质:碳钢、不锈钢 3.1补充水(M) 2。5?地沟流量:400m3/h(絮凝沉降)?3。?术语解释?因蒸发、排污、风吹飞溅而从系统中损失得水量,需要进行补充得水、 3.2蒸发损失(E)?在敞开式循环冷却水系统中,循环冷却水在冷却塔中蒸发而损失得水量。 3.3飞溅与风吹损失(W) 被通风时得气流从系统中带入大气得水量。

3。4排污损失(B排)?为维持系统中一定得浓缩倍数而排出系统得水量、 3。5冷却范围(或温度降)(ΔT)?冷却塔入口与塔底冷水池之间得水温差。 3。6循环量(R):系统中循环得冷却水量。 3。7浓缩倍数(N)?循环水中某种离子(Cl-或K+)得浓度与补充水中对应得某离子(Cl-或K+)得浓度之比;或循环水中电导率与补充水中电导率之比。 3.8系统容积(V)?包括冷却塔、水池、换热器、管道及辅助设备在内得整个系统得容水量。 3。9停留时间(T)?循环水在系统中停留得时间。 4。 配方得现场运行与管理 4、1管理得目得?“三分配方,七分管理”就是长期从事水处理工作得专业工作者从工作中总结出得一条很重要得经验。为了防止冷却水得腐蚀、结垢、粘泥(菌藻)等三种危害造成系统得不必要得损害,必须加强对循环水系统进行正确有序得管理与操作。 4.2一次回水水池(地沟)高浊水处理: 造气循环水经过生产装置后,有80%得水回到一次水池,每小时流量为400m3/h,该回水浊度较高。由于一次回水池沉降速度较慢,有一部分悬浮物来不及沉降就带到二次回水池中,二次回水池得水在打到凉水塔上,大量得悬浮物沉积在凉水塔得填料中,严重影响循环水得冷

循环水结垢原理及处理方

循环水结垢原理及处理 方 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

循环水结垢原理及处理方法 一. 结垢原理 1.一般解释 冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢。如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应: Ca(HCO 3)2 ? CaCO 3 ˉ + H 2O + CO 2- 当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应: Ca(HCO3)2 + 2OH- ? CaCO 3 ˉ + 2H 2O + CO 32- 难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。 2.碳酸钙的溶解沉淀平衡。 碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。所以在溶液里也出现这样的平衡: Ca2++CO3 2- CACO 3(固)

在一定条件下达到平衡状态时〔Ca2+〕与〔CO 3 2-〕的乘积为碳酸 钙在此条件下的溶度积K SP ,为一定值。 若此条件下〔Ca2+〕×〔CO 32-〕> K SP 时,平衡向右移,有晶体 析出。 若此条件下〔Ca2+〕×〔CO 32-〕< K SP 时,平衡向左移,晶体溶 解。 注:实际情况下〔Ca2+〕×〔CO 32-〕值称为K CP 二. 抑制为结垢的方法 (一)化学方法 1.加酸: 目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度.优点:费用较小 缺点:不易控制、过量会产生腐蚀的危险、有产生硫酸钙垢的危险. 2.软化 目的:降低水中至垢阳离子的含量 优点:防止结垢效果好 缺点:操作复杂、软化后水腐蚀性增强. 3.加阻垢剂: 目的:使碳酸钙的过饱和溶液保持稳定。 优点:防垢效果好、具有缓蚀作用、针对性强. 缺点:药剂一般含磷,对环境保护造成压力. (二)物理方法

换热器发生结垢的原因分析及处理方法

换热器发生结垢的原因分析及处理方法 换热器是炼油厂常减压车间应用广泛的冷换设备,工厂每年因处理换热器的结垢而耗资巨大,问题严重时还会影响安全生产的进行。根据结垢层沉积的机理,可将污垢分为颗粒污垢、结晶污垢、化学反应污垢、腐蚀污垢、生物污垢等。 1)颗粒污垢:悬浮于流体的固体微粒在换热表面上的积聚。这种污垢也包括较大固态微粒在水平换热面上因重力作用形成的沉淀层,即所谓沉淀污垢和其他胶体微粒的沉积。 2)结晶污垢:溶解于流体中的无机盐在换热表面上结晶而形成的沉积物,通常发生在过饱和或冷却时。典型的污垢如冷却水侧的碳酸钙、硫酸钙和二氧化硅结垢层。 3)化学反应污垢:在传热表面上进行化学反应而产生的污垢,传热面材料不参加反应,但可作为化学反应的一种催化剂。 4)腐蚀污垢:具有腐蚀性的流体或者流体中含有腐蚀性的杂质对换热器表面腐蚀而产生的污垢。通常,腐蚀程度取决于流体中的成分、温度及被处理流体的 pH 值。 5)生物污垢:除海水冷却装置外,一般生物污垢均指微生物污垢。其可能产生粘泥,而粘泥反过来又为生物污垢的繁殖提供了条件,这种污垢对温度很敏感,在适宜的温度条件下,生物污垢可生成可观厚度的污垢层。 6)凝固污垢:流体在过冷的换热器面上凝固而形成的污

