当前位置:文档之家› D三角函数正弦定理和余弦定理

D三角函数正弦定理和余弦定理

D三角函数正弦定理和余弦定理
D三角函数正弦定理和余弦定理

(文) 已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =

, (sin ,sin )n B A = ,(2,2)p b a =--

.

(1)若m //n

,求证:ΔABC 为等腰三角形;

(2)若m ⊥p ,边长c = 2,角ΔABC 的面积 .

答案:

证明:(1)//,sin sin ,m n a A b B ∴=u v v

Q

即22a b

a b R R

?

=?,其中R 是三角形ABC 外接圆半径,a b =. ABC ∴?为等腰三角形

(2)由题意可知//0,(2)(2)0m p a b b a =-+-=u v u v

a b ab ∴+=

由余弦定理可知, 2

2

2

4()3a b ab a b ab =+-=+-

2()340ab ab --=即4(1)ab ab ∴==-舍去.

11

sin 4sin 223

S ab C π

∴=

=??=

来源:09年高考上海卷 题型:解答题,难度:中档

(文)在ABC ?中,A C AC BC sin 2sin ,3,5===

(Ⅰ)求AB 的值。(Ⅱ)求)4

2sin(π

-

A 的值。

答案:

(1)解:在ABC ? 中,根据正弦定理,

A

BC

C AB sin sin =,于是522sin sin ===BC A

BC

C

AB (2)解:在ABC ? 中,根据余弦定理,得AC

AB BC AC AB A ?-+=2cos 2

22

于是A A 2cos 1sin -==

5

5, 从而5

3sin cos 2cos ,54cos sin 22sin 22=-==

=A A A A A A 10

2

4sin 2cos 4cos 2sin )42sin(=-=-πππA A A

来源:09年高考江西卷 题型:解答题,难度:容易

在⊿ABC 中,,A B 为锐角,角,,A B C 所对应的边分别为,,a b c ,且

3cos 2,sin 5A B ==

(I )求A B +的值; (II )若1a b +=

,求,,a b c 的值。

答案:

(Ⅰ)A 、B 为锐角,sin B =cos B ∴== 又2

3

cos 212sin 5

A A =-=

sin A ∴=

,cos A ==,

cos()cos cos sin sin 5105102

A B A B A B ∴+=-=-=

0A B π<+<

4

A B π

∴+=

…………………………………………6分

(Ⅱ)由(Ⅰ)知34C π=,sin 2

C ∴=.. 由正弦定理

sin sin sin a b c A B C

==得

=,即a =,c =

1a b -=

Q , 1b -=,1b ∴=

a ∴= ……………………………………12分

来源:09年高考四川卷 题型:解答题,难度:中档

(文)在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且A c a sin 23=

(Ⅰ)确定角C 的大小:(Ⅱ)若c =7,且△ABC 的面积为

2

3

3,求a +b 的值。

答案:

(1

2sin c A =

及正弦定理得,

sin sin a A c C ==.

sin 0,sin 2

A C ≠∴=

Q ABC ?Q 是锐角三角形,3

C π

∴=

(2)解法1

:.3

c C π

=

=

Q 由面积公式得

1sin 623ab ab π==即 ① 由余弦定理得

22222cos

7,73

a b ab a b ab π

+-=+-=即 ②

由②变形得25,5a b =+=2

(a+b)故 解法2:前同解法1,联立①、②得

2222766

a b ab a b ab ab ??+-=+??

?==??=13

消去b 并整理得4

2

13360a a -+=解得2

2

49a a ==或 所以23

32

a a

b b ==???

?

==??或故5a b +=.

来源:09年高考湖北卷 题型:解答题,难度:容易

为了测量两山顶M ,N 间的距离,飞机沿水平方向在A ,B 两点进行测量,A ,B ,M ,N 在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A ,B 间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M ,N 间的距离的步骤。

答案:

方案一:①需要测量的数据有:A

点到M ,N 点的俯角;B 点到M ,

N 的俯角22,αβ;A ,B 的距离 d (如图所示) . ……….3分 ②第一步:计算AM . 由正弦定理2

12sin sin()

d AM ααα=

+ ;

第二步:计算AN . 由正弦定理2

21sin sin()

d AN βββ=- ;

第三步:计算MN. 由余弦定理

11

,αβ

MN = .

方案二:①需要测量的数据有:

A 点到M ,N 点的俯角1α,1β;

B 点到M ,N 点的府角2α,2β;A ,B 的距离 d (如图所示).

