当前位置:文档之家› 地震勘探与原理

地震勘探与原理

地震勘探与原理
地震勘探与原理

第二章

几何地震学

第二章几何地震学

本章内容提要:Main Content:

在这一章中我们将讨论地震勘探的一些基本原理,这些原理是地震勘探的理论基础。

首先介绍岩石的弹性、地震波的基本概念(类型、描述(振动图、波剖面、频谱、波前、射线〕);

然后,分析地震波在岩石中的传播速度,最后讨论地震波在分界面上、层状介质中的传播规律以及地震波的频谱和振幅特点。

第一节岩石的弹性

Passage 1 Rock Elasticity Property

本节主要内容:

1.理想弹性介质与粘弹性介质

Ideal Elasticity Media and Plastics Media

2、几种弹性模量(弹性常数)

Some Elasticity Mould/Constant

1.理想弹性介质与粘弹性介质

(Ideal Elasticity Media and Plastics Media)

介质分为:

1)弹性介质:物体受力后,发生形变,但当外力撤消后,即能恢复原状的性质。

2)塑性介质:物体受力后,发生形变,但当外力撤消后,不能恢复原状的性质。

一般,自然界中的任何物体都具有这两种性质,但把它看成是什么性质或说看成是弹性介质还是塑性介质,是与一定的因素有关的,即一个物体是弹性还是塑性介质,除与本身性质有关外,还与外力大小、作用时间长短有关,如弹簧,一般我们都把它看成是弹性体,但当我们的作用力非常大,并且作用时间很长时,它也变成塑性体(即使除去外力后,弹簧也弹不起来了)

结论1:地震勘探中将地下岩石看做为弹性介质---地震勘探的理论基础

由于在地震勘探中作用力都是很小,且作用时间也很短(一瞬间),故可把地下介质看作以弹性为主,抽象后为弹性介质。

2、几种弹性模量(弹性常数)(Some Elasticity Mould/Constant)

当用相同的力作用于不同的岩石,将可能产生不同的形变,这是因为不同的岩石具有不同的弹性性质,通常可用下述弹性模量(常数)来描述岩石的弹性性质。

(1)杨氏模量(E):简单拉伸或压缩时,弹性体的相对伸缩△L/L与应力P之比E=P/(△L/L)

不同的物体E是不同的,在线性弹性极限范围内,物体的弹性形变满足虎克定律(应力∝应变)

(2)泊松比(σ):弹性体内发生纵向伸长(或缩短)时,伴随产生的横向相对收缩(或膨胀) △d/d与纵向相对伸(缩) △L/L之比值,称泊松比.

σ=(△d/d)/( △L/L) 它是表示形变变化调整的一种尺度.

结论2:不同岩石具有不同的弹性性质

(地震勘探能解决地质问题的地质基础)

1)由于不同埋藏深度,不同地质年代或不同岩性的岩石往往具有不同的弹性模量.这样在一个地质剖面中,就存在许多弹性分界面(即地震界面);

2)大多数情况下地震界面与地层(地质)界面是一致的。

这就是我们能够用地震勘探方法解决地质问题的客观前提。

第二节地震波的基本概念

Passage 2 Seismic Wave Basic Conception

本节主要内容:

Seismic Wave Basic Conception Include:

1、地震波的形成。

Seismic Waves Formation

2、地震波的基本类型

Seismic Waves Basic Type;

3、地震波的描述。

Seismic Waves Description

2、波动

波动的参数描述

简谐波(正弦波)

波谱的概念

第三节地震波的产生和传播

2、波源

3、地震波传播的形象表征

平面波、球面波

(2)波线(射线)

(3)波形--振动曲线

4、地震波的形成

(Seismic Waves Formation)

假设地下岩石是均匀介质,它的各部位之间存在着弹性联系,当炸药在岩层中爆炸后,应变形成三个区域(Three Range);

(1).破坏圈(Destroy Circle/round)

炸药在井中爆炸时,它所产生的高温高压气体对炸药周围的岩石产生了巨大的压力,靠近炸药附近的岩石,由于压力太大的抗压强而被压碎,超过了岩石的抗压强而被压碎,形成了一个空洞的破坏圈。

(2).塑性带( Plastics Range/band)

在破坏圈内,由于爆炸的能量有一部分在压碎岩石和发热过程中消耗,并随着离开震源距离的增加,炸药爆炸的能量传给越来越多的岩石单元,因而岩石单位体积上的能量将迅速减少,在离开炸药一定的距离时,炸药的能量将小于岩石的抗压强度,此时,岩石虽不再受破坏,但压力还是超过岩石的弹性极限。因此,这一带的岩石具有塑性形变的特点,在岩石中出现以震源为中心向四周扩张的辐射状的裂隙,这个地带叫塑性带。

(3).弹性形变区

( Elasticity Formation Range/rear)

随着离开震源距离的增大,炸药的能量将变得更小。在这个区域,由于爆炸所产生压力作用变得很小,作用时间很短,所以此区域的岩石已处在弹性限度内,可

以把岩石看成是完全弹性体,整个区域称为弹性形变区。该区受力后,岩石质点将发生弹性形变,即发生弹性振动,由于岩石部分之间有弹性联系,所以这一部分岩石的质点(形变)又引起它周围各部分岩石的振动(形变〕。这样的弹性振动将由近及远的传播出去,就形成了在地下岩层中传播的弹性波――地震波。5、地震波的基本类型—体波和面波

(Seismic waves Basic Type

—Body Waves and Surface Waves)

体波:在介质体积内传播的波

分为:纵波(P))横波(S)

在石油勘探中目前主要是纵波勘探

面波:沿介质的自由界面或界面传播的波

分为:瑞雷面(R)、乐夫波(L)

在石油勘探中它是干扰波---要压制它

在工程勘探的面波勘探中----是有效波。

2、面波( Surface waves)

第四节、地震波的描述

Seismic Waves Description

我们一般是用:

1.振动图Vibration Pattern;

2.波剖面Wave section;

3.频谱图Frequency Spectrum;

4.波前Wave front face;

5.射线Ray 形式来描述地震波。

1、振动图及其特点

Vibration pattern and characters

(1)振动图:

固定一点(X=X1)

→U=U(t)→振动图

(2〕描述参数

Description Parameters:

视周期T*:Apparent Period

视振幅A* :

Apparent Amplitude

初至t1 :

The First Arrive/Break

延续度△t:

多个振动图组成一个地震记录

2、波剖面及其特点

Wave Section and Characters

1)波剖面:固定某一时刻(t=t1)→U=U(X)→波剖面2)参数描述:(Parameters Description)

波峰:(wave Crest )波剖面中最大正位移;

波谷:( wave Trough)波剖面中最大负位移;

视波长λ*:(Apparent Wave Length)两个相邻波峰或波谷的距离,它表示波在一个视周期这传播的距离。

3》描述振幅谱的特征,引入两个参数:

1)主频main Frequency:频谱曲线极大值所对应的频率峰值;

2)频带宽度Frequency Band width):Δf=f2-f1

若以∣A(f)∣的值为1,可找到对应∣A(f)∣=0.707的

两个频率值f1,f2,f1,f2的大小反映了脉冲信号的绝大部分能量集中在哪个频率范围内,Δf的大小给出了这个范围的宽窄

4.地震波的波前和射线Seismic Waves Front and Ray.

1>地震波的波前、波尾、扰动带( wave front, Wave Back and Vibration Range)。

波前(Front Wave):把某一时刻tk,所有刚刚振动的质点构成的一个空间曲面,叫tk时刻的波前,它是地震波传播的最前沿的空间位置。在波前位置前面的所有质点的位移都为零,即波还未开始振动.

波尾( Back Wave):由刚停止振动的所有质点构成的空间曲面,叫tk时刻的波尾,在波尾以内的各质点都已停止了振动,恢复了平静,其质点位移也为零,即波已经传过去了。

2>地震波的射线

(Seismic Wave Ray)

射线(ray);就是波从一点到另一点传播的路径,它代表了波传播的方向。

射线永远垂直于波前。

Ray Vertical to Wave Front.

第五节地震波的速度

Seismic wave Velocity

本节主要内容:

1.地震波的速度是指地震波在岩层中的传播速度,简称地震速度,有时又叫岩石速度,如常说砂岩速度,页岩速度,泥岩速度。地震速度是地震勘探中最重要的一个参数,从资料处理到资料解释都要用到速度。

2.影响地震波速度的主要地质因素;

3.速度分布规律及特点;

4. 地震介质的近似(简化)--地震速度的近似

一、地震波速度

Seismic wave Velocity

1.纵波速度:Longitudinal Velocity

2. 横波速度:Transverse /Horizontal wave

3。纵波速度与横波速度关系:

1.纵波速度:Longitudinal Velocity

纵波速度:

Vp=(E(1-σ)/(ρ(1+σ)(1-2σ)))1/2

=((K+4μ/3)/ ρ)1/2

2. 横波速度:Transverse /Horizontal wave

横波速度:

Vs=(E/2.ρ(1+σ))1/2 =(μ/ρ)1/2

3。纵波速度与横波速度关系:

Vp/Vs=(2.( 1-σ)/(1-2.σ))1/2 =1.732

同时速度又是一个复杂的参数,即影响速度的地质因素很多。

二、影响地震波速度的主要地质因素分析

Main Geology Factors of Affect Seismic Wave Velocity

V=V(密度、孔隙度、地质年代、孔隙充填物、埋藏深度、构造运动)―是一个多元函数

1.岩石密度、地质年代对地震波速度的影响;

2.地层的埋藏深度对速度的影响;

3.岩石的孔隙度对速度的影响;

4.岩石中的孔隙充填物对速度的影响

1.岩石密度、地质年代对地震波速度的影响---成正比

Density and age of Rock to Seismic Wave Velocity Affect

1》速度与岩石密度、地质年代成正比,

即:密度越大、年代越老――速度越大。

Velocity Directly Proportional to Density , Thickness (Depth), Geology Ages;2》不同的岩石具有不同的速度,不同岩石其密度可能不同――速度就不同,密度大的致密的岩石速度较大

一般:V砂>V页, 火成岩的速度、变质岩的速度>沉积岩的速度

2、地层的埋藏深度对速度的影响

The Secondary: depth of Layer to velocity effect.

1)速度与埋深的变化成正比关系,但并不是线性关系Velocity change/Varity as depth Change and is not Linear.

2)速度变化规律Velocity Varity rule :

速度变化的梯度(变化率)深层与浅层不同:

浅(中)层大,速度增长快;

深层小,速度增长慢.

3.岩石的孔隙度对速度的影响

The third: Rock Porosity to Velocity Affect

1)一般规律:孔隙度大,则速度就小;

rule is : 1) Porosity Larger→Velocity Small.

2)时间平均方程:Time Average Equation

1/v=(1-φ)/ Vm + (φ/V L)

V—岩石的速度;Vm――岩石骨架的波速;

V L―岩石孔隙中充填物的波速;φ――孔隙度

1956年,威利(Wyliie)等人提出了一个定量计算速度与孔隙度关系的一个方程式由统计表明,当孔隙度由3% 增加到30% 时,速度变化可达60% 。说明孔隙度是影响速度的重要因素,这个方程又被推广到求砂泥岩中砂,泥的含量。1/V=(1-P泥/V沙)+(P泥/V泥)

4、岩石中的孔隙充填物对与速度的影响

The Forth: Fill Substance of in Rock to Velocity Affect.