垢。例如当水低于冰点而在换热表面上凝固成冰。温度分布的均匀与否对这种污垢影响很大。 防止结垢的技术应考虑以下几点:1)防止结垢形成;2)防止结垢后物质之间的粘结及其在传热表面上的沉积;3)从传热表面上除去沉积物。 防止结垢采取的措施包括以下几个方面: 1 设计阶段应采取的措施 在换热器的设计阶段,考虑潜在污垢时的设计,应考虑如下 6 个方面:1)换热器,也称为换热设备,热交换器,热交换设备href="https://www.doczj.com/doc/bc3915108.html,/" target=_blank>换热器容易清洗和维修(如板式换热器);2)换热器设备安装后,清洗污垢时不需拆卸设备,即能在工作现场进行清洗;3)应取最少的死区和低流速区;4)换热器内流速分布应均匀,以避免较大的速度梯度,确保温度分布均匀(如折流板区);5)在保证合理的压力降和不造成腐蚀的前提下,提高流速有助于减少污垢;6)应考虑换热器表面温度对污垢形成的影响。 2 运行阶段污垢的控制 1)维持设计条件由于在设计换热器时,采用了过余的换热面积,在运行时,为满足工艺需要,需调节流速和温度,从而与设计条件不同,然而应通过旁路系统尽量维持设计条件(流速和温度)以延长运行时间,推迟污垢的发生。2)运行参数控制在换热器运行时,进口物料条件可能变化,因此要

浅谈循环水的结垢

浅谈循环水的结垢 [摘要]人类社会为了满足生活及生产的需求,要从各种天然水体中取用大量的水,其数量是极为可观的。除生活用水外,工业用水量也很大,几乎没有哪一种工业不用水。[1]本文主要从循环水的水温、流速等方面对循环水使用中常见的结垢问题进行了分析,提出了控制想法,对于循环水的正常运行具有一定指导意义。 【关键词】循环水;结垢 1、简介 循环水系统出现设备结垢、腐蚀等等,是换热设备降低换热效率、发生泄露的主要危害。目前工业应用的水质稳定剂多为阻垢缓蚀剂,质量的差强人意,换热设备材质的种类各异,都会造成循环水系统运行状况的差异。 2、结垢的影响因素 结垢是指在水中溶解或悬浮的无机物,由于种种原因,而沉积在金属表面。敞开式循环冷却水系统的结垢主要成分有CaCO3和腐蚀产物二种,由于缓蚀剂的使用使腐蚀产物大大减少,而以CaCO3垢、Ca3(PO4)2垢及锌垢为主要成份。垢的产生会引起水冷设备换热效率下降,管线的阻力增大,导致循环水量减少或列管的堵塞等。敞开式循环冷却水系统中影响结垢的主要因素是冷却水pH、Ca、总碱度、水温、流速及金属表面状况等。[2] 2.1水温 循环冷却水中的碳酸钙、碳酸镁等硬度盐类,其溶解度都是随着温度的升高而减小,因此水温越高越易析出,同时分子活动也随温度的上升越加活泼,水垢的附着速度也越高。 污垢的温差表示法是生产现场常用的表示结垢程度的方法,它通过换热器工艺介质和冷却水进出口温差的变化来反映污垢沉积量的变化。[3] 2.2流速 水垢的附着速度是随着换热器内的冷却水流速的增大而减小的。一般而言,如水流速度达到1.0m/s以上时,水垢、悬浮物等杂质易被水流冲走,不易沉积,相反某些部位流速过小、存在死角拐角、温差大的地方就容易沉积水垢,因此应适当提高水流速度来降低设备的结垢。 此外,循环水本身水质、温差、换热表面光滑度、浓缩倍数、阻垢剂的选择和正确使用等因素都对结垢有着重要的影响。

循环冷却水浓缩倍数的检测及控制

次,操作不当停车2次,计划停车1次。装置在运行中,因轴位移表失灵达到跳车值 联锁停车1次,轴位移表修复后,空压机运转正常。空压机电机故障停车的原因是电机的电刷已磨平,使电刷与滑环接触时引起电火花。将空压机卸负荷,变电所强行断电停车更换电刷后,空压机电机运转正常。 切换阀因仪表风压力不够导致停车的问题通过管线改造,自身互补得到了解决。因仪表故障停车的问题通过更换切换阀密封胶垫得到了解决。膨胀机故障停车2次,1次是因电机轴承缺油,膨胀机超速跳车,电机线圈烧坏,更换电机后膨胀机恢复正常运转;另1次是膨胀机启动过程中,当油压>400kPa ,手动停止辅助油泵运转时,油压突然下降,辅助油泵却没有联锁启动,导致膨胀机烧瓦,将膨胀机更换轴瓦并修复联锁信号后,膨胀机运转正常。为避免操作不当 引起停车,公司加强了交接的管理工作,严格了操作规程,杜绝此类事故的再次发生。3 存在的问题 (1)液氧泵泄漏需更换密封圈,但这种密封 圈国内现已无厂家生产。液氧泵不备用,如果液氧泵不运转,主冷中总碳、乙炔超标,存在爆炸危险。 (2)板式换热器无阻力表指示,这样判断板式换热器工作是否正常就很不准确。 (3)液空吸附器和液氧吸附器的出、入阀站因填料泄漏,造成泄漏液空及液氧,从而导致跑冷严重。 (4)夏季时,循环水冷水温度达30℃以上(循环水的生产能力不够),造成进板式换热器的空气温度高达40℃以上,致使主冷液面下降,必须用氧车充液方能满足生产。 第4期2006年7月中 氮 肥 M 2Sized Nitrogenous Fertilizer Progress No 14Jul 12006 循环冷却水浓缩倍数的检测及控制 孙启坡,赵连友,任绍波 (黑龙江黑化集团有限公司,黑龙江齐齐哈尔 161041) [中图分类号]T Q 085+4 [文献标识码]B [文章编号]100429932(2006)0420024202 [收稿日期]2005212220 [作者简介]孙启坡(1973-),男,黑龙江齐齐哈尔人,工程师。 敞开式循环冷却水系统在运行过程中由于水分蒸发,水中盐离子含量越来越高,为了维持 水中含盐量在一定浓度必须补充新鲜水加以稀释,并排出浓缩水。操作中通常通过控制浓缩倍数来控制水中盐的浓度。循环冷却水的浓缩倍数越高,某些盐离子含量就越高(如Cl -),对设备的危害就越大;相反,浓缩倍数太低就要增加补水量,又很不经济。可见,合理地确定循环冷却水的浓缩倍数是非常重要的。1 浓缩倍数的检测方法 浓缩倍数是用循环冷却水中某种离子的浓度 与补充水中该离子的浓度的比值来表示。在测定浓缩倍数时除了要求选用的离子浓度随着浓缩倍数的增长而增长外,还要求其浓度不受运行中其 他条件(如加热、投加水处理剂、沉积、结垢等情况)的干扰。通常在不投加含氯化物药剂的循环水中以Cl -作为计算浓缩倍数的依据。一般采用的检测方法有电导率法、Cl -法、Ca 2+法、SiO 2法、K +法等。111 电导率法 电导率的测定比较简单、快速、准确。在循环冷却水系统中常需要加入水处理剂,这会使水的电导率增加。另外,当系统设备有泄漏时也会使电导率明显增高。故用该法测得的浓缩倍数会产生很大的误差。112 Cl -法