②第一步:计算BM . 由正弦定理1

12sin sin()

d BM ααα=

+ ;

第二步:计算BN . 由正弦定理1

21sin sin()

d BN βββ=- ;

第三步:计算MN .

由余弦定理

MN =

来源:09年高考宁夏海南卷 题型:解答题,难度:中档

(文)在ABC ?中,A B 、为锐角,角A B C 、、所对的边分别为a b c 、、

,且

sin 510

A B =

=

(I )求A B +的值 (II

)若1a b -=,求a b c 、、的值。

答案:

(I )∵A B 、

为锐角,sin A B =

= ∴

cos A B ==

==

cos()cos cos sin sin 5105102

A B A B A B +=-=

-= ∵ 0A B π<+< ∴ 4

A B π

+=

…………………………………………6分

(II )由(I )知34C π=,∴ sin 2

C = 由

sin sin sin a b c

A B C

==得

=,即,a c =

又∵ 1a b -=

1

b -=

∴ 1b =

∴ ,a c ==

…………………………………………12分

来源:09年高考四川卷 题型:解答题,难度:中档

△ABC 中,,,A B C 所对的边分别为,,a b c ,

sin sin tan cos cos A B

C A B

+=

+,sin()cos B A C -=.

(1)求,A C ;(2)若3ABC S ?=求,a c ..

答案:

(1) 因为sin sin tan cos cos A B C A B +=

+,即sin sin sin cos cos cos C A B

C A B

+=+,

所以sin cos sin cos cos sin cos sin C A C B C A C B +=+, 即 sin cos cos sin cos sin sin cos C A C A C B C B -=-,

得 sin()sin()C A B C -=-. 所以C A B C -=-,或()C A B C π-=--(不成立).

即 2C A B =+, 得3

C π

=

,所以.23

B A π+=

又因为1sin()cos 2B A C -==,则6B A π-=,或56

B A π-=(舍去) 得5,4

12

A B π

π

=

=

(2)1sin 328

ABC S ac B ac ?=

== 又

sin sin a c A C =, 即

=,

得a c ==

来源:09年高考江西卷 题型:解答题,难度:中档

(文)在△ABC 中,,,A B C 所对的边分别为,,a b c ,6

A π

=

,(12c b =.

(1)求C ;

(2

)若1CB CA ?=

a ,

b ,

c .

答案:

(1

)由(12c b = 得

1sin 22sin b B

c C

=+=

则有

55sin()

sin

cos cos sin 666sin sin C C C

C

C

π

ππ

π-

--=

=11cot 22C +=+ 得cot 1C = 即4

C π

=

.

(2)

由1CB CA ?=

推出

cos 1ab C =;而4

C π

=

,

即得

12

ab =则有

12(12sin sin ab c b a c A C =+??

+=???=?? 解得

12a b c ?=??

=+??=??

来源:09年高考江西卷 题型:解答题,难度:容易

在?ABC 中,sin()1C A -=, sin B=

1

3

. (I )求sin A 的值; (II)设

?ABC 的面积.

答案:

(Ⅰ)由2C A π-=

,且C A B π+=-,∴42

B

A π=-,∴

sin sin()sin )42222

B B B

A π=-=-,

∴2

11sin (1sin )23A B =-=,又sin 0A >

,∴sin A =

(Ⅱ)如图,由正弦定理得sin sin AC BC

B A

=

∴sin 31sin 3

AC A

BC B

=

=

=sin sin()sin cos cos sin C A B A B A B =+=+

133333

=

+?=

∴11sin 223

ABC S AC BC C ?=

??==

来源:09年高考安徽卷 题型:解答题,难度:容易

在ABC ?中,角,,A B C 的对边分别为,,,3

a b c B π

=

,4

cos ,5

A b =

= (Ⅰ)求sin C 的值;(Ⅱ)求ABC ?的面积.

答案:

(Ⅰ)∵A 、B 、C 为△ABC 的内角,且4,cos 3

5

B A π

=

=

, A B

C

∴23,sin 35

C A A π=

-=,

∴21sin sin sin 32C A A A π??

=-=+=

???.

(Ⅱ)由(Ⅰ)知33sin ,sin 510

A C +==

又∵,3

B b π

=

=ABC 中,由正弦定理,得

∴sin 6

sin 5

b A a B =

=.

∴△ABC 的面积116sin 225S ab C =

=?=

.