不同的岩石充填物是不同的,所以,波速也不同,如砂岩中充填有油、气时,砂

岩的速度会明显的下降,砂岩速度突降是含油气的标志之一。

三、速度分布规律及特点

Velocity Distribution Law and Character

1、成层性

Formation Layer Character

2、递增性Increase Character

3、方向性Direction Character

4、分区性Location Character

1、成层性

Formation Layer Character

这是沉积剖面中最基本的特点,由于沉积剖面的成层性,所以整个地质剖面可以划分为许多速度不同的速度剖面,

2、递增性Increase Character

速度随深度(埋深)、地质年代增加而递增,但速度变化的梯度(变化率)随埋深而递减。

3、方向性Direction Character

纵向变化梯度大于横向变化的梯度,速度横向有变化,尤其有断层、地层尖灭、不整合,速度会发生突变。

4、分区性Location Character

在不同地区,由于沉积环境不同和岩性变化,速度在平面内的分布具有分区、分带的特点,在不同区域、不同地带,速度随深度的变化规律及其梯度变化形式不

同,一般灰岩发育地区,速度值高,但速度变化梯度小,而在砂岩发育地区,速度V偏低,但速度变化梯度大。

四、地震速度的近似Seismic Velocity Approximate/Real Media Simplify

综上所述,影响地震波速度的原因很多,各个地区的速度分布也很复杂。地震速度分布规律的复杂性,导致了地震波传播速度的复杂性,给我们在理论上分析问题造成了困难,为了讨论问题的简便,对地下的实际介质作某些简化:

1.均匀介质Even medium :

2.层状介质Layers medium

3、连续介质

Continuous/Successive Medium:

1.均匀介质Even medium:

特点:

1)速度是常数(constant);

2)在V-H坐标中是一个平行于H轴的直线;

3)射线是从炮点发出的直射线,波前是以炮点为圆心的同心圆。

2.层状介质Layers medium:

特点:

1)每层中速度相同,不同层中速度不同;

2)在V-H 坐标中是阶梯状;

3)射线是折射线,波前是不同心的圆。

3、连续介质

Continuous/Successive Medium:

特点:

1)速度随深度增加而增加;

2)在V―H坐标中是斜线(线性变化)V(h)=V0(1+βZ) ;

3)射线是曲射线。波前也是曲面。

第四节地震波的传播规律

Passage 4. Seismic Wave Propagation Law/Rule

本节简介:在这一节中,我们将分析讨论地震波在各种介质的传播规律。

1.首先介绍地震波在传播过程中所遵循的几个原理;

2.然后分析在介质分界面上产生的反射波、折射波、透射波的条件及这些波的特点;

3、最后讨论地震波在层状介质、连续介质中的传播特点。

一、地震波传播的基本原理

Basic Principle of Seismic Wave propagation.

1、惠更斯原理(波前原理)(Front Wave Principle)

2、惠更斯――菲列涅耳原理

3、费马原理(射线原理)、时间最小原理(ray Principle/The Least Time Principle) 1、惠更斯原理(波前原理)

(Front Wave Principle)

这是惠更斯(荷兰科学家)1690年提出的(实验结果),说明波向前传播的规律。(1)表述:波在传播过程中,任一时刻的波前面上的每一点都可以看作是一个新的点震源,由它产生二次扰动,形成子波前,这些子波前的包络面,就是新的波前面。这是1690年由惠更斯提出的波前原理。反映了波传播的空间位置、形

态。根据这个原理可以通过作图的方法,由已知t时刻波前的位置去求出t+Δt 时刻的波前。

(2)意义:可确定波传播的方向(射线方向)

2、惠更斯――菲列涅耳原理

3、费马原理(射线原理)、时间最小原理

(ray Principle/The Least Time Principle)

二、地震波在分界面上的传播规律

Seismic Wave Propagation Rule in Interface

1、斯奈尔定律(反射――折射定律)(reflection and Refraction Law)

2、反射波形成及特点Reflection Wave Formation and Character

3.透射波的形成及特点(Penetration/Transmission Wave Formation and character)

4.折射波的形成及特点(Refraction Wave Formation and character)

1、斯奈尔定律(反射――折射定律)

(reflection and Refraction Law)

sin (αr)/V1

=sin(αf)/ V1

= sinβ/ V2=P

1) 在地震勘探中,当地震波在地下岩层中传播时,遇到了弹性分界面(即上、下岩层的物性不同),就会发生波的反射、折射、透射现象,形成反射波、折射波、透射波,它们的传播规律仍然满足斯奈尔定律。

2) 界面处会发生波型转换,即纵波入射,横波反射现象

地震波在分界面上的传播规律

2、反射波形成及特点

Reflection Wave Formation and Character

1>反射系数R定义

( Reflection Coefficient)

2>形成反射波的条件( Condition of Reflection Wave Formation)

3>反射波的特点( Character )

1>反射系数R ( Reflection Coefficient)

(1)反射系数定义式:在垂直入射时,反射波和入射波振幅之比,

Ratio of Reflection Wave and Incidence. Wave.

用R 表示。即R=A反/A入

(2)物理意义:Physical Meaning地震波垂直入射到分界面后,被反射回去的能量的多少(占入射能量的多少)――说明在界面上能量分配问题(Energy Dispensation Question)。

(3)反射系数计算公式:据反射理论可证明,当波垂直入射到反射界面时,反射系数R为

R=A反/A入=(ρ2V2 –ρ1V1)/ (ρ2V2 +ρ1V1 )

= (Z2- Z1) / (Z2+Z1)

Z1,Z2分别为上下层介质的波阻抗( Wave Impedance );

ρ1,ρ2分别为上下层介质的密度( density );

V1,V2分别为上下层介质的速度( velocity

(4) 反射系数一般形式:

R = (ρn V n –ρn-1V n-1)/ (ρn V n +ρn-1V n -1 )

= (Z n-Z n-1) / (Z n+Z n-1)

(5)反射系数的取值范围(-1—1)区间。

2>形成反射波的条件

( Condition of Reflection Wave Formation)

形成反射波的条件是:上、下介质界面必须是一个波阻抗界面,即波阻抗差不为零。(Reflect Coefficient not Equate Zero.)

3>反射波的特点( Character )

(1)形成反射波的条件必须是:上、下介质的波阻抗差不为零。即,R≠0;Formation Reflection Condition: Reflect Coefficient isn't Zero.

(2)反射波的强度取决于R的大小,R大→反射波强;

Reflection Wave Strength Depend on Reflect Coefficient Value. The Large Reflect, The Stronger Reflection.

(3)反射波极性的变化取决于R的正负,

Reflection Polarization Depend on R Positive or Negative.