循环水(冷却水)腐蚀结垢及微生物问题探讨

冷却水问题探讨 一般冷却水常引起的危害有三种,即腐蚀( corrosion ) 、水垢(scale)、淤泥之沉积( deposition ) 及微生物 ( slime ),兹将其发生原因及控制方法分述如下: 1、腐蚀 !腐蚀发生原因: 金属腐蚀是经由化学或电化学反应而导致金属毁坏之现象。最主要的腐蚀问题是由氧气所引起的,冷却水于冷却水塔中与空气密切接触,水中溶氧高达 8~10 ppm 极易促成腐蚀。 a.铁材质与水中氧气作用而腐蚀,其反应如下: 氧气所引起的腐蚀呈点蚀( pitting ) 状态有愈深之倾向(如下图), 若未有效抑止可能穿透管壁而造成穿孔、泄漏。点蚀是最具腐蚀破坏力之一,并且也是最难在实验室预测得知。 b.当微生物繁殖时,其微生物体的分泌物与冷却水有机物、无机物聚积而形成的黏泥,沉积在系统中时,将造成沉积下腐蚀。沉积物上下界面因溶存氧浓度不同将会造成氧浓淡电池( Oxygen concentration cell)于沉积物下发生严重之腐蚀现象。

图 : pitting 会导致设备快速破损 c.两种不同金属互相接触时,因金属间电位差造成流电腐蚀(galvanic corrosion), 例如热交换器之铜管与碳钢端板,其接触部份的钢铁材质会因此加速腐蚀。双金属之间的电位差会因金属接触而造成流电腐蚀,但工业上也时常运用此原理来做防蚀方法,此方法称之为牺牲阳极。 双金属腐蚀 d.其它影响腐蚀的因素尚有pH、间隙、溶解盐类、温度、流速等。 !腐蚀控制方法: 腐蚀之控制不外是改变系统金属材质,就是改变系统环境。改变系统材质将是一很大成本花费,而且并不是百分之百可以防止腐蚀发生。然改变系统环境是目前广泛被用到控制腐蚀的方法。在水系统内,有三种方式改变水中环境来有效抑制腐蚀; 用水中自然存在之钙离子及碱度,在金属表面上形成碳酸钙保护膜。 利用化学或机械方法将溶存于水中之氧气去除。 加入腐蚀抑制剂 。 如上所云,加入腐蚀抑制剂亦是一个简便而有效的方式。腐蚀既是一种电池反应 ﹐

换热器发生结垢的原因及处理方法正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.换热器发生结垢的原因及处理方法正式版

换热器发生结垢的原因及处理方法正 式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 换热器的结垢每年耗资巨大,严重时会影响安全生产的进行。换热器的结垢是指换热器与不洁净流体相接触而在固体表面上逐渐积聚起来的那层固态物质。结垢对换热设备的影响主要有:由于污垢层具有很低的导热系数,从而增加了传热热阻,降低了换热设备的传热效率;当换热设备表面有结垢层形成时,换热设备中流体通道的过流面积将减少,导致流体流过设备时的阻力增加,从而消耗更多的泵功率,使生产成本增加。 根据结垢层沉积的机理,可将污垢分

为颗粒污垢、结晶污垢、化学反应污垢、腐蚀污垢、生物污垢等。 1、颗粒污垢:悬浮于流体的固体微粒在换热表面上的积聚。这种污垢也包括较大固态微粒在水平换热面上因重力作用的沉淀层,即所谓沉淀污垢和其他胶体微粒的沉积。 2、结晶污垢:溶解于流体中的无机盐在换热表面上结晶而形成的沉积物,通常发生在过饱和或冷却时。典型的污垢如冷却水侧的碳酸钙、硫酸钙和二氧化硅结垢层。 3、化学反应污垢:在传热表面上进行的化学反应而产生的污垢,传热面材料不参加反应,但可作为化学反应的一种催化