来源:09年高考北京卷 题型:解答题,难度:中档

(文)在ABC ?中,角,,A B C 所对的边分别为,,a b c ,且满足cos

25

A =

, 3AB AC ?=

. (I )求ABC ?的面积; (II )若1c =,求a 的值.

答案:

(Ⅰ)5

31)552(212cos

2cos 22

=-?=-=A A .

又),0(π∈A ,54cos 1sin 2

=-=A A ,而353cos .===bc A AC AB ,

所以5=bc ,所以ABC ?的面积为:25

4

521sin 21=??=A bc

(Ⅱ)由(Ⅰ)知5=bc ,而1=c ,所以5=b

所以5232125cos 222=?-+=

-+=A bc c b a

来源:09年高考浙江卷 题型:解答题,难度:容易

在ABC ?中,角,,A B C 所对的边分别为,,a b c ,且满足cos 2A =,3AB AC ?=

.

(I )求ABC ?的面积; (II )若6b c +=,求a 的值.

答案:

(I )因为cos 2A =,234cos 2cos

1,sin 255A A A ∴=-==,又由3AB AC ?= ,得cos 3,bc A =5bc ∴=,1

sin 22

ABC S bc A ?∴==.

(II )对于5bc =,又6b c +=,5,1b c ∴==或1,5b c ==,由余弦定理得

2222cos 20a b c bc A =+-=,a ∴=

来源:09年高考浙江卷 题型:解答题,难度:容易

在ABC ?中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知2

2

2a c b -=,且

sin cos 3cos sin ,A C A C = 求b

答案:

解法一:在ABC ?中sin cos 3cos sin ,A C A C = 则由正弦定理及余弦定理

有:222222

3,22a b c b c a a c ab bc +-+-=

化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得40(b b ==或舍).

解法二:由余弦定理得: 2

2

2

2cos a c b bc A -=-.又2

2

2a c b -=,0b ≠。 所以2cos 2b c A =+…………………………………①

又sin cos 3cos sin A C A C =,sin cos cos sin 4cos sin A C A C A C ∴+=

sin()4cos sin A C A C +=,即sin 4cos sin B A C =

由正弦定理得sin sin b

B C c

=

,故4cos b c A =………………………② 由①,②解得4b =。

来源:09年高考全国卷一 题型:解答题,难度:容易

在△ABC 中,角A 、B 、C 所对的边分别为a,b,c ,且满足5

522A cos =,3

AB AC ?=

.

(1)求△ABC 的面积;

(2)若b +c =6,求a 的值.

答案:

(1)因为cos 2A =,234cos 2cos

1,sin 255A A A ∴=-==,又由3AB AC ?= ,得cos 3,bc A =5bc ∴=,1

sin 22

ABC S bc A ?∴==

(2)对于5bc =,又6b c +=,5,1b c ∴==或1,5b c ==,由余弦定理得

2222cos 20a b c bc A =+-=,a ∴=

来源:09年高考浙江卷 题型:解答题,难度:容易

(文)设ABC ?的内角A 、B 、C 的对边长分别为a 、b 、c ,3

cos()cos 2

A C

B -+=

,2b ac =,求B 。

答案:

由3cos()cos 2A C B -+=

,易想到先将()B A C π=-+代入3cos()cos 2A C B -+=得3cos()cos()2A C A C --+=

。然后利用两角和与差的余弦公式展开得3

sin sin 4

A C =;

又由2

b a

c =,利用正弦定理进行边角互化,得2

sin sin sin B A C =,进而得sin B =.故23

3B π

π=

。大部分考生做到这里忽略了检验,事实上,当23

B π=时,由

1cos cos()2B A C =-+=-,进而得3

cos()cos()212

A C A C -=++=>,矛盾,应舍去。

也可利用若2

b a

c =则b a b c ≤≤或从而舍去23

B π=。不过这种方法学生不易想到。

来源:09年高考全国卷二 题型:解答题,难度:中档

(文)在锐角ABC ?中,1,2,BC B A ==则cos AC

A

的值等于________,AC 的取值范围

为__________

答案:

设,2.A B θθ∠=?=由正弦定理得

,1 2.sin 2sin 2cos cos AC BC AC AC

θθθθ

=∴=?=

由锐角ABC ?得0290045θθ<

又01803903060θθ<-

,故3045cos 2θθ<

<<

2cos AC θ∴=∈

来源:09年高考江苏卷 题型:填空题,难度:中档

高中数学 三角函数:正弦、余弦、正切

三角函数:正弦、余弦、正切 (一)复习指导 1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性. 2.理解正弦函数、余弦函数在区间[0,2π ]的性质(如单调性、最大和最小值、图象与x 轴交点等) 3.理解正切函数在区间)2 π ,2π(- 的单调性. (二)基础知识 1、正弦函数和余弦函数的图象:正弦函数sin y x =和余弦函数cos y x =图象的作图方法:五点法:先取横坐标分别为0, 3,, ,22 2 π π ππ的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 2、正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R 。 (2)值域:都是[]1,1-,对s i n y x =, 当()22x k k Z π π=+∈时,y 取最大值1; 当() 322 x k k Z ππ=+∈时,y 取最小值-1;对cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取 最小值-1。 (3)周期性:①sin y x =、cos y x =的最小正周期都是2 π;②()sin()f x A x ω?=+和 ()cos()f x A x ω?=+的最小正周期都是2|| T πω= 。 (4)奇偶性与对称性:正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线 ()2x k k Z π π=+ ∈;余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z π π?? + ∈ ?? ?,对称轴是直线 ()x k k Z π=∈(正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴 的交点)。 (5)单调性: ()sin 2,222y x k k k Z ππππ??=-+∈????在上单调递增,在()32,222k k k Z ππππ? ?++∈??? ?单调递减; cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。特别提醒,别忘了k Z ∈! 3、正切函数tan y x =的图象和性质: (1)定义域:{|,}2 x x k k Z π π≠+∈。遇到有关正切函数问题时,你注意到正切函数的定义域了吗? (2)值域是R ,在上面定义域上无最大值也无最小值; (3)周期性:是周期函数且周期是π,它与直线y a =的两个相邻交点之间的距离是一个周期π。绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定。 如x y x y sin ,sin 2==的周期都是π, 但sin y x = cos x +的周期为 2 π,而1|2sin(3)|,|2sin(3)2|626y x y x ππ =-+=-+,|tan |y x =的周期不变; (4)奇偶性与对称性:是奇函数,对称中心是,02k π?? ??? ()k Z ∈,特别提醒:正(余)切型函数的对称中心 有两类:一类是图象与x 轴的交点,另一类是渐近线与x 轴的交点,但无对称轴,这是与正弦、余弦函数的不同之处。 (5)单调性:正切函数在开区间(),22k k k Z ππππ?? -++∈ ??? 内都是增函数。但要注意在整个定义域上不 具有单调性。如下图:

正弦定理和余弦定理

正弦定理和余弦定理 高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C = c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形: cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、 r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: [1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA·tanB·tanC ;在锐角三角形中,cos A

三角函数大题专项(含问题详解)

三角函数专项训练 1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a ﹣b)sin B. (1)证明a2+b2﹣c2=ab; (2)求角C和边c. 2.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小; (Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值. 3.已知α,β为锐角,tanα=,cos(α+β)=﹣. (1)求cos2α的值; (2)求tan(α﹣β)的值. 4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB; (2)若DC=2,求BC. 5.已知函数f(x)=sin2x+sin x cos x. (Ⅰ)求f(x)的最小正周期; (Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值. 6.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2) (Ⅰ)求cos A的值;

(Ⅱ)求sin(2B﹣A)的值 7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0. (Ⅰ)求ω; (Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值. 8.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=.(Ⅰ)求b和sin A的值; (Ⅱ)求sin(2A+)的值. 9.△ABC的角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C; (2)若6cos B cos C=1,a=3,求△ABC的周长. 10.△ABC的角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B; (2)若a+c=6,△ABC的面积为2,求b. 11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x. (I)求f(x)的最小正周期; (II)求证:当x∈[﹣,]时,f(x)≥﹣.

高中数学必备知识点 正弦与余弦定理和公式

三角函数正弦与余弦的学习,在数学中只要记住相关的公式即可。日常考试 正弦和余弦的相关题目一般不会很难,是很多数学基础不是很牢的同学拿分的好题目。但对于有些同学来说还是很难拿分,那是为什么呢? 首先,我们要了解下正弦定理的应用领域 在解三角形中,有以下的应用领域: (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦 正弦定理 在△ABC中,角A、B、C所对的边分别为a、b、c,则有 a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径) 其次,余弦的应用领域 余弦定理 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 正弦定理的变形公式 (1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB : sinC = a : b : c; 在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题 (3)相关结论: a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC) c/sinC=c/sinD=BD=2R(R为外接圆半径) (4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90°时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA (5)a=bsinA/sinB sinB=bsinA/a 正弦、余弦典型例题 1.在△ABC中,∠C=90°,a=1,c=4,则sinA 的值为 2.已知α为锐角,且,则α的度数是() A.30° B.45° C.60° D.90° 3.在△ABC中,若,∠A,∠B为锐角,则∠C的度数是() A.75° B.90° C.105° D.120° 4.若∠A为锐角,且,则A=() A.15° B.30° C.45° D.60° 5.在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点, EF⊥BC,垂足为F,求sin∠EBF的值。