R>0,正极性,

(反射波与入射波极性一致,正极性);

R<0,(反射波与入射波极性相反),

负极性;(国际SEG规定)

3.透射波的形成及特点Penetration/Transmission Wave Formation and character

1》透射系数T

Penetration Coefficient

2》透射波形成条件及特点

Transmission/Penetration Wave Formation

3》透射波的特点

Transmission/Penetration Wave Character

1》透射系数T (Penetration Coefficient)

(1)透射系数定义(definite) :透射波的振幅与入射波振幅之比,用T表示,即,T=A t /A入

Ratio of Transmission/ Penetration Wave to Incidence Amplitude.

(2)物理含义(Physical Meaning):入射波的能量有多少转换为透射波能量。

(3)计算公式:据理论证明,当波垂直入射时,透射系数可写为:T=1-R

T= At /A入=(2.ρ1V1) / (ρ1V1+ρ2V2)=2Z1 / (Z1+Z2)

(4) 透射系数取值范围:0≤T≤2 T总是为正,

(5)透射波与入射波相位总是一致的,

2》透射波形成条件

Transmission/Penetration Wave Formation

(1) 透射波形成的条件(condition)

只有在上,下介质波的传播速度不相等时,即,速度界面;T≠0;(Velocity Interface)

3》透射波的特点

Transmission/Penetration Wave Character

(1)特点:透射波形成的条件,只有在上,下介质波的传播速度不相等时,即,速度界面;T≠0;

(2)透射波的强度取决于透射系数的大小;(Penetration Wave Strength Depend On Penetrate coefficient Value)

(3) 透射波的极性总是与入射波的极性一致。(Penetration Wave Polarization always in Consistent with Incident Wave it.)

4.折射波的形成及特点

(Refraction Wave Formation and character)

1)折射波形成机制(Refraction wave Formational Mechanism )

2 )形成折射波的条件

Refraction Formational Condition

3)折射波的特点

(Refraction Character)

1》折射波形成机制

(Refraction wave Formational Mechanism )

(1) 地质模型(Geology Model )

两层介质,下伏层的速度大于上覆层的速度,即V2>V1,这时地层中才会产生折射波。

(2) 折射波形成机制(Formation )

据透射定律可知,入射角和透射角都应服从透射定律,即sinα/V1=sinβ/V2,随着入射角α增大,透射角也增大,当α角增大到某一个角度时,β→90°,这时透射波

就以V2的速度沿界面向前滑行,形成滑行波,据波前理论,高速滑行波所经过的界面上的任何一点都可看作是一新的点震源,即滑行波所经过的下面介质在振动,由于两侧的介质质点间存在着弹性联系,下面介质中质点的振动必然要引起上面介质中质点的振动,这样就在上面介质中形成了一种新的波,这种波在地震勘探中称为折射波,这时的入射角α=i称为临界角(Critical Angle),用i表示i=arcsin(V1/V2).

2)形成折射波的条件

Refraction Formational Condition

1》下面介质的波速要大于所有上面介质的波速Velocity of Below layer Media is the Larger than up Layer。

2》入射角是以临界角I 入射( Incidence Wave Incident)

3)折射波的特点

(Refraction Character)

(1) 射线是以临界角i出射的一束平行直线且垂直于波前面;

(2) 波前面是一平面,与界面的夹角为i ;

(3) AM是折射波的第一条射线,称临界射线,M点是折射波的始点,它也是反射波射线;

(4) 折射波存在盲区(blind area),盲区范围(Blind Area range )Xm=2h*thi,所以折射波必须在盲区以外才可观测到,并且,h增大→Xm增大;

三、地震波在均匀介质中的传播规律

Propagation Rule in Even media Which Every Medium Velocity all is Same.. 1.地震波传播特点

Seismic Wave Propagation Character.

2.射线与波前方程Ray and Wave Front Equation. 1.地震波传播特点

Seismic Wave Propagation Character.

在均匀介质中,地震波

随着时间的增加,波前

是以速度V不断向前推

进,不同时刻的波前面

就是以爆炸点为中心的

一簇同心球面;射线是

自震源O发出的一簇辐射

直线.

2.射线与波前方程

Ray and Wave Front Equation.

x = Z.tgα

t = (x2+Z2)1/2/V

四、地震波在水平层状介质中

的传播规律

Propagation Rule in Horizontal Layers media.

1。地震波传播特点

Seismic Wave Propagation Character

2.射线与波前方程

地震勘探原理与解释私人整理版

绪论部分 地震勘探①它是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造和有用矿藏的一种勘探方法②包括三种方法:反射波法地震勘探方法、折射波法~、透射波法~③原理是利用地震波从地下地层界面反射至地面时带回来的旅行时间和波形变化的信息推断地下的地层构造和岩性 地震勘探的生产过程及其任务①野外采集工作(在初步确定的有含油气希望的地区布置测线,人工激发地震波,并记录下来)②室内资料处理(利用数字电子计算机对原始数据进行加工处理,以及计算地震波的传播速度)③地震资料的解释(综合其他资料进行深入研究分析,对地下构造特点说明并绘制主要层位完整的起伏形态图件,最后查明含油气构造或者地层圈闭,提供钻探井位) 油气勘探的方法特点方法有:地质法,物探法,钻探法①地质法是通过观察,研究出露在地面的地层,对地质资料进行分析综合,了解一个地区有无生成石油和储存石油的条件,最后提出对该地区的含油气远景评价,指出有利地区②物探法是根据地质学和物理学原理。它是利用各种物理仪器在地面观测地壳上的各种物理现象,从而推断地质构造特点,寻找可能的储油构造。是一种间接找油的方法③钻探法就是利用物探提供的井位进行钻探,直接取得地下最可靠的地质资料来确定地下的构造特点及含油气的情况。 第一章地震波运动学 子波具有确定的起始时间和有限能量的信号称为子波在地震勘探领域中子波通常指的是1—2个周期组成的地震脉冲。 地震子波由于大地滤波器的作用,尖脉冲变成了频率较低、具有一定延续时间的波形,成为地震子波。震源产生的信号传播一段时间后,波形趋于稳定,这时的地震波也为地震子波。 地震波运动学研究地震波波前的空间位置与其传播时间的关系,研究波的传播规律,