循环水结垢原因与防止教学教材

循环水结垢原因与防止 1、固相物的生成 ⑴形成污垢的原因: ①多组份过饱和溶液中盐类的结晶析出;②有机胶状物和矿质胶状物的沉积;③不同分散度的某些物质固体颗粒的粘结;④某些物质的电化学还原过程生成物等。 以上混合物沉积总称作污垢。 ⑵形成水垢的原因:水中溶解盐类产生固相沉淀是构成结垢 (水垢)的主要因素,其产生固相沉淀的条件是: ①随着温度的升高,某些盐类的溶解度降低,如Ca(HCO3)2 CaC03 Ca(0H)2、CaS04 MgC03 Mg(0H)2等; ②随着水份的蒸发,水中溶解盐的浓度增高,达到过饱和程度; ③在被加热的水中产生化学过程,某些离子形成另一些难溶的盐类离子。 具备了上述条件的某些盐类,首先在金属表面上个别部分沉积出原始的结晶胚,并以此为核心逐渐合并增长。之所以易沉积于金属表面,这是因为金属表面在微观上具有一定的粗糙度,微观上的凹凸不平成为过饱和溶液中固体结晶核心;同时加热面上的氧化膜对固相物也有很强的吸附力。作为构成水垢的盐类——钙镁,在过饱和溶液中生成固相结晶胚芽,逐变而为颗粒,具有无定形或潜晶型结构,接着互相聚附,形成结晶或絮团。固相沉渣的生成与胚芽核心的生成速度有关,即与单位时间内出现的结晶核数量与结晶生长的线速度有关,而这两个因素又与水温和水中含盐浓度及其它杂质的存在有关。 2、重碳酸盐的分解冷却水结垢的主要原因是因为水中含有较多的重碳酸钙,在加热过程中失去平衡,分解为碳酸钙、二氧化碳和水。碳酸钙溶解度较低,因而首先在冷却设备表面沉积下来。温度、压力等因素也影响结垢的强度与速度。重碳酸钙是反溶解度盐类,在超过一定温度(临界点)时,其饱和浓度急剧减小。 3、钙、镁碳酸盐水垢碳酸盐水垢通常以致密的结晶沉淀在加热器壁面甚至冷却塔填料或壁上。但当水温在过热面超过100C时,CaC0沉淀是海绵状的絮状体。虽然,在沸腾温度以下,也有可能出现硫酸钙的沉淀,但这只能是特例,因为硫酸钙的三种状态: C aS04 2CaS04 H20 CaS04 2H20三者的溶解度都很大,因而在冷却水的具体条件下,可以完全不必考虑硫酸钙的沉积问题。氢氧化钙的溶解度也是随温度升 高而降低的,但在一般情况下在水中不会生成氢氧化钙,因而也不必考虑。重点在于钙镁的碳酸盐: Ca2++2HCO3=H2O+CO+CaCO3 Ca(HC03)2=CaCO3+H20+CO2 Mg(HCO3)2=MgC0@H2O+CO2 MgCO的溶解度比CaCO3勺溶解度大六倍以上,而且在水中的MgCO会很快水解。

换热器发生结垢的原因及处理方法

换热器发生结垢的原因及处理方法换热器的结垢每年耗资巨大,严重时会影响安全生产的进行。换热器的结垢是指换热器与不洁净流体相接触而在固体表面上逐渐积聚起来的那层固态物质。结垢对换热设备的影响主要有:由于污垢层具有很低的导热系数,从而增加了传热热阻,降低了换热设备的传热效率;当换热设备表面有结垢层形成时,换热设备中流体通道的过流面积将减少,导致流体流过设备时的阻力增加,从而消耗更多的泵功率,使生产成本增加。 根据结垢层沉积的机理,可将污垢分为颗粒污垢、结晶污垢、化学反应污垢、腐蚀污垢、生物污垢等。 1、颗粒污垢:悬浮于流体的固体微粒在换热表面上的积聚。这种污垢也包括较大固态微粒在水平换热面上因重力作用的沉淀层,即所谓沉淀污垢和其他胶体微粒的沉积。 2、结晶污垢:溶解于流体中的无机盐在换热表面上结晶而形成的沉积物,通常发生在过饱和或冷却时。典型的污垢如冷却水侧的碳酸钙、硫酸钙和二氧化硅结垢层。

3、化学反应污垢:在传热表面上进行的化学反应而产生的污垢,传热面材料不参加反应,但可作为化学反应的一种催化剂。 4、腐蚀污垢:具有腐蚀性的流体或者流体中含有腐蚀性的杂质 对换热表面腐蚀而产生的污垢。通常,腐蚀程度取决于流体中的成分、温度及被处理流体的pH值。 5、生物污垢:除海水冷却装置外,一般生物污垢均指微生物污垢。其可能产生粘泥,而粘泥反过来又为生物污垢的繁殖提供了条件,这种污垢对温度很敏感,在适宜的温度条件下,生物污垢可生 成可观厚度的污垢层。 6、凝固污垢:流体在过冷的换热面上凝固而形成的污垢。例如 当水低于冰点而在换热表面上凝固成冰。温度分布的均匀与否对这 种污垢影响很大。

循环冷却水换热器结垢及腐蚀的原因及处理措施

循环冷却水换热器结垢及腐蚀的原因及处理措施 化工生产中各类介质的热量交换均离不开冷却水换热器这一重 要的工业设备,大多数冷却水换热器在使用过程中存在结垢堵塞和腐蚀问题,常出现因换热不够而被迫停车清洗甚至导致换热器的报废更换,严重时会影响生产的安全稳定运行,针对冷却水换热器结垢和腐蚀的原因,阐述了常见的结垢和腐蚀的处理措施。 1、结垢的原因 A、悬浮于循环水中的固体微粒附着在换热器表面,一般由颗粒细小的泥沙、尘土、不溶性盐类、胶状物、有无等组成,当含有这些物质的水流经换热器表面时,容易形成污垢沉积物,造成垢下腐蚀,为某些细菌生存和繁殖创造了条件。当防腐措施不当时,最终导致换热表面腐蚀穿孔泄漏。 B、一般生物污垢均指微生物污垢,循环水系统中最常见的微生物主要是铁细菌、真菌,铁细菌能见溶于水中的Fe2+转化为不溶于水的Fe2O3的水合物,在水中产生大量铁氧化物沉淀以及建立氧浓度差腐蚀电池,腐蚀金属。 C、结晶污垢 在冷却循环水中,随着水分的蒸发,水中溶解的盐类(重碳酸盐、硫酸盐、硅酸盐)的浓度升高,部分盐类因过饱和而析出,而某些盐类因为则因通过换热器表面受热分解形成沉淀,这些盐类有无机盐组成,结晶致密,被称为结晶水垢。 D、腐蚀污垢 具有腐蚀性的流体或流体中含有腐蚀性杂质对换热器表面腐蚀 而产生的污垢,腐蚀程度取决于流体中的成分、温度及被处理流体中的PH等因素,金属腐蚀主要是温度在40~50℃的氧腐蚀,而合成冷排工作温度40~60℃,正好跟金属发生氧腐蚀的温度相吻合,加之循环水的PH值长期偏低,一般都在PH至8.0以下,更容易形成金属腐蚀。 2、腐蚀原因 A、电化学腐蚀是金属最常见的一种腐蚀形式当冷却水系统内

