当前位置:文档之家› 一种准谐振开关电源的分析与设计

一种准谐振开关电源的分析与设计

一种准谐振开关电源的分析与设计
一种准谐振开关电源的分析与设计

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

开关电源设计与实现毕业设计(论文)

毕业论文(设计) 题目开关电源设计 英文题目switch source design

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

全谐振开关电源的原理

全谐振开关电源的原理 设计谐振变换器中的变压器 (design for an LLC resonant converter(transformer )设计全过程! 近段时间LLC谐振变换器备受关注,因为它优于常规的串联谐振变换器和并联谐振变换器:在负载和输入变化较大时,频率变化很小,且全负载范围内切换可实现零电压转换(ZVS), 下面我们就来讨论这种线路结构种的变压器设计. 当然在设计变压器之前还有些其它线路的设计,大概总结如下: a) 定义系统参数, 比如说目标效率. 输入电压范围等 b) 确定谐振网络的最大和最小电压增益 M min=Vro/Vinmax/2=Lm+n^2Llks/Lm=Lm+Llkp/Lm M max= Vin max/Vin min*M min c) 确定变压器圈数比(n=Np /Ns) n=Vin max/{2(Vo+2Vf)}*M min. d) 计算等效负载电阻(Rac) Rac={8n^2/(3.14)^2}*(Vo^2/Po)*Eff e) 设计谐振网络(一般在峰值增益上要有10-15%余量) Cr=1/2*3.14*Q*F0*Rac Lr=1/ (2*3.14*F0)^2*Cr Lp= (k+1)^2/(2k+1)*Lr 注:K值为: Lm/Llkp (激磁电感和初级漏磁电感之间的比)

下面进入主题-----设计变压器: 在设计变压器是应以最坏的情况来考虑,那么此案子是在最低的开关频率发生在最低的输入电压和满负载的情况下. 下面我们来计算原边(Np)最小圈数值.. Np min= n(V0+2Vf)/(2*Fs min* *Ae)-------△B:可以取0.25--0.3T. 然后,选择次级圈数,保证初级圈数大于Np min. Np =n*Ns>Np min 下面我们以一个实例来讨论LLC谐振变换器中的变压器具体设计: 首先根据Ap法算出大概需要的core size ,本例变压器选EER3541(Ae=107mm^2). 接下来再讨论最小的开关频率,在设计LLC谐振变压器时可以根据增益曲线可以从图表上查出,,,然后再按上述的公式来算初,次级的圈数.... 接下来就是和我们普通的变压器设计流程一样.... 下一步是来讨论变压器的构造... 因为LLC 谐振变换器是充分利用变压器的Lp,Lr..故在结构设计中应该留心... 刚有谈到LLC谐振变换器是充分利用变压器的Lp,Lr,则1在设计时需要一个相对较大的Lr值.我们一般可以采用一种可组合线轴.以获得理想的Lr值... 这种结构,线圈数和绕线结构是决定Lr大小的主要因素,而变压器的磁心气隙长度不会影响Lr太多...但,我们可以通过调整气隙长度来轻松控制Lp.. 最后我们来选择谐振电容.... 大家都知道,在选择谐振电容时必须考虑额定电流,因为会有相当数量的电流流经电容... 通过谐振电容器的均方根可表示为: Icr (rms)=√ {(3.14*Io/2√2n)^2 }+ {n(Vo+2*Vf)/4√2FoLm}^2