地震勘探在海洋石油勘探中的基本原理

地震勘探在海洋石油勘探中的基本原理

————————————————————————————————作者: ————————————————————————————————日期:

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。能

论地震勘探中几种主要地震波

论地震勘探中的几种主要地震波 论文提要 地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下地质构造,为寻找油气田或其它勘探目的服务的一种方法。也可以理解为就是利用地震子波从地下地层界面反射回地面时带回来的旅行时间和形状变化的信息,用以推断地下的底层构造和岩性。地震勘探在勘探已有的各种物探方法中,是最有效地方法。在地震勘探中用炸药激发时,一声炮响之后会产生各种各样的地震波。按波在传播过程中质点震动的方向来区分,可以纵波和横波;根据波动所能传播的空间范围而言,地震波又可以分为体波和面波;按照波在传播过程中的传播路径的特点,又可以把地震波分为直达波、反射波、透射波、折射波,等等。地震勘探在石油勘探中除了能产生来自地层界面有用的反射波外,还会产生各种各样的干扰波。因此,我们要更好的了解各种波的产生、特点、用途,等等。下面简单介绍几种地震勘探中产生的地震波。 正文 一、反射波 (一)反射波的形成 1、几何地震学的观点 当炸药在井中爆炸激发地震波时,在雷管引爆几百微妙之内爆炸便完成了,在接近爆炸点的压强是一个延续时间很短的尖脉冲,爆炸脉冲向外传播,压强逐渐减少,地层开始产生弹性形变,形成地震波。地震波继续传播,由于介质对高频的吸收,地震波信号减小。当波入射到两种介质的分界面时(当上层介质波阻抗与下层介质波阻抗不等时,弹性地震波才会发生反射;上层介质波阻抗与下层介质波阻抗差别越大,反射波越强——反射波条件),一部分波回到第一种介质中,这就是所谓的反射波。如图所示 2、物理地震学观点 地震波从震源出发以球面波的方式向下传播,到达反射界面S,S可以就看成有许多

地震勘探原理复习题答案

绪论 一、名词解释 1.地球物理方法(ExplorationMethods):利用各种仪器在地表观测地壳上的各种物理现象,从而推断、了 解地下的地质构造特点,寻找可能的储油构造。它是一种间接找油的方法。特点:精度和成本均高于 地质法,但低于钻探方法。 2、地震勘探:就是利用人工方法激发的地震波(弹性波),研究地震波在地层中传播的规律,以查明地下的地质构造,从而来确定矿藏(包括油气、矿石、水、地热资源等)等的位置,以及获得工程地质信息。 二、简答题 1、了解地下资源信息有那些主要手段。 (1)、地质法(2)、地球物理方法(3)、钻探法(4)、综合方法:地质、物探(物化探)、钻探 结合起来,进行综合勘探。其中,地质法贯穿始终,物探是关键,钻探是归宿。 2有几种主要地球物理勘探方法,它们的基本原理。 地球物理勘探方法是以岩矿石(或地层)与其围岩的物理性质差异为物质基础,用专门的仪器设备 观测和研究天然存在或人工形成的物理场的变化规律,进而达到查明地质构造寻找矿产资源和解决工 程地质、水文地质以及环境监测等问题为目的勘探,叫地球物理勘探,简称物探。相应的各种勘探方法,叫地球物理勘探方法,简称为物探方法,有地震勘探、重力勘探、磁法勘探、电法勘探、地球物 理测井。 (1)重力勘探:利用岩石、矿物(地层)之间的密度差异,引起重力场变化,产生重力异常,用重 力仪测量其异常值,根据异常变化情况反演地下地质构造情况。 (2)磁法勘探:利用岩石、矿物(地层)之间的磁性差异,引起磁场变化,产生磁力异常,用磁力 仪测量其异常值,根据异常变化情况反演地下地质构造情况。 (3)电法勘探:利用岩石、矿物(地层)之间的电性差异,引起电(磁)场变化,产生电性异常,用 电法(磁)仪测量其异常,根据异常变化情况反演地下地质构造情况。 (4)地震勘探:利用岩石、矿物(地层)之间的弹性差异,引起弹性波场变化,产生弹性异常(速 度不同),用地震仪测量其异常值(时间变化),根据异常变化情况反演地下地质构造情况。 (5)地球物理测井:电测井;电磁测井;放射性测井;声波测井;地温测井;密度测井。 3、地震勘探的主要工作环节。 (1)野外数据采集(2)室内资料处理(3)地震资料解释

地震勘探原理知识点总结

第三章地震资料采集方法与技术 一.野外工作概述 1.陆地石工基本情况介绍 试验工作内容:①干扰波调查,了解工区内干扰波类型与特性。 ②地震地质条件调查,了解低速带的特点、潜水面的位置、地震界面的存在 与否、地震界面的质量如何(是否存在地震标志层)、速度剖面特点等。 ③选择激发地震波的最佳条件,如激发岩性、激发药量、激发方式等。 ④选择接收和记录地震波的最佳条件,包括最合适的观测系统、组合形式和 仪器因素的选择等。 生产工作过程:地震队的组成 (1)地震测量:把设计中的测线布置到工作地区,在地面上定出各激发点和接收排列上各检波点的位置 (2)地震波的激发 陆上地震勘探的震源类型:炸药震源和可控震源。激发方式:炸药震源 的井中激发、土坑等。激发井深:潜水面以下1-3m,(6-7m)。 (3)地震波的接收 实现方式:检波器、排列和地震仪器 2.调查干扰波的方法 (1)小排列(最常用) 3-5m道距、连续观测 目的:连续记录、追踪各种规则干扰波,分析研究干扰波的类型和分布规律。 从地震记录中可以得到干扰波的视周期和视速度等基本特征参数 (2)直角排列 适用于不知道干扰波传播方向的情况 Δt1和Δt2的合矢量的方向近似于干扰波的传播方向 (3)三分量检波器观测法 (4)环境噪声调查 信噪比:有效波的振幅/干扰波的振幅(规则) 信号的能量/噪声的能量 3.各种干扰波的类型和特点 (1)规则干扰 指具有一定主频和一定视速度的干扰波,如面波、声波、浅层折射波、侧面波等。 面波(地滚波):在地震勘探中也称为地滚波,存在于地表附近,振幅随深度增加呈指数衰减。其主要特点:①低频:几Hz~20Hz;②频散(Dispersion):速度随频率而变化;③低速:100m/s ~1000m/s,通常为200m/s~500m/s;④质点的振动轨迹为逆时针方向的椭圆。面波时距曲线是直线,记录呈现“扫帚状”,面波能量的强弱与激发岩性、激发深度以及表层地震地质条件有关。(能量较强) 声波:速度为340m/s左右,比较稳定,频率较高,延续时间较短,呈窄带出现。 浅层折射波:当表层存在高速层或第四系下面的老地层埋藏浅,可能观测到同相轴为直线的浅层折射波。 工业电干扰:当地震测线通过高压输电线路时产生,整张记录或部分记录道上出现50Hz的正弦干扰波。 侧面波:在地表条件比较复杂的地区进行地震勘探时,常出现侧面波干扰。