锅炉结垢的原因

锅炉结垢的原因 锅炉结垢的原因含有硬度的水若不经过处理就进入锅炉,运行一段时间后,锅炉水侧受热面上就会牢固地附着一些固体沉积物,这种现象称为结垢。受热面上黏附着的固体沉积物就称为水垢。在一定条件下,固体沉淀物也会在锅水中析出,呈松散的悬浮状,称为水渣。水渣可随排污除去,但如果排污不及时,部分水渣也会在受热面上或水流流动滞缓的部位沉积下来而转化成水垢(通常称之为“二次水垢”)。 锅炉结垢的原因,首先是给水中含有钙镁硬度或铁离子,硅含量过高;同时又由于锅炉的高温高压特殊条件。水垢形成的主要过程为: 1受热分解 在高温高压下,原来溶于水的某些钙、镁盐类(如碳酸氢盐)受热分解,变成难溶物质而析出沉淀。 2溶解度降低 在高温高压下,有些盐类(如硫酸钙、硅酸盐等)物质的溶解度随温度升高而大大降低,达到一定程度后,便会析出沉淀。 3锅水蒸发、浓缩 在高温高压下,锅水中盐类物质的浓度将随蒸发浓缩而不断增大,当达到过饱和时,就会在受热面上析出沉淀。 4相互反应及转化

给水中原来溶解度较大的盐类,在运行中与其他盐类相互反应,生成了难溶的沉淀物质。如果反应在受热面上发生,就直接形成了水垢;如果反应在锅水中发生,则形成水渣。而水渣中有些是具有黏性的,当未被及时排污除去时,就会转化成水垢。另外,有些腐蚀产物附着在受热面上,也往往易转化成金属氧化物水垢。 锅炉的水垢清除方法 1.锅炉机械除垢 主要采用电动洗管器、扁铲、钢丝刷及手锤等工具进行机械除垢。此法比较简单,成本低,但劳动强度大,除垢效果差,易损坏金属表面,只适用于结垢面积小,且构造简单,便于机械工具接触到水垢的小型锅炉。近年来,由于清洗专用的高压水枪的应用,使水力冲洗的机械除垢发展较快,这种高压水力除垢的效果较使用原始的机械工具有很大的提高,且较为安全、方便。但目前高压水力除垢仍仅限于结构较简单的工业锅炉。 2.锅炉碱洗(煮)除垢 锅炉碱煮的作用主要是使水垢转型,同时促使其松动脱落。单纯的碱煮除垢效果较差,常常需与机械除垢配合进行。碱煮除垢对于以硫酸盐、硅酸盐为主的水垢有一定的效果,但对于碳酸盐水垢,则远不如酸洗除垢效果好。碱洗煮炉也常用于新安装锅炉的除锈和除油污,有时也用于酸洗前的除油清洗或垢型转化。 碱洗药剂用量应根据锅炉结垢及脏污的程度来确定。一般用于除垢时的用量(每吨水的用量)为:工业磷酸三钠5~10kg,碳酸钠3~6kg,或氢氧化钠2~4kg。这些碱洗药剂应先在溶液箱中配制成一定浓度,然后再用泵送人锅内,并循环至均匀。 碱煮除垢的方法与新锅炉煮炉基本相同,只是煮炉结束后,

循环冷却水的结垢控制

12-6 循环冷却水处理 字体[大][中][小]冷却水的循环使用过程中,通过冷却设备的传热与传质,循环水中的Ca2+、mg2+、Cl-、SO42-等离子、溶解性固体、悬浮物相应增加,空气中的污染物等可进入循环水中,使微生物繁殖和循环冷却水系统的铜管产生结垢、腐蚀,造成凝汽器传热效果恶化和水流截面减少。其后果主要表现为: (1) 铜管内水的阻力增加; (2) 在设备扬程相同的情况下,冷却水的流量减少; (3) 使凝汽器进出口的冷却水温差加大; (4) 以上均导致凝汽器凝结水温升高,凝汽器内的真空恶化。 当出现上述现象时,就应对循环冷却水予以判别。 一、水质判断 在热电厂凝汽器循环冷却系统中形成的水垢,通常只有碳酸盐类,这是因为Ca(HCO3)2易受热分解生成难溶的CaCO3,反应式如下 Ca(HCO3)2→CaCO3↓+CO2+H2O (12-36) 尤其在循环冷却系统中,它有蒸发和浓缩的作用,因此也容易生成水垢。 循环水中是否有CaCO3析出,都会从水质表现出来,因此要用水质来判断。水质判断的主要方法有: 1.饱和指数法[又称朗格里尔(Langlier)指数法] 它是水的实测pH值减去同一种水的碳酸钙饱和平衡时的pH值之差数。即 IL=pH0-pH s (12-37) 式中I L——饱和指数; pH0——水的实测pH值; pH s——水在碳酸钙饱和平衡时的pH值。 当I L>0时,有结垢倾向,当I L=0时,不腐蚀不结垢,当I L<0时,有腐蚀倾向。 pH s可根据水的总碱度、钙硬度和总溶解固体的分析值和温度由表12-31查得相应常数代入下式,即可计算得出: pH s=(9.3+N s+N t)-(N H+N A) (12-38)