LED开关电源设计

《开关电源课程设计》 指导教师:熊春宇 姓名:李丽丽 学号:200701071235 电话:136664664296

LED照明驱动开关电源设计 (李丽丽,大庆师范学院物电学院07级电子信息工程专业)摘要:LED照明驱动设计了恒流输出、空载保护、隔离输出及EMC等功能.系应用于LED 照明驱动的开关电源电路。采用PWM自动调节实现恒流输出,稳压管过压锁定实现空载保护,电磁隔离和光隔离实现隔离输出。经过多次的运行与检测,实践证明该电路恒流输出稳定,发热量低。本设计体积小,微调反馈电路可设置作为为LED驱动常用的350mA或700mA恒流输出。可广泛适用于生活照明,商用照明。 关键词:LED驱动电源;发热低恒流;隔离低成本 Abstract:LED lighting design drive the constant-current output, the output and protection, isolation no-load EMC etc. Function. Is applied to the switch power LED lighting driving circuit. Using PWM automatic adjustment output voltage, the constant-current over-voltage protection tube, electromagnetic no-load realize locking and isolation realize isolation output isolation. After many operation and test, the practice has proved that the constant-current circuits, low heat stable output. This design, small size, fine-tuning feedback circuit can be set as the common 350mA LED drive or 700mA constant-current output. Life can be widely used in commercial lighting, lighting. Key words:Leds driving power;Fever is low;Constant flow;Isolation;Low cost 0概述 0.1选题的目的与意义: 全球能源紧张,提高电器的效率是行之有效的方法。照明用电占据全球21%的总用电量,如果能提高照明用的的效率,可以有效缓解能源紧张。如何提高照明系统的能源利用率,延长照明系统的寿命,并且是绿色无污染的?取代白炽灯,荧光灯,节能灯的第四代照明灯具是什么?业界给出的答案就是LED灯照明。LED照明每W流明数可达到120lm。远高于白炽灯和日光灯,此外LED灯珠寿命可长达十万小时,并且绿色无污染。LED照明具备的这些优点决定了其应用前景是非常广阔的。LED照明应用上的限制在于LED有固定的正向压降,电流也有上限(工作电流是影响LED寿命的主要因素)。大功率白光LED上的正向压降一般为3-4V,不能直接使用市电驱动。因此一个和LED灯珠匹配的高效,环保,长寿命的电源是必须的,这正是这次选题的意义与目的所在。 0.2研究现状 开关电源的技术已经非常成熟,由于LED驱动的降压技术大部分采用开关电源。因此即使是LED驱动电源真正进入研究的时间不算长,却无碍其技术的成熟。LED驱动要求的技术特点是:寿命长,体积小(特别商用照明和家用照明,最好可以内嵌到灯头)。 众所周知,绝大部分开关电源都需要一个输出滤波的电解电容,即使高品质的电解电容,工作在100摄氏度左右,寿命也只有1Wh左右。毫无疑问,电解电容正是LED灯整体寿命的瓶颈。而内嵌式驱动板上的电解电容,由于LED的发热以及驱动板本身的发热,长期在

开关电源的设计修订版

物理与机电工程学院(2015——2016 学年第二学期) 综合设计报告 开关电源的设计 专业:电子信息科学与技术学号:2014216010 姓名:侯涛 指导教师:石玉军

开关电源的设计 摘要 随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。开关电源以其效率高、体积小,重量轻等优势在很多方面逐步取代了效率低、又笨重的线性电源。电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。开关电源技术的主要用途之一是为信息产业服务。信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。开关电源的高频变换电路形式很多,常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。本文章是基于芯片UC3842的小功率高频开关电源系统设计。 关键词开关电源半桥全桥高频变压器 1、引言 1.1研究的背景 随着大规模和超大规模集成电路的快速发展,特别是微处理器和半导体存储器的开发利用,孕育了电子系统的新一代产品。显然,那种体积大而笨重的使用

工频变压器的线性调节稳压电源已经过时。取而代之的是小型化、重量轻、效率高的隔离式开关电源。 开关电源技术发展趋势可以归纳以下几点: ①小型化、薄型化、轻量化、高频化是开关电源的主要发展方向。 ②提高可靠性,提高集成度,增加保护功能,拓宽输入电压范围,提高平均无故障时间。 ③随着频率提高,开关电源的噪声随之增大,降低噪声也是高频开关电源的研究方向。 ④提高电源装置和系统的电磁兼容性(EMC)。 ⑤用计算机软件进行辅助设计与控制,具有高效、高精度、高经济性和高可靠性的优点,可以使开关电源具有最佳电路结构与最佳工作状况。开关电源高频化的实现,与磁性元件和半导体功率器件的发展状况有着密切的关系。 隔离式开关电源的核心是一种高频电源变换电路。它使交流电源高效率地产生一路或多路经调整的稳定直流电压。早在70年代,随着电子技术的不断发展,集成化的开关电源就已被广泛地应用于电子计算机、彩色电视机、卫星通信设备、程控交换机、精密仪表等电子设备。这是由于开关电源能够满足现代电子设备对多种电压和电流的需求。随着半导体技术的高度发展,高反压快速开关晶体管使无工频变压器的开关电源迅速实用化。而半导体集成电路技术的迅速发展又为开关电源控制电路的集成化奠定了基础,适应各类开关电源控制要求的集成开关稳压器应运而生,其功能不断完善,集成化水平也不断提高,外接组件越来越少,使得开关电源的设计、生产和调整工作日益简化,成本也不断下降。目前己形成了各类功能完善的集成开关稳压器系列。近年来高反压MOS大功率管的