三角函数正弦定理和余弦定理

(文) 已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =, (sin ,sin )n B A =,(2,2)p b a =-- . (1)若m //n ,求证:ΔABC 为等腰三角形; (2)若m ⊥p ,边长c = 2,角ΔABC 的面积 . 答案: 证明:(1)//,sin sin ,m n a A b B ∴=u v v Q 即22a b a b R R ? =? ,其中R 是三角形ABC 外接圆半径,a b =. ABC ∴?为等腰三角形 (2)由题意可知//0,(2)(2)0m p a b b a =-+-=u v u v 即 a b ab ∴+= 由余弦定理可知, 2 2 2 4()3a b ab a b ab =+-=+- 2()340ab ab --=即4(1)ab ab ∴==-舍去. 11 sin 4sin 223 S ab C π ∴==??= 来源:09年高考上海卷 题型:解答题,难度:中档

(文)在ABC ?中,A C AC BC sin 2sin ,3,5=== (Ⅰ)求AB 的值。(Ⅱ)求)4 2sin(π - A 的值。 答案: (1)解:在ABC ? 中,根据正弦定理, A BC C AB sin sin = ,于是522sin sin ===BC A BC C AB (2)解:在ABC ? 中,根据余弦定理,得AC AB BC AC AB A ?-+=2cos 2 22 于是A A 2cos 1sin -== 5 5, 从而5 3sin cos 2cos ,54cos sin 22sin 22=-== =A A A A A A 10 2 4 sin 2cos 4 cos 2sin )4 2sin(= -=- π π π A A A 来源:09年高考江西卷 题型:解答题,难度:容易 在⊿ABC 中,,A B 为锐角,角,,A B C 所对应的边分别为,,a b c ,且

解三角形题型5正、余弦定理判断三角形形状(供参考)(新)

解三角形题型5:正、余弦定理判断三角形形状 1、(2013·陕西高考文科·T9)设△ABC 的内角A , B , C 所对的边分别为a, b, c , 若 cos cos sin b C c B a A +=, 则△ABC 的形状为 ( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 不确定 2、(2010上海文数)18.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =, 则△ABC (A )一定是锐角三角形. (B )一定是直角三角形. (C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形. 3、如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 4、在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 5、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 6、A 为ΔABC 的一个内角,且sinA+cosA= 12 7 , 则ΔABC 是______三角形. 7、在△ABC 中,若c C b B a A sin cos cos = =,则△ABC 是( ) A .有一内角为30°的直角三角形 B .等腰直角三角形 C .有一内角为30°的等腰三角形 D .等边三角形 8、若(a+b+c)(b+c -a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形 9、(2010辽宁文数17)在ABC ?中,a b c 、、分别为内角A B C 、、的对边, 且2sin (2)sin (2)sin a A b c B c b C =+++ (Ⅰ)求A 的大小; (Ⅱ)若sin sin 1B C +=,试判断ABC ?的形状. 10、在ABC ?中,已知2222()sin()()sin()a b A B a b A B +?-=-?+,判断该三角形的形状。 11、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ; ③sinC= B A B A cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角函数之正余弦定理

教师寄语:天才=1%的灵感+99%的血汗 1 戴氏教育中高考名校冲刺教育中心 【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。谢谢使用!!!】 主管签字:________ §3.6 正弦定理和余弦定理 一、考点、热点回顾 2014会这样考 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 复习备考要这样做 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 基础知识.自主学习 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以 变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,以解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余 弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并 可由此计算R 、r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: A 为锐角 A 为钝角或直角 图形 关系式 a =b sin A b sin A b 解的个数 一解 两解 一解 一解

正余弦定理与解三角形整理(有答案)