循环水结垢问题

一循环水结垢问题 我们公司使用的循环水是从长江里抽上来的水,经过简单的沉降处理后就作为循环水用于生产中,在生产过程中冷凝器经常结垢堵塞,我们每几个月就要清洗一次,而且清洗时不好清洗,需请清洗公司的进行化学清洗才行,清洗费用很多。对于循环水结垢问题,我们也采取了很多的方法进行处理,如加药、超声波除垢、安装水处理器等等,但效果不是很好。请问同行们你们的循环水结垢严重么?你们是采用什么方法处理的? 1、两种思路供你选择: 1、对水源进行水质分析,可参考锅炉水质分析方法分析,主要分析水中的钙、镁离 子浓度,叫硬度。 2、根据水质分析结果,自配或者请水质稳定剂生产厂家配制水质稳定剂添加,其主 要作用是增加垢物的溶度积,减缓垢物的形成和防止沉积,适时排泄和补充新鲜水。 3、分析垢物成分,看看是以碳酸盐垢为主还是硫酸盐垢为主,或者是两者的混合垢, 再结合设备材质,在设备运行一段时间,垢物严重时,停车,谨慎选用盐酸、磷酸、 硝酸、硫酸的复配物清洗设备,酸浓在10-15%之间。当酸浓降至4%以下时,根据 垢物清洗情况适当给予补充,直到垢物清洗到满意为止。 2、我们公司有一段时间也是出现你说的情况。但是我们后来给离子膜系统单独上了凉 水塔自循环系统然后定期加药,排污,对于进水和凉水塔水定期做水质分析,主要 离子是钙、镁、磷、氯根等离子。同时对凉水塔大修时对塔进行清污,管道清洗等。 3、循环水结垢确实是一个头疼的问题,加缓蚀阻垢剂、除藻剂等方法都用过,但每年 大修时仍需要对夹套进行化学清洗。在我们南方蒸发量又大,循环水的钙镁离子容 易浓缩,加药频繁,费用很高。我觉得可以从下面几个方面考虑优化: 1、寻求高效稳定的缓蚀阻垢剂; 2、夹套定期进行化学清洗; 3、循环水池定期排污,加入清洁水。 4、我公司使用的循环水也是从长江里抽上来的水,我们首先投加混凝剂进入反应池, 混凝后再到沉淀池,经过过虑后送到各个装置做生产工业用水,若要做装置冷却用

汽轮机结垢原因分析

汽轮机内盐类沉积形成的原因如下: 当带有杂质的过热蒸汽进入汽轮机后,由于蒸汽在汽轮机内膨作功,蒸汽的压力和温度逐渐下降,蒸汽中的钠盐和硅酸等杂质的溶解度随压力降低而减小,故当其中某种物质的溶解度降低到低于蒸汽中该物质的含量时,该物质就以结晶的形式析出,并沉积在汽轮机的蒸汽通流的表面上,在蒸汽流过汽轮机的喷嘴和叶片时,那些细微的浓液滴还能把一些固体微粒一起粘附在蒸汽通流表面上。因此在汽轮机的每个隔板和叶片上便产生了盐类附着物。 8机大修垢物分析数据如下:

#8机组大修受检部件:低压缸叶片及高压缸隔板检验名称:低压缸叶片及高压

#8机组大修受检部件:高压缸叶片检验名

汽轮机中盐类沉积物的分布情况如下: (1)不同级中沉积物量不一样。在汽轮机中除第一级和最后几级积盐量极少外,低压级的积盐量总是比高压级的多 些,中压级中的某几级所沉积的盐量也是很多的。(2)不同级中沉积物的化学组成不同。其化学组成的分布主要是依据汽缸的压力级而定。基本规律归纳如下:1)高压级中的沉积物有:Na2SO4、Na2SiO3、Na2PO4等。 2)中压级中的沉积物有:NaCl、Na2CO3、NaOH等,还可能有Na2O·Fe2O3·4SiO2(钠锥石)和Na2FeO2(铁 酸钠)等。 3)低压级中的沉积物有:SiO2。 4)铁的氧化物(主要是Fe3O4,部分是Fe2O3),在汽轮机各级中(包括第一级)都可能沉积,能常在高压级的沉积 物中它所占的百分率要比低压级多些。 (3)在各级隔板和轮上分布不均匀。汽轮机中的沉积物不仅在不同级中的分布不钧匀。汽轮机中的沉积物不仅在不 同级中的分布不均匀,即使在同一级中部位不同,分布 也不均匀。例如:在叶轮上叶片的边缘、复环的内表面、 叶片轮孔、叶轮和隔板的背面等处积盐量往往较多,这 可能与蒸汽的流动工况有关。 (4)供热机组和经常启、停的汽轮机内,沉积物量较小。 汽轮机的前后几级没有盐类沉积物: 汽轮机内各级的积盐情况不同,这主要与蒸汽的流动工况有关