三维地震勘探技术

三维地震勘探技术及其应用 [摘要] 本文应用三维地震勘探技术对某矿南三采区进行探测,探测区内解释断层71条,其中可靠断层61条,较可靠断层10条,31个无煤带。为煤矿安全生产提供了科学依据,节约了生产成本的投入。 [关键词] 三维地震采区 [abstract] this paper introduces the application of three dimensional seismic exploration method on the south third mining area of a certain coal mine. 71 faults were showed in this exploration area, in which there are 61 reliable faults, 10 relatively reliable faults and 31 areas without any coal. those information provides scientific foundation for the production safty of the coal mine and saves the cost. [key words] three dimensional seismic mining area 0.引言 随着煤炭地震勘探技术的提高,尤其是九十年代以来三维地震勘探在煤炭系统的应用与推广,三维地震勘探技术在煤矿采区进行小构造勘探成为现实,给煤矿建设和生产带来了巨大的效益。 近年来,随着我国煤炭资源勘查理论和技术的不断发展,已形成了中国煤炭地质综合勘查理论与技术新体系,其中三维地震勘探技术是五大关键技术之一。[1]

《地震勘探原理》

石油大学硕士研究生入学考试科目《地震勘探原理》考试大纲 目的: 考查考生对地震波运动学,动力学理论掌握的程度,对地震勘探工作方法了解的程度,分析地震勘探中基本问题的能力。 要求: 要求考生掌握地震波运动学和动力学基本理论、基本概念,推导时距曲线公式,分析地震记录时间域与频率域的特点。了解地震勘探野外工作方法,掌握地震组合法与多次复盖法基本原理。区分不同速度概念,掌握地震分辨能力有关理论,能分析地震记录上反射波特点,了解地震资料解释的基本框架和内容。 范围: 地震波运动学――地震波基本概念,一层及多层界面反射波时距曲线,地震折射波运动学,连续介质中地震波运动学,透过波和反射波垂直时距曲线。 地震信号的频谱分析――频谱的基本概念与频谱图,傅立叶展式的重要性质,频谱资料的获得和整理,地震波频谱特征及其应用,线性时不变系统的滤波方程。 地震勘探野外工作方法――干扰波类型与特点,干扰波调查方法,观测系统及其图示,道间距选择及空间假频问题,低速带问题及测定方法。 地震组合法原理――组合的方向特性,组合对随机干扰的统计效应,确定组合参数的方法,组合的频率特性,组合方式。 共反射点叠加法――共反射点时距曲线方程,多次反射波的特点,多次叠加特性和统计效应,多次复盖参数选择,影响叠加效果因素分析。 地震波速度――地震波在岩层中传播速度,几种速度概念,平均速度测定,叠加速度求取,各种速度之间关系及换算公式。 地震勘探资料解释的理论基础――地震剖面特点,地震绕射波和物理地震学,地震勘探的分辨能力,地震剖面偏移原理,弯曲界面反射波特点。 地震波动力学――面波,波动地震学与几何地震学关系。 地震资料的岩性解释――地震波速度资料的地层岩性解释,厚层反射波振幅信息的应用,薄层反射振幅的利用,一维模型计算,反射系数和反射率概念。 参考书:《地震勘探原理》上、下册,陆基孟主编,石油大学出版社。

地震勘探原理名词解释(2)

第一章 地球物理方法(Exploration Methods): 利用各种仪器在地表观测地壳上的各种物 理现象,从而推断、了解地下的地质构造特点,寻找可能的储油构造。它是一种间接找油的方法。特点:精度和成本均高于地质法,但低于钻探方法。 地震勘探:就是利用人工方法激发的地震波(弹性波),研究地震波在地层中传播的规律,以查明地下的地质构造,从而来确定矿藏(包括油气、矿石、水、地热资源等)等的位置,以及获得工程地质信息。 第二章 地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法. 地震波:在岩层中传播的弹性波。 反射定律:入射波与反射波分居法线两侧,反射角等于入射角,条件为:上下界面波阻抗存在差异,入射波与反射波类型相同. 地震子波:震源产生的信号传播一段时间后,波形趋于稳定,我们称这时的地震波为地震子波。 爆炸时产生的尖脉冲,在爆炸点附近的介质中以冲击波的形式传播,当传播到一的距离后,波形逐渐稳定,我们称这时的地震波为地震子波。 几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学. 波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x方向的波形曲线. 正常时差的定义:第一种定义:界面水平情况下,对界面上某点以炮检距x进行观测得到的反射波旅行时同以零炮检距(自激自收)进行观测得到的反射波旅行时之差,这纯粹是因为炮检距不为零引起的时差. 第二种定义:在水平界面情况下,各观测点相对于爆炸点纯粹是由于炮检距不同而引起的反射波旅行时间差. 倾角时差:当界面倾斜时,炮检距相同,但相邻反射点传播时间不同而产生的角度差由激发点两侧对称位置观测到的来自同一界面的反射波的时差。这一时差是由于界面存在倾角引起的。 波线:在条件适当时,可以认为波及其能量是沿着一条“路径”从波源传到所考虑的一点P,