正余弦定理考点梳理: 1. 直角三角形中各元素间的关系:如图,在△ABC中,C=90°,AB=c,AC=b,BC=a。 (1)三边之间的关系:a2+b2=c2。(勾股定理) A (2)锐角之间的关系:A+B=90°; c (3)边角之间的关系:(锐角三角函数定义) b sin A=cos B=a c ,cos A=sin B= b c ,tan A= a b 。 C B 2. 2.斜三角形中各元素间的关系: a 如图6-29 ,在△ABC中,A、B、C为其内角,a、b、c 分别表示A、B、C的对边。 (1)三角形内角和:A+B+C=_____ (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。 3. 正弦定理: a b c 2R 。(R为外接圆半径)sin A sin B sin C a b c = ==2R的常见变形: sin A sin B sin C (1)sin A∶sin B∶sin C=a∶b∶c; (2) a b == sin A sin B c = sin C a+b+c =2R; sin A+sin B+sin C (3) a=2R sin_ A,b=2R sin_ B,c=2R sin_ C; a b c (4)sin A=,sin B=,sin C=. 2R 2R 2R 4. 三角形面积公式:S=1 2 ab sin C= 1 1 bc sin A=ca sin B. 2 2 5. 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦 的积的两倍。 2 2 2 a b c 2bccos A 2 2 2 b a c 2accosB 2 2 2 c b a 2ba cosC 或 cos A cos B cos C 2 2 2 b c a 2bc 2 2 2 a c b 2ac 2 2 2 b a c 2ab 余弦定理的公式:. 6. (1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.

-2017三角函数高考真题教师版

2015-2017三角函数高考真题 1、(2015全国1卷2题)o o o o sin 20cos10cos160sin10- =( ) (A )(B (C )12- (D )1 2 【答案】D 【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30= 1 2 ,故选D. 2、(2015全国1卷8题)函数()f x =cos()x ω?+的部分图像如图所示,则()f x 的单调递减区间为( ) (A )13(,),44k k k Z ππ- +∈ (B )13 (2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13 (2,2),44 k k k Z -+∈ 【答案】D 【解析】由五点作图知,1 +42 53+42 πω?π ω??=????=??,解得=ωπ,=4π?,所以()cos()4f x x ππ=+, 令22,4 k x k k Z π ππππ<+<+∈,解得124k - <x <3 24 k +,k Z ∈,故单调减区间为(124k - ,3 24 k +),k Z ∈,故选D. 考点:三角函数图像与性质 3、(2015全国1卷12题)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 . 【答案】 【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得 sin sin BC BE E C = ∠∠,即o o 2sin 30sin 75 BE =,解得BE ,平移AD ,当D 与C 重合时,AB 最短,此时与 AB

高中数学:三角函数与正余弦定理专题

高三文科数学:三角函数与正余弦定理专题 一、选择题: 1.sin 68°sin 67°-sin 23°cos 68°的值为( ) A .-2 2 B.22 C.3 2 D .1 2.(2013·江西高考)若sin α 2=3 3,则cos α=( ) A .-2 3 B .-1 3 C.1 3 D.2 3 3.已知tan ????α-π 6=3 7,tan ????π 6+β=2 5,则tan(α+β)的值为( ) A.29 41 B.1 29 C.1 41 D .1 4.把y =sin 1 2x 的图像上点的横坐标变为原来的2倍得到y =sin ωx 的图像,则ω的值为( ) A .1 B .4 C.1 4 D .2 5.要得到函数y =cos(2x +1)的图像,只要将函数y =cos 2x 的图像( ) A .向左平移1个单位 B .向右平移1个单位 C .向左平移1 2个单位 D .向右平移1 2个单位 6.若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 二、填空题: 7.已知角α的终边经过点(3,-1),则sin α=________. 8.已知扇形周长为10,面积是4,求扇形的圆心角为________. 9.函数y =cos ????2x +π 6的单调递增区间为________. 10.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a ,3sin A =5sin B , 则角C =________.

三、解答题: 11. (2015·山东高考)设2()sin cos cos ()4f x x x x π =-+ (1)求()f x 的单调区间 (2)在锐角ABC ?中,角,,A B C 的对边分别为,,a b c .若()02A f =,1a =, 求ABC ?面积的最大值 12.已知2tan =θ, 求(Ⅰ)θ θθθsin cos sin cos -+;(Ⅱ)θθθθ22cos 2cos .sin sin +-的值.