准谐振资料开关电源

Quasi-Resonant (准谐振) Converter Topology : 简介: Advantage: 1)可以降低MOSFET 开关损耗,从而提高可靠性 2)可以改善EMI 特性,在增加功率传输效率的同时减少EMI 干扰,减少滤波器使用数量,降低成本 备注:谐振电路的定义—在具有R 、 L、 C 的交流电路中,电路两端的电压和电流位相一般是不同的,如果通过变更L 、C的参数或电源频率使其达到电压与电流的位相相同,此时电路呈现纯电阻性,这种状态就叫做谐振。在这种情况下,电路的电阻值达到极值(最大或者最小)。谐振分为串联谐振和并联谐振。 3)当工作在 discontinuous conduction mode 时,转换器会侦测到drain (漏极)电压波谷并在drain电压最小时开启MOSFET. 当工作在 continuous conduction mode 时,转换器会工作在固定工作频率。 工作机理: 1)当MOSFET 在导通时(Ton),输入电压Vin加在初级线圈上 Lm ,此时MOSFET 电流Ids 从0线性增加至最大值Ipk,在这段时间内,能量储存在 初级电感,为(Lm*Ipk*Ipk)/2 . 2)当MOSFET 关闭时,储存在线圈中的能量导致次级输出端的整流二极管开启。 在二级管开启的时间内(Td),输出电压Vo施加在次级线圈上,此时整流 二极管的电流从最大值Ipk*Np/Ns线性减少, 而此时输入电压Vin和次级线 圈反馈到初级线圈的点烟V0*Np/Ns 叠加到FET 上。 3)当二极管电流降至0时,FET的Vds 电压通过初级线圈Lm以及FET 的输出电容Coss以振幅V0*Np/Ns开始共振。当Vds达到最小值时,准谐振开关开启 MOSFET。这样就可以减少由于漏极与源极之间的电容导致的开关损益。这 就是所谓的ZVS . 4)当输出负载减少或者输入电压增大的时候, MOSFET 的Ton会减少并且开关频率增加。这就会导致严重的开关损失以及间歇性开关和噪音问题。 相关图形请参看以下:

高频开关电源的设计与实现

电力电子技术课程设计报告 题目高频开关稳压电源 专业电气工程及其自动化 班级 学号 学生姓名 指导教师 2016年春季学期 起止时间:2016年6月25日至2016年6月27日

设计任务书11 高频开关稳压电源设计√ 一、设计任务 根据电源参数要求设计一个高频直流开关稳压电源。 二、设计条件与指标 1.电源:电压额定值220±10%,频率:50Hz; 2. 输出:稳压电源功率Po=1000W,电压Uo=50V; 开关频率:100KHz 3.电源输出保持时间td=10ms(电压从280V下降到250V); 三、设计要求 1.分析题目要求,提出2~3种电路结构,比较并确定主电路 结构和控制方案; 2.设计主电路原理图、触发电路的原理框图,并设置必要的 保护电路; 3.参数计算,选择主电路及保护电路元件参数; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.林渭勋等,《电力电子设备设计和应用手册》; 3.张占松、蔡宣三,《开关电源的原理与设计》,电子工业 出版社。

目录 一、总体设计 (1) 1.主电路的选型(方案设计) (1) 2.控制电路设计 (4) 3.总体实现框架 (4) 二、主要参数及电路设计 (5) 1.主电路参数设计 (5) 2.控制电路参数设计 (7) 3.保护电路的设计以及参数整定 (8) 4.过压和欠压保护 (8) 三、仿真验证(设计测试方案、存在的问题及解决方法) (9) 1、主电路测试 (9) 2、驱动电路测试 (10) 3、保护电路测试 (10) 四、小结 (11) 参考文献 (11)