地震勘探原理及方法 复习答案

《地震勘探原理及方法》复习提纲 一、名词解释 1.反射波在不同密度的媒质分界面发生反射的波 2.透射波地球物理学透射波即透过波 3.滑行波由透射定律可知,如果V2>V1 ,即sinθ2 > sinθ1 ,θ2 > θ1。当θ1还没到90o时,θ2 到达90o,此时透射波在第二种介质中沿界面滑行,产生的波为滑行波。 4.折射波当入射波大于临界角时,出现滑行波和全反射。在分界面上的滑行波有另一种特性,即会影响第一界面,并激发新的波。在地震勘探中,由滑行波引起的波叫折射波,也叫做首波。入射波以临界角或大于临界角入射高速介质所产生的波. 5.波前振动刚开始与静止时的分界面,即刚要开始振动的那一时刻 6.射波前 7.均匀介质反射界面以上的介质是均匀的,即地震波传播速度是一个常数。 8.层状介质指地质剖面是层状结构的,在每一层内速度是均匀的,但层与层之间速度是 不相同 9.振动图形和波剖面某点振动随时间的变化的曲线称为振动曲线,也称振动图。地震勘探中,沿测线画出的波形曲线,也称波剖面。 10.同相轴和等相位面同向轴是一组地震道上整齐排列的相位,表示一个新的地震波的到达,由地震记录上系统的相位或振幅变化表示。 11.时间场和等时面 12.视速度当波的传播方向与观测方向不一致(夹角θ)时,观测到的速度并不是 波前的真速度V,而是视速度Va。即波沿测线方向传播速度。 13. 离散付氏变换 14. 时间域把信号表示为振幅随时间变化的函数,称为信号在时间域的表现形 式。 15. 频率域把信号表示为振幅和相位随频率变化的函数,称为信号在频率域上 的表现形式。 16. 褶积由地震子波和反射系数得到地震记录(输出相应) 17. 离散褶积由离散的地震子波和反射系数得到地震记录 18. 互相关用来表示两个信号之间相似性的一个度量,通常通过与已知信号比 较用于寻找未知信号中的特性。 19. 自相关随机误差项的各期望值之间存在着相关关系,称随机误差项之间存 在自相关性 20. 离散互相关 21. 离散自相关 22. 采样间隔地震勘探中检波器接受的模拟信号转换为数字信号储存,需要采 样离散化,这个采样间隔就称为地震采样间隔。 23. 频率单位时间内完成周期性变化的次数 24. 炮检距激发点(炮)点到接收点(检)点的距离。 25.偏移距指炮点离第一个检波器的距离,等于最小炮检距,μΔx 。 26.观测系统观测系统是指地震波的激发点和接收点的相互位置关系。或激发点与接收排列的相对空间位置关系。观测系统分单边和双边放炮两大类,以上两观测系统又可根据有无偏移距分为端点观测系统和有偏移距观测系统。

地震勘探原理及方法

、地震勘探基本原理 1. 地震地质模型基本分类 2?均匀、理想弹性介质中的三维波动方程 3.无限大均匀各向同性介质中的弹性波场及特征 4.地震波的反射、透射和折射 5.多层黏弹性介质中的弹性波场及特征 6.几何地震学原理 7.地震波速度及地震地质条件 1.1地震地质模型基本分类 1.地震地质模型 2.固体成为弹性介质的条件 3.人工激发震源与岩层的弹性 4.常用的弹性介质模型 1.3无限大均匀各向同性介质中的弹性波场及特征 1.3.1无限大均匀各向同性介质中的平面波 1.3.2无限大均匀各向同性介质中的球面波 1.3.3地震波的动力学特征 1.3.4地震波的运动学特征 小结: 1、动力学特征(动力学参数) 2、运动学特征(运动学参数) 3、动力学特征的体现:远近震源处的位移波形变化 球面扩散、振动图和波剖面谱分析 4、运动学的原理和定理:Huygens、Fermat、Snell 5、时间场和射线的关系

6、基本概念:射线、视速度、频波关系、波数、波长动力学信息(反映动力学特征的信息)振幅、频率、波形、吸收衰减、极化特点、连续性等特征。 运动学信息(反映运动学特征的信息) 传播时间(旅行时间)、传播时间-空间距离的关系、波的传播路径、地震速度等特征 1.4地震波的反射、透射和折射 1.平面波的反射和透射 2.弹性分界面上的波型转换和能量分配 3?球面波的反射、透射和折射 4.地震面波 小结 1、斯奈尔定理(包括反射定理、透射定理) 2、波的转换(同类波、转换波) 3、能量分配Zoeppritz方程 (法线入射、入射自由表面、反射产生条件) 4、倾斜入射及折射波的产生(产生条件、原因) 5、折射波的特点 (波前为圆锥台、射线为直线、能量扩散比反射波慢、折射盲区、屏蔽现象) 6、AVA曲线 (临界入射前、临界入射、过临界入射) 7、面波的特点 (传播速度、质点位移、频散现象) 1.5多层黏弹性介质中的弹性波场及特征 1.黏弹性介质中弹性波的传播和大地滤波作用 2.多层介质中弹性波的传播特性 3.地震波的簿层效应 4.地震绕射波 5.地震波的波导效应 6.反射波地震记录道形成的物理机制 黏弹性介质中弹性波的传播基本概念