如何正确理解正余弦定理解三角形

1.1 正弦定理和余弦定理教案(共两课时) 教学目标 根据教学大纲的要求,结合学生基础和知识结构,来确定如下教学目标: (一)知识目标 (1)通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法; (2) 会运用正弦定理与三角形内角和定理解三角形的两类基本问题。 (3) 掌握余弦定理的两种表示形式; (4) 掌握证明余弦定理的向量方法; (5) 会运用余弦定理解决两类基本的解三角形问题。 (二)能力目标 让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题。 (三)情感目标 (1) 培养学生在方程思想指导下处理解三角形问题的运算能力; (2) 培养学生合情推理探索数学规律的数学思想能力,通过三角形函数、正弦定理、余弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 教学重点 正弦定理、余弦定理的探索和证明及其基本应用。 教学难点 (1) 正弦定理和余弦定理的证明过程。 (1) 已知两边和其中一边的对角解三角形时判断解的个数。 (2) 勾股定理在余弦定理的发现和证明过程中的作用。 教学方法 启发示探索法,课堂讨论法。 教学用具 粉笔,直尺,三角板,半圆,计算器。 、教学步骤 第一课时正弦定理 (一) 课题引入 如图1.1-1,固定?ABC的边CB及∠B,使边AC绕着顶点C转动。 A

思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? (图1.1-1) (二) 探索新知 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角 三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则 sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c A B C = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (让学生进行讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b = , b a 从而 sin sin a b A B = sin c C = A D B (图1.1-3) 让学生思考:是否可以用其它方法证明这一等式? 证明二:(等积法)在任意斜△ABC 当中 S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 两边同除以abc 21 即得:A a sin =B b sin =C c sin 证明三:(外接圆法) 如图所示,∠A=∠D ∴ R CD D a A a 2sin sin === (R 为外接圆的半径) 同理 B b sin =2R ,C c sin =2R 由于涉及边长问题,从而可以考虑用向量来研究这个问题。

三角函数正余弦函数的图像及性质复习汇总

一、正弦函数和余弦函数的图象: 正弦函数sin y x =和余弦函数cos y x =图象的作图方法:五点法:先取横坐标分别为0,3,,,222ππ ππ 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 二、正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R 。 (2)值域: 1、都是[]1,1-, 2、sin y x =,当()22 x k k Z π π=+ ∈时,y 取最大值1;当()322 x k k Z π π=+ ∈时,y 取最小值-1; 3、cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。 例:(1)若函数sin(3)6 y a b x π=-+的最大值为23,最小值为21 -,则=a __,=b _

(答:,12 a b ==或1b =-); ⑵ 函数y=-2sinx+10取最小值时,自变量x 的集合是_________________________。 (3)周期性: ①sin y x =、cos y x =的最小正周期都是2π; ②()sin()f x A x ω?=+和()cos()f x A x ω?=+的最小正周期都是2|| T πω=。 例:(1)若3 sin )(x x f π=,则(1)(2)(3)(2003)f f f f ++++=___(答:0) ; ⑵.下列函数中,最小正周期为π的是( ) A.cos 4y x = B.sin 2y x = C.sin 2x y = D.cos 4x y = (4)奇偶性与对称性: 1、正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线()2 x k k Z π π=+ ∈; 2、余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z ππ? ?+∈ ???,对称轴是直线()x k k Z π=∈ (正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴的交点)。 例:(1)函数522y sin x π?? =- ??? 的奇偶性是______(答:偶函数); (2)已知函数31f (x )ax b sin x (a,b =++为常数),且57f ()=,则5f ()-=______(答:-5); (5)单调性: ()sin 2,222y x k k k Z ππππ??=-+∈????在上单调递增,在()32,222k k k Z ππππ? ?++∈????单调递减; cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。特别提醒,别忘了k Z ∈! ⑴函数y=sin2x 的单调减区间是( )