正反激励式准谐振软开关电源

正反激励式准谐振软开关电源 摘要:以UCC28600D芯片为核心,结合正、反激励共用方式构建准谐振软开关电源。以正激励为主,正、反激励相互配合,拓展功率输出能力;采用定功率法设计开关电源变压器,控制反激励电压值略高于输入线电压;有效发挥谐振作用,降低激励管开通损耗和开通噪声,利用滤波电感的续流作用消除正激励整流二极管的关闭噪声。所设计的开关电源具有高度洁净的输出电压,电源输出口的扰讯电压和开关周期的脉动电压均限制在5 mV以下,整体工作效率达85%,开关电源中正、反激励共用方式具有明显优势。关键词:开关电源;准谐振;单极性;正反激励 早期的开关电源通过强制开通或关闭激励管的方式工作,其开关噪声和开关损耗大,工作效率难以进一步提高。软开关技术则利用LC谐振来调整开关时刻的电流或电压值,以达到开关损耗最小的目的,在开关噪声和工作效率方面都优于硬开关电源。因此,谐振式开关电源将得到快速发展。实现软开关工作的芯片有多种型号,且工作原理各不相同。例如准谐振反向控制器UCC28600芯片,以反激励电压下降至最低值后开通激励管、激励电流达到峰值或定时关闭激励管的方式工作,单极性输出,其开关频率随输出功率而变化,一般用于小功率电源;谐振模式控制器UCC25600是基本固定谐振频率,利用反馈自动调节开关频率,使电路在谐振与失谐之间调整,改变有效激励功率,双极性输出,一般用于100 W~1 kW的电源。本文以UCC28600D芯片为基础,研究这类软开关电源的设计要点。1 UCC28600D芯片工作特点 UCC28600D芯片是多模式准谐振反向控制器,自身功耗低,只有8个端口,电路连接简单。该芯片内部设置有可变振荡频率的振荡器,自身并不直接决定输出脉冲频率。其脉冲输出与脉冲关闭方式由芯片的外部电路状态决定:当电压状态检测保护端7的电位下降至最低值(电压谷点)时,开通输出脉冲;当7端口流出的电流达到450 μA(此时端电位为0 V)或者7端口端电压超过3.75 V时,均进入过压保护状态;根据检测到的3端电位值关闭输出脉冲或定时关闭脉冲,准谐振模式或不连续模式下为0.4 V~0.8 V,折返模式下3端口电位固定为0.4 V,不再对激励电流做检测,由内部定时关闭脉冲。芯片的脉冲频率总是在40 kHz~130 kHz之间通过2端口的电位自动调整,而2端口的电位是由电源输出参数(预设的电压或电流值)进行闭环调整:4.0 V~5.0 V时工作在准谐振模式的断续状态;2.0 V~4.0 V 时工作在准谐振模式的连续状态(130 kHz);1.4 V~2.0 V时工作在频率折返模式(40 kHz~130 kHz);0.5 V~1.4 V时工作在低频率节能模式。脉冲频率越高,输出功率越小,这正是反激励电路的一个特征。所以UCC28600D适合反激励工作方式。2 由UCC28600D构建的软开关电源电源工作在反激励方式下,可以通过调整脉冲频率的方式改变输出功率。而对于正激励方式,需要通过改变脉冲占空比的方式调整输出功率的大小,UCC28600D芯片本身的变频率功能起不到直接作用。反激励电源的工作方式是先将电能转换成磁场能储存在磁路或者磁芯材料中,然后在下一个时间段再将磁场能转换成电能输出。单位时间内所储存的磁场能大小决定着反激励电源的输出功率大小。磁芯材料的可用储能大小可以由下式计算[1]:其中μr是材料的相对磁导率,V是磁芯材料体积(以mm3为单位),Bm是最大工作磁感应强度(以T为单位)。磁芯材料储能能力除了与其体积成正比外,还与最大磁感应强度成正比,与相对磁导率成反比。以EC2828铁氧体磁芯变压器为例,其磁芯体积约为5 800 mm3,最大磁感应强度只能取为0.4 T,而最大可用磁感应强度只有0.2 T左右(取值与工作频率有关)[2],相对磁导率约为2 000。磁芯紧密结合时,最大储能为46 μJ,以100 kHz脉冲频率计算,最大输出功率约为4.6 W,而同样规格的磁芯以正激励方式工作的输出功率在50 W以上。若在磁路中设置气隙,虽然可以增加储能量,但会增加漏磁。可见单纯地采用反激励方式并不是最佳方案,难以发挥出应该具备的供电能力。本文设计中采用以正激励为主的单极性正反激励共用方式,使电源能够提供尽量大的功率,同时,在每一个周期的供电时间上更