循环冷却水处理技术方案7[1].3

循环冷却水系统处理技术方案

一、前言 循环冷却水化学处理技术是通过采用低剂量投加水质稳定剂的方法,使金属表面形成一层致密的保护膜,同时改变结垢性粒子之间或金属间的作用力,从而达到防腐、防垢、保护设备安全运行的目的。除此之外,还需投加杀菌灭藻剂,抑制和杀灭水中的细菌、藻类及各种微生物,以防止生物粘泥和垢类物质的产生,从而可以提高传热效率,节约能源,减少设备维修,延长使用周期。 本方案是根据贵方补充水水质及给定的工况条件,结合以往循环水处理的经验,在进行大量充分实验的基础上提出的,最终选定了适合贵方实际使用的性能优越、稳定性好的水处理药剂配方。水处理配方和技术有很强的针对性,尚需根据现场实际运行的复杂变化的条件进行合理的调整。 二、循环水系统工况条件及水质条件 2.1 循环水系统工况条件(见表1) 表1:循环水系统工况条件

2.2循环水系统补充水水质条件 循环水系统补充水为市政自来水,具体指标见下表2。 表2:补充水水质分析表 三、循环水处理技术思路 敞开式循环冷却水系统,随着循环冷却水在冷却塔中的蒸发浓缩,水系统中 2-、Ca2+、Mg2+浓度均相应增加,假如不采取投加水处理药的重碳酸盐、Cl-、SO 4 -等离子)会在换热器的传热表面剂保护的措施,一方面成垢离子(Ca2+、Mg2+、HCO 3 形成硬垢,影响换热效率,甚至堵塞管道,严重时导致停车事故的发生;另一方 2-等)以及溶解氧的存在会造成管道、换热设备的面水中的腐蚀性离子(Cl-、SO 4 腐蚀穿孔,影响设备的正常运行,直接缩短设备的使用寿命;另外,由于循环冷却水系统的运行条件特别适宜于菌藻粘泥的生长,会对设备及管线产生微生物腐蚀和软垢,同样威胁循环冷却水系统的安全运行。 密闭式循环冷却水系统一般在运行过程中水质情况变化不大,但由于溶解氧的渗漏和溶入以及成垢离子的存在,水处理应以防腐蚀为主,同时兼顾阻垢。 分析贵公司循环水水系统补充水,从水质数据及水型判断结果来看,均为结垢型水质。浓缩运行后,随着浓缩倍率的增加,结垢趋势加强,浓缩倍数越高,

循环冷却水结垢原理及处理方法

循环冷却水结垢原理及处理方法 一、循环冷却水系统为什么会结垢 1.一般解释 冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢。如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应: Ca(HCO3)2→CaCO3↓+ H2O + CO2↑ 当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应: Ca(HCO3)2+ 2OH- →CaCO3↓+ 2H2O + CO32- 难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。 2.碳酸钙的溶解沉淀平衡。

碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。所以在溶液里也出现这样的平衡:Ca2++CO3 2-CACO3(固) 在一定条件下达到平衡状态时〔Ca2+〕与〔CO32-〕的乘积为碳酸钙在此条件下的溶度积K SP,为一定值。 若此条件下〔Ca2+〕×〔CO32-〕>K SP时,平衡向右移,有晶体析出。 若此条件下〔Ca2+〕×〔CO32-〕<K SP时,平衡向左移,晶体溶解。 注:实际情况下〔Ca2+〕×〔CO32-〕值称为K CP 二、抑制为结垢的方法 (一)化学方法 1.加酸: 目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度. 优点:费用较小,效果比较明显 缺点:加酸量不易控制、过量会产生腐蚀的危险、投加过量有产生硫酸钙垢的危险. 2.软化 目的:降低水中至垢阳离子的含量

换热器发生结垢的原因及处理方法通用版

操作规程编号:YTO-FS-PD403 换热器发生结垢的原因及处理方法通 用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

换热器发生结垢的原因及处理方法 通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 换热器的结垢每年耗资巨大,严重时会影响安全生产的进行。换热器的结垢是指换热器与不洁净流体相接触而在固体表面上逐渐积聚起来的那层固态物质。结垢对换热设备的影响主要有:由于污垢层具有很低的导热系数,从而增加了传热热阻,降低了换热设备的传热效率;当换热设备表面有结垢层形成时,换热设备中流体通道的过流面积将减少,导致流体流过设备时的阻力增加,从而消耗更多的泵功率,使生产成本增加。 根据结垢层沉积的机理,可将污垢分为颗粒污垢、结晶污垢、化学反应污垢、腐蚀污垢、生物污垢等。 1、颗粒污垢:悬浮于流体的固体微粒在换热表面上的积聚。这种污垢也包括较大固态微粒在水平换热面上因重力作用的沉淀层,即所谓沉淀污垢和其他胶体微粒的沉积。 2、结晶污垢:溶解于流体中的无机盐在换热表面上结晶而形成的沉积物,通常发生在过饱和或冷却时。典型的

循环冷却水运行管理

循环冷却水运行管理 一、循环水中微生物的动向化学分析项目 1、化学需氧量 水中微生物繁殖严重时会使COD增加,因为细菌分泌的黏液增加了水中有机物含量,故通过化学需氧量的分析,可以观察到水中微生物变化的动向,正常情况下水中COD最好小于5mg/l(KMnO4法)。 2、余氯(游离氯) 加氯杀菌时要注意余氯出现的时间和余氯量,因为微生物繁殖严重时就会使循环水中耗氯量大大地增加。 3、NO2- 当水中出现含氨和亚硝酸根时,说是水中已有亚硝酸菌将氨转化为亚硝酸根,这时循环水系统加氯将变为十分困难,耗氯量增加,余氯难以达到指标,水中NO2-含量最好是控制在小于1mg/l。 4、氨 循环水中一般不含氨,但由于工艺介质泄漏或吸入空气中的氨时也会使水中出现含氨,这时不能掉以轻心,除积极寻找氨的泄漏点外,还要注意水中是否含有亚硝酸根,水中的氨含量最好是控制在10mg/l以下。 二、循环水冷却水装置运行产生问题 1、微生物粘泥: 因为循环水中溶有充足的氧气、合适的温度及富养条件,很适合微生物的生长繁殖,如不及时控制将迅速导致水质恶化、发臭、变黑,冷却塔大量黏垢沉积甚至堵塞,冷却散热效果大幅下降,设备腐蚀加剧。因此循环水处理必须控制微生物的繁殖。