2017年高考试题:正余弦定理解三角形

2017年高考文科数学新课标Ⅰ卷第11题:ABC ?的内角A 、B 、C 的对边分别为a 、b 、c 。 已知0)cos (sin sin sin =-+C C A B ,2=a ,2=c ,则=C ( ) A. 12π B.6π C.4π D.3 π 本题解答:0cos sin sin sin )sin(0)cos (sin sin sin =-++?=-+C A C A C A C C A B 0sin sin cos sin 0cos sin sin sin cos sin cos sin =+?=-++?C A A C C A C A A C C A 4 31tan 1cos sin cos sin 0sin cos π = ?-=?-=? -=?=+?A A A A A A A A 。 根据正弦定理得到: 21222 2sin sin sin sin =? ==?=a A c C C c A a ,C 是锐角6 π=?C 。 2017年高考理科数学新课标Ⅰ卷第17题:ABC ?的内角A 、B 、C 的对边分别为a 、b 、c 。 已知ABC ?的面积为A a sin 32 。 (Ⅰ)求C B sin sin ; (Ⅱ)若1cos cos 6=C B ,3=a ,求ABC ?的周长。 本题解答:(Ⅰ)ABC ?的面积为 A a sin 32222sin 2 3 sin 3sin 21a A bc A a A bc =?=? 3 2 sin sin 1sin sin 23sin sin sin sin 2322=?=?=?C B C B A A C B 。 (Ⅱ)61cos cos 1cos cos 6=?=C B C B ,3261sin sin cos cos 32sin sin -=-?=C B C B C B 3 21cos 21cos 21)cos(π =?=?-=-?-=+?A A A C B 。 根据余弦定理得到:921 29cos 22222222=-+??-+=?-+=bc c b bc c b A bc c b a ①。 根据(Ⅰ)得到:898 9 3)23(23sin 232222=?=?=??=bc bc bc a A bc ②。 ②代入①中得到:3382172)(17982222222=?+=++=+?=+?=-+bc c b c b c b c b ABC c b ??=+?33的周长为:333+=++c b a 。 2017年高考文科数学新课标Ⅱ卷第16题:ABC ?的内角A 、B 、C 的对边分别为a 、b 、c 。 若A c C a B b cos cos cos 2+=,则=B 。 本题解答:根据射影定理得到:b A c C a =+cos cos ,b B b A c C a B b =?+=cos 2cos cos cos 2

三角函数所有公式及基本性质[整理]

一、任意角的三角比 (一)诱导公式 ααπsin )2sin(=+k ααπcos )2cos(=+k ααπtg k tg =+)2( ααπctg k ctg =+)2( ααsin )sin(-=- ααcos )cos(=- ααtg tg -=-)( ααctg ctg -=-)( ααπsin )sin(-=+ ααπcos )cos(-=+ ααπtg tg =+)( ααπctg ctg =+)( ααπsin )sin(=- ααπcos )cos(-=- ααπtg tg -=-)( ααπctg ctg -=-)( ααπsin )2sin(-=- ααπcos )2cos(=- ααπtg tg -=-)2( ααπctg ctg -=-)2( ααπ cos )2 sin(=- ααπ sin )2 cos(=- ααπ ctg tg =-)2 ( ααπ tg ctg =-)2 ( ααπ cos )2sin( =+ ααπsin )2cos(-=+ ααπctg tg -=+)2( ααπ tg ctg -=+)2( ααπcos )23sin( -=- ααπsin )23cos(-=- ααπctg tg =-)23( ααπ tg ctg =-)23( ααπcos )2 3sin( -=+ ααπsin )23cos(=+ ααπctg tg -=+)23( ααπ tg ctg -=+)2 3( (二)关系结构图 (三)三角比符号

二、三角恒等式 1.同角三角比的关系 倒数关系 1csc sin =αα 1sec cos =αα 1=ααctg tg 商数关系 α α αcos sin = tg α α αsin cos = ctg 平方关系 1cos sin 22=+αα αα22sec 1=+tg αα22csc 1=+ctg 2.两角和与差的三角比 两角差的余弦公式 βαβαβαsin sin cos cos )cos( +=- 两角和的余弦公式 βαβαβαsin sin cos cos )cos( -=+ 两角差的正弦公式 βαβαβαsin cos cos sin )sin(-=- 两角和的正弦公式 βαβαβαsin cos cos sin )sin(+=+ 两角差的正切公式 βαβ αβαtg tg tg tg tg +-= -1)( 两角和的正切公式 β αβ αβαtg tg tg tg tg -+= +1)( 形式)sin(?α+A π ????ααα20,sin ,cos ) sin(cos sin 222222<≤+=+=++=+b a b b a a b a b a 3.二倍角的三角比 α α ααααααα αα22222122sin 211cos 2sin cos 2cos cos sin 22sin tg tg tg -= -=-=-== 4.半角的三角比 _

2019-2020年高三数学一轮复习第四章三角函数解三角形第七节正弦定理和余弦定理夯基提能作业本文

2019-2020年高三数学一轮复习第四章三角函数解三角形第七节正弦定理和余弦定 理夯基提能作业本文 1.在△ABC中,若=,则B的值为( ) A.30° B.45° C.60° D.90° 2.(xx广东,5,5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cos A=且bc.已知·=2,cos B=,b=3.求: (1)a和c的值; (2)cos(B-C)的值.

相关主题
文本预览
相关文档 最新文档