开关电源设计教学内容

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电?又如何使直流电压(电流)稳定?这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 1.1基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A; ③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=2.5±0.2A; 1.2发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

LLC半桥谐振开关电源原理介绍与逆变电路

https://www.doczj.com/doc/bc17539608.html, LLC半桥谐振开关电源原理介绍与逆变电路 LLC半桥谐振原理介绍 随着开关电源技术的研究与发展,高效电路模块(软开关)技术得到了广泛的应用,主要为谐振型的软开关拓扑和 PWM 型的软开关,近几年来,随着半导体器件制造技术的发展,开关管的导通电阻、电容和反向恢复时间越来越小了,对于谐振变换器来说,如果设计得当,能实现软开关变换,使得开关电源具有较高的效率,LLC 谐振变换器实际上来源于不对称半桥电路,后者用调宽型(PWM)控制,而 LLC 谐振是调频型(PFM)电源电路。0928E LLC半桥谐振电源开关原理框图 在工作中,半桥串联谐振的DC-DC转换器通过改变开关管的开关频率进行转换,谐振网络的输入电压频率也将同步发生改变,谐振网络的阻抗也将发生改变,并

https://www.doczj.com/doc/bc17539608.html, 进一步影响负载端的电压发生相应的变化。由于这种分压作用,串联谐振变换器的直流电压增益≤1,当电路的开关频率工作在谐振频率Lr和Cr谐振点时,谐振网络的阻抗达到最小,输入的电压绝大部分传递到负载端,此时变换器的直流电压增益最大为1。 LLC半桥谐振逆变电路 根据负载结构的不同形式,逆变器分为两种形式:串联谐振逆变器,即电容与负载串联连接,也称电压源型逆变器;并联谐振逆变器,即电容与负载并联连接,也称电流源型逆变器。本文主要对串联谐振逆变器的主电路结构、控制和调功方法进行研究。 全桥串联谐振逆变器串联谐振逆变器分为全桥串联谐振逆变器和半桥串联谐振逆变器两类,首先对全桥串联谐振逆变器进行介绍,其电路结构如下所示。0928F

https://www.doczj.com/doc/bc17539608.html, 串联型逆变器根据负载工作状态的不同可以分为三种工作模式:容性状态、感性状态和谐振状态,状态下负载电压和电流的相位关系,分别为负载电压、负载电流的波形,负载电压与负载电流之间的相位角。 桥臂谐振电容与负载串联,而不是自成回路,即流过负载的电流将全部流过开关管IGBT,因此,在这种电路中一般采用多个开关管并联,两类半桥串联谐振逆变器结构上的不同在于对于第1类半桥串联谐振逆变器,谐振电容与负载槽路直接串联,此类逆变器一般应用于小功率领域;半桥串联谐振逆变器,两个谐振电容相当于是两个桥臂,一般用于较大功率。

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

开关电源设计的一般考虑 经典!!!