2、水垢: 由于循环水在冷却过程中不断地蒸发,使水中含盐浓度不断增高,超过某些盐类的溶解度而沉淀。常见的有碳酸钙、磷酸钙、硅酸镁等垢。水垢的质地比较致密,大大的降低了传热效率,0.6毫米的垢厚就使传热系数降低了20%。 3、腐蚀: 循环水对换热设备的腐蚀,主要是电化腐蚀,产生的原因有设备制造缺陷、水中充足的氧气、水中腐蚀性离子(Cl-、Fe2+、Cu2+)以及微生物分泌的黏液所生成的污垢等因素,腐蚀的后果十分严重,不加控制极短的时间即使换热器、输水管路设备报废。 4、污垢: 污垢主要由水中的有机物、微生物菌落和分泌物、泥沙、粉尘等构成,垢的质地松软,不仅降低传热效率而且还引起垢下腐蚀,缩短设备使用寿命。

循环冷却水的防垢处理方法

循环冷却水的防垢处理方法 循环冷却水产生水垢和水质恶化的原因: (1)水中游离及溶解的CO2大量逸散,当CO2的含量不足以保证重碳酸盐的平衡时,给水管道和用水设备内就会形成CaCO3沉淀,引起系统内CaCO3结垢; (2)水中所含的溶解性气体、腐蚀性盐类与酸类等电解质与金属接触时,因为电解质的作用,从金属表面析出Fe2+,使设备和管道金属遭到破坏; (3)空气中的污染物如尘土、杂物、可溶性气体及换热器物料渗漏等均可进入循环水,致使微生物大量繁殖,加速金属的腐蚀; (4)由于补充水带来或水在循环使用过程中产生的各种微生物、其它有机物及无机悬浮杂质在管道和换热器表面沉积。 循环冷却水的防垢处理方法: (1)排污法: 当补充水的碳酸盐硬度较低时,可以用限制循环水的浓缩倍数的方法,使循环水的碳酸盐硬度小于极限碳酸盐硬度,即可防止结垢。 如果不考虑系统中的渗漏损失,则循环水进行连续排污时,为防垢所需的排污量可用下式求出: 其中P1:循环水系统的蒸发损失,占循环水量的%; P2:冷却塔风吹损失,占循环水量的%; P3:为防垢所必需的连续排污量,占循环水量的%; H碳:补充水的碳酸盐硬度(meq/L); H极:补充水的极限碳酸盐硬度(meq/L)。 浓缩倍数与排污量的关系为: 其中N:循环水的浓缩倍数; P:循环水的补充水量,占循环水量的%。 若要使循环冷却水稳定,不发生CaCO3沉淀,则N≤H极/ H碳,由此可以得

出:P≥H 极 P1/(H极-H碳)。该式说明,在P1范围大致确定的情况下,补充水的H 极与H 碳 差值越小,则所需补充水量越大,反之越小。式中P3的计算结果如果为 负值,则不需要排污,计算结果为正值时排污量一般不超过3~5%为宜。该法主要用于暂时硬度较低的水质及水资源较丰富的地区。在实际中仅靠排污法不能解决循环冷却水的水质问题,尚需要结合其它措施。 3、酸化法:酸化法是通过加酸,降低水的碳酸盐硬度,使碳酸盐硬度转变为溶解度较大的非碳酸盐硬度,同时保持循环水的碳酸盐硬度在极限碳酸盐硬度之下,从而达到防止结垢的目的 2、阻垢剂处理法:在循环水中加入某些化学药剂,就可以起到阻止水垢的作用,称为阻垢处理,所用的药剂称为阻垢剂。 常用阻垢剂有: (1)聚合磷酸盐:在循环水中,采用的是三聚磷酸钠(Na5P3O10)和六偏磷 酸钠(NaPO3)6聚合磷酸盐在低剂量如(在2-4mg/L)时,是一种有效的 阻垢剂。它们溶于水后,在水中电离生成长链的—O—P—O—P—高价阴 离子,容易吸附在微小的碳酸钙晶粒上,使晶粒表面上的表面电位向负 方向上移动,增大了晶粒之间的排斥力,起到分散作用。另一种观点是 干扰了碳酸钙晶体的正常生长,晶格受到扭曲,生成的碳酸钙不是坚硬 的方解石晶体,而是疏松、分散的软垢,易被水流分散于水中。聚合物 还可与水中Ca 2+、Mg 2+形成配位离子或整合离子,从而使它们稳定存 在与水中,提高了循环水的极限碳酸盐硬度,达到防止结垢的作用。 (2)有机磷酸盐:有机磷以酸(盐)分子结构中,都含有—C—P—键,所以 具有耐氧化性高,耐温性高,不易被酸、碱破坏及不易水解、降解等优 点。它在高剂量(如100mg/L以上)时,是一种阴极型缓蚀剂,在低剂 量(2~4mg/L)时,是一种阻垢剂。有机磷酸能与水中结垢离子形成络 合物,使水中结垢离子失去部分结垢性能,但其阻垢作用主要是由于阻 垢剂分子吸附在晶体表面,堵塞或覆盖晶体生长晶格点,阻碍了晶格离 子或分子的表面扩散和定位,而产生内部应力和扭曲作用,抑制了晶体 生长和结垢。) 磷酸根离子能与铜离子形成极稳定的络合物,所以对铜 及铜锌合金有一定得腐蚀性,甚至会发生点蚀。

相关主题
文本预览
相关文档 最新文档