第一章开关电源设计的一般考虑 在设计开关电源之前,应当仔细研究要设计的电源技术要求。现以一个通信电源模块的例子来说明设计要考虑的问题。该模块的技术规范如下: 1 电气性能 除非另外说明,所有参数是在输入电压为220V,交流50Hz以及环境温度25℃下测试和规定的. 表1.1 调压范围2 效率 额定电压输出电流限流范围过压范围调压范围1 I(max) 54.9V 28A 110% 58.8- 52.55- 45.7 >87% Imax 61.2V 52.75V 45.9V 1.1 输入 电压:单相交流额定电压有效值220V±20% 频率:频率范围 45-65Hz 电流:在满载运行时,输入220V,小于8A。在264V时,冲击电流不大于18A 效率:负载由50%-100%为表2.1值 功率因数:大于0.90,负载在50%以上,大于0.95 谐波失真:符合IEC 555-2要求 启动延迟:在接通电源3秒内输出达到它的额定电平 保持时间:输入176V有效值,满载,大于10mS 1.2 输出 电压:在满载时,输出电压设定在表1值的±0.2% 电流:负载电流从零到最大值(参看表1),过流保护开始是恒流,当电压降低到一定值得时,电流截止. 稳压特性:负载变化由零变到100%, 输入电压由176V变到264V最坏情况下输出电压变化不超过200mV. 瞬态响应:在没有电池连接到输出端时,负载由10%变化到100%,或由满载变化的10%,恢复时间应当在2mS之内. 最大输出电压偏摆应当小于1V. 静态漏电流:当模块关断时,最大反向泄漏电流小于5mA. 温度系数:模块在整个工作温度范围内≤±0.015%. 温升漂移:在起初30秒内,±0.1% 输出噪音:输出噪音满足通信电源标准,衡重杂音<2mV. 1.3 保护 输入:输入端保护保险丝定额为13A. 输出过压:按表 1.1设置过压跳闸电压,输出电压超过这个电平时,将使模块锁定在跳闸状态.通过断开交流输入电源使模块复位. 输出过流:过流特性按表1.1的给定值示于图1.过流时,恒流到60%电压,然后电流电压转折下降.(最后将残留与短路相同的状态) 输出反接:在输入反接时,在外电路设置了一个保险丝烧断(<32A/ 55V) 过热:内部检测器禁止模块在过热下工作,一旦温度减少到正常值以下,自动复位. 1.4 显示和指示功能 输入监视:输入电网正常显示. 输出监视:输出电压正常显示.(过压情况关断). 限流指示:限流工作状态显示. 负载指示:负载大于低限电流显示. 继电器:输入和输出和输入正常同时正常显示。 输出电流监视:负载从10%到100%,指示精度为±5%. 遥控降低:提供遥控调节窗口. 1.5 系统功能 电压微调:为适应电池温度特性,可对模块的输出电压采取温度补偿. 负载降落:为适应并联均流要求,应能够调节外特性。典型电压降落0.5%,使得负载从零到增加100%,输出电压下降250mV. 遥控关机:可实现遥控关机。 1.6 电气绝缘 下列试验对完成的产品100%试验。 1.在L(网)和N(中线)之间及其它端子试验直流电压为6kV. 2.在所有输出端和L,N及地之间试验直流2.5kV.这检查输出和地之间的绝缘. 3.下列各点分别到所有其它端子试验直流100V: 电压降低(11和12脚) 继电器接点(14,15和16脚) 状态选择-输入,输出和电流限制(3,4,5和6脚)

开关电源设计与实现

Xx大学机电工程学院 Mechanical &Electronic Engineering Department 开关电源技术原理及应用设计报告 说明书 设计题目:开关电源的设计与实现 专业: 学号: 姓名: 指导教师: 设计时间:

开关电源的设计与实现 摘要: 本文通过对日常生活中用到的开关电源,进行了比较详细的描述和说明,也就相关制作问题进行了描述。再根据开关电源的理论、电路分析、及变压器的基础,从电路工作的角度分析了开关电源的工作原理,制作了一种比较简单,工作可靠,且适用于目前生活中常用的开关电源。这个设计的主要特点是稳压开关电源,设计中运用了开关电源中的整流、滤波、变压、过压保护等设计。最后按照电路图焊接元件,当接入220V的交流电时,负载所接的灯泡亮。 关键字:开关电源脉宽调制变压器 Design and Realization of Switching Power Supply Abstract: Based on the switching power supply used in daily life, for a more detailed description and explanation, also making the problem is described. According to the theory of switching power supply, circuit analysis, and the transformer, the-working principle of switching power supply circuit from the angle of the work,making a relatively simple, reliable, and suitable for the switch power supply in life. This design is the main characteristics of switching power supply, use in the design of rectifier, filter, transformer, overvoltage protection design of switch power supply. The final element welding according to the circuit diagram, when the access 220V alternating current, load the light bulb. Key words:switching power supply PWM transformer

全桥式开关电源的研究与设计解读

研究生课程考试答题册 学号2009201370 姓名刘俊飞 考试科目现代电源变换技术 考时日期2010.1.8 西北工业大学研究生院

全桥式开关电源的研究与设计 摘要 电源是所有用电设备的心脏,用电设备的可靠工作离不开质量可靠的电源的支持。可一般情况下,电网电能并不能直接用于用电设备,而是要经过转换才能符合使用的需要。这就需要运用电力变换技术对电力进行变换,以获取满足使用要求的电能,其中将交流电变换成直流电是其中的一种。将交流电变换成直流电的技术叫做整流。现代开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。 本篇论文对PWM型全桥式开关电源进行研究,阐述其变换拓扑,分析其工作的原理,并对全桥式开关技术的实现进行探索。针对某一实际要求的开关电源技术指标,设计了一开关稳压电源电路,实现稳定的直流电压输出,并对开关电源技术的发展进行了展望。 关键词: 开关电源全桥式 PWM技术 SG3525A芯片

一、引言 现代开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源电路运用现代电力电子技术,由脉冲宽度调制(PWM)控制IC进行脉冲宽度控制,调节占空比,以对MOSFET或其他的全控型开关器件的开通与关断进行控制,从而调节输出的电压,实现输出电压的稳定。 电源是所有用电设备的心脏,用电设备的可靠工作离不开质量可靠的电源的支持。可一般情况下,电网电能并不能直接用于用电设备,而是要经过转换才能符合使用的需要。这就需要运用现代电力变换技术对电力进行转换,以获取满足使用要求的电能,其中将交流电变换成直流电是其中的一种。将交流电变换成直流电的技术叫做整流技术。随着电力电子技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电力电子设备都离不开可靠的电源。进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。因而开关电源技术十分重要。 但作为用电设备的动力源,电源的形式却并不单一。电源特性的参数有电压、功率、频率、噪声及所带负载参数的变化等;在同一参数要求下,又有体积、重量、形态、功率、可靠性等指标。那么在不同的领域,不同的工作场合,不同的设计指标下,如何进行电源的设计,以完美地满足客户的要求,是一个值得研究的课题。因而对现代开关电源技术的研究是十分必要的。 开关电源的种类很多,其中桥式开关稳压电源以其能适应输入电压较高和输出功率较大等优点,得到了广泛的应用。本文针对PWM型全桥式开关电源的变换方法进行研究。桥式开关稳压电源电路的核心实际上就是一个桥式直流变换器电路。桥式直流变换器电路主要包括半桥式直流变换器和全桥式直流变换器,他是由两个推挽式直流变换器电路组成的。由于这种变换器克服了推挽式直流变换器

最新开关电源主要名词解释

开关电源主要名词解 释

开关电源主要名词解释 1.脉宽调制(Pulse Width Modulation–PWM) 开关电源中常用的一种调制控制方式。其特点是保持开关频率恒定,即开关周期不变,改变脉冲宽度,使电网电压和负载变化时,开关电源的输出电压变化最少。 2.占空比(Duty Cycle Ratio) 一个周期T内,晶体管导通时间t oN所占比例。占空比D=t oN/T。 3.硬开关(Hard Switching) 晶体管上的电压(或电流)尚未到零时,强迫开关管开通(或关断),这是开关管电压下降(或上升)和电流上升(或下降)有一个交叠过程,因而,开关过程中管子有损耗,这种开关方式称为硬开关。 4.软开关(Soft Switching) 使晶体管开关在其中电压为零时开通,或电流为零关断,从而在开关过程中管子损耗接近于零,这种开关方式称为软开关。 5.谐振(Resonance) 谐振是交流电路中的一种物理现象。在理想的(无寄生电阻)电感和电容串联电路输入端,加正弦电压源,当电源的频率为某–频率时,容抗与感抗相等,电路阻抗为零,电流可达无穷大,这一现象称为串联谐振。同理,在理想的LC并联电路加正弦电流源时,电路的总导纳为零,元件上的电压为无穷大,称为并联谐振。电路谐振时有两个重要参数:

谐振频率–谐振时的电路频率,w0=1/√LC,称为谐振频率。 特征阻抗–谐振时,感抗等于容抗。其值为:Zo=√L/C,称为特征阻抗。当LC串联突加直流电压时,电路中电流按正弦规律无阻尼振荡,其频率即电路的谐振频率,或称振荡频率. 6.准谐振(Quasi–Resonance) 对于有开关的LC串联电路,当电流按谐振频率振荡时,如果开关动作,使电流正弦振荡只在一个周期的部分时间内发生,电流呈准正弦,这一现象称为准谐振。同样,在LC并联电路中,借助开关动作,也可获得准谐振。 7.零电压开通(Zero–Voltage–Switching,简称ZVS) 利用谐振现象,在开关变换器中器件电压按正弦规律振荡到零时,使器件开通,称为ZVS。 8.零电流关断(Zero–Current–Switching,简称ZCS) 同理,当开关变换器的器件电流按正弦规律振荡到零时,使器件关断,称为ZCS。 9.PWM开关变换器(PWM Switching Converler) 用脉宽调制方式控制晶体管开关通、断的开关变换器。它属于恒频控制的硬开关类型。 10.离线式开关变换器(Off–Line Switching Converter) 是一种AC/DC变换器,其输入端整流器和平波电容直接接在交流电网上。11.谐振变换器(Resonant Converter) 利用谐振现象,使开关变换器中器件上的电压或电流按正弦规律变化,从而创造了ZVS或ZCS的条件,称为谐振变换器。分串联和并联谐振变换器两种。在桥式

基于STC系列单片机的串联型开关电源设计与实现

单片机及模数综合系统设计 课题名称:基于STC12系列单片机的串联型开关电源设计与实现 --单片机控制部分

一、实验目的:本模拟电路课程设计要求制作开关电源的模拟电路部分,在掌 握原理的基础上将其与单片机相结合,完成开关电源的设计。本报告旨在详述开关电源的原理分析、计算、仿真波形、相关控制方法以及程序展示。 二、总体设计思路 本设计由开关电源的主电路和控制电路两部分组成,主电路主要处理电能,控制电路主要处理电信号,采用负反馈构成一个自动控制系统。开关电源采用PWM 控制方式,通过给定量与反馈量的比较得到偏差,通过调节器控制PWM 输出,从而控制开关电源的输出。当键盘输入预置电压后,单片机通过PWM输出一个固定频率的脉冲信号,作用于串联开关电源的二极管和三极管,使三极管以一定的频率导通与断开,然后输出进行AD转化,转化后的结果再给单片机进行输出,进行数码管显示。 系统的基本框图及控制部分如下: 控制过程原理分析:单片机所采用的芯片为STC12C5A60S2,该芯片在拥有8051内核的基础上加入了10为AD和PWM发生器。通过程序,即可控制单片机产生一定占空比的PWM 脉冲,将此脉冲输入到模拟电路部分,在模拟电路的输出端即可产生一定的输出电压,可比较容易的通过程序来实现对输出电压的控制。但上述的开环控制是无法达到精确的调节电压,因此需要采用闭环控制来精确调制。即,对输出电压进行AD采样,将其输入回单片机中进行数据处理。单片机根据处理的结果来对输出电压做出修正,经过这样的逐步调节即可达到闭

环的精密输出。由此原理,可以将整个过程分成一下模块:PWM波形输出模块,模拟电路模块,AD转换模块,数码管显示模块,键盘输入模块。 控制过程基本思路为:首先从键盘输入一个电压值,并把该电压值在数码管上面显示出来,再由A/D转换模块对串联开关电源电路的输出端进行电压采集,将采集到的电压值与键盘输入的电压值进行比较,通过闭环算法,控制PWM的脉宽输出,由此控制串联开关电压电源电路,改变输出的电压值,使得输出值与设定的电压值相等。 三、系统各单元模块电路设计 1、键盘输入数据部分 分别接到单片机的P2.4,P2.5,P2.6,P2.7。每路通过电阻进行上拉,可以编程实现控制单片机运行不同程序。为了判断键盘上面的按键是否有按下的,可以事先对P2.4,P2.5,P2.6,P2.7端口赋值,便可以知道具体是哪个按键被按下了。例如:P2.4=0,便可知道P2.4对应的按键已经按下了。 键盘输入模块程序如下: void key( ) //键盘扫描函数 { if(P2_6== 0) { delay(10);//延时去抖动 if(P2_6== 0) { while(P2_6== 0)

相关主题
文本预览
相关文档 最新文档