地震勘探原理考试试题(

地震勘探原理考试试题(C) 一、解释下列名词 1、反射波 2、有效波 3、干扰波 4、多次波 二、填空 1.用于石油和天然气勘探的物探方法,主要有_______勘探,_________勘探, __________勘探和_________勘探.其中是有效的物探方法是地震勘探. 2.用_________方法(如爆炸,敲击等)产生振动,研究振动在_________的传播规律,进一步查明________地质构造和有用矿藏的一种_______方法,叫地震勘探. 3.地震勘探分__________地震法、__________地震法和____________地震法三种.用于石油和天然气勘探主要是_________地震法,其它两方法用的较少. 4. 反射波地震勘探,首先用人工方法使__________产生振动,振动在地下________形成地震波,地震波 5反射波到达地表时,引起地表的_________.检波器把地表的_________转换成___________,通过电缆 把电振动输送到数字地震仪器里, 记录在磁带上的, 这就成为_______________地震记录. 6. 对数字磁带地震记录,用电子计算机进行地震资料___________,得到各种时间剖面,再对时间剖面进行地震资料__________,做出地震____________,并提出____________进行钻探,这样就完成了地震勘探工作. 7. 根据炮点___________和地下反射点三者之间的关系,要__________追踪反 射波,炮点和接收点之间需要保持一定的_______________关系.这种系称为_________________. 8.根据炮点和接收点的相对位置,地震测线分为__________和_____________两大类. 9.地震波属于_________波的一种,振动只有在弹性__________中,才能传播出去而形成波. 三、选择题 1 在反射波地震法勘探中,_____________就是有效波. A.多次波; B.反射波. 2 共反射点记录反映的是地下界面上_____________. A.一个点; B.许多点. 3 在同一反射界面条件下,多次反射波比一次反射波_____________. A.传播时间长; B.反射能量强. 4. 对共反射点道集记录,经过动校正后,各道反射波的传播时间,都校正成____________反射时间. A.垂直; B.标准. 5 水平迭加能使多波受到压制,反射波得到______________. A.突出; B.增强; C.压制; D.变化不明显. 四、 简答题 1、什么是多次覆盖? 2、什么是多次波记录? 3、什么是反射定律? 4、什么是时距曲线? 五、计算题 1、地下有一水平界面,其上介质的速度为3000米/秒.从水平叠加剖面上知其反射时间为2.25秒,试问此反射界面的深度是多少? 2、计算波阻抗Z 知:砂岩速度V=3500m/s,密度ρ=2.7g/cm的立方. 求:Z=?

地震勘探技术的发展与应用

地球探测与信息技术 读书报告 课题名称:地震勘探的发展与应用 班级:064091 姓名:吴浩 学号:20091004040 指导老师:胡祥云

地震勘探的发展与应用 吴浩 (地球物理与空间信息学院,地球科学与技术专业) 摘要地震勘探是地球物理勘探中发展最快的一项技术,近年来,高分辨率地震勘探仪器装备、处理软件升级换代速度明显加快,地震资料采集、处理与解释出现了一体化的趋势。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,应用于石油、煤炭、采空区调查、地热普查等重要领域,由陆地不断向海洋发展。本文着重针对地震勘探过程和技术的发展几个重要阶段及应用进行展开。 关键字地震勘探三维地震石油勘探煤矿发展与应用 1 引言 地震勘探是利用岩石的弹性性质研究地下矿床和解决工程地质,环境地质问题的一种地球物理方法。地震勘探应用领域广泛,与其他物探方法相比,具有精度高、分层详细和探测深度大等优点,近年来,随着电子技术、计算机技术的高速发展,地震勘探的仪器装备、处理软件升级换代的速度明显加快,地震资料采集、处理与解释的一体化趋势得到加强。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,通常用人工激发地震波,地震波通过不同路径传播后,被布置在井中或地面的地震检波器及专门仪器记录下来,这些地震拨携带有所经过地层的丰富地质信息,计算机对这些地震记录进行处理分析,并用计算机进行解释,便可知道地下不同地层的空间分布,构造形态,岩性特征,直至地层中是否有石油、天然气、煤等,并可解决大坝基础,港口,路,桥的地基,地下潜在的危险区等工程地质问题,以及环境保护,考古等问题。 2 地震勘探过程及发展 地震勘探过程由地震数据采集、数据处理和地震资料解释3个阶段组成。 1.地震数据采集 在野外观测作业中,一般是沿地震测线等间距布置多个检波器来接收地震波信号。常规的观测是沿直线测线进行,所得数据反映测线下方二维平面内的地震信息。一般地讲,地震野外数据采集成本占勘探成本的80%左右,因此世界各国为了降低勘探成本、提高勘探效果,

地震勘探原理

中国科学院测量与地球物理研究所 博士研究生入学考试大纲 《地震勘探原理》 本《地震勘探原理》考试大纲适用于中国科学院大学勘探地球物理学专业的博士生入学考试。地震勘探是地球物理勘探的一种重要方法,也是目前使用最为广泛、解决油气勘探问题最有成效的方法,主要内容包括地震波的运动学、地震波的动力学、地震资料采集和地震资料处理等内容。要求考生深入理解基本概念,系统掌握基本理论和方法,具有综合分析问题和解决问题的能力。 考试内容 (一)地震波的运动学 1、地震波的基本概念 2、时间场与视速度定理 3、反射与折射地震波的运动学 4、垂直时距曲线方程 (二)地震波的动力学 1、地震波的波动方程 2、介质对地震波传播的影响 3、弹性波在介质分界面上的反射与透射 4、薄层效应与地震面波 5、波动地震学与几何地震学的关系 (三)地震资料采集 1、地震勘探中的有效波与干扰 2、地震波的激发与接收 3、地震观测系统 (四)地震资料处理 1、地震资料校正与叠加 2、地震信号数字滤波 3、地震资料反褶积 4、地震偏移成像 5、地震波的速度 6、地震多次波压制 考试要求 (一)地震波的运动学 1、理解波前面、波射线、直达波、反射波、透射波、折射波、绕射波、多次波、斯奈尔

定律、惠更斯原理、正常时差和倾角时差的物理意义。 2、理解时间场、费马原理、时距图和视速度的物理意义。 3、掌握直达波、反射波、绕射波、多次波与折射波的时距曲线。 4、理解垂直时距曲线的概念,掌握直达波、反射波、透射波和折射波的垂直时距曲线。(二)地震波的动力学 1、掌握弹性波波动方程、平面波、球面波和克希霍夫积分公式,理解地震子波、P波和 S波的偏振原理。 2、理解地震波能流密度、几何扩散、吸收和频散的物理意义。 3、掌握Zoeppritz方程简化公式和反射系数公式。 4、理解薄层的定义与调谐效应、面波的主要类型与物理意义。 5、理解波动地震学与几何地震学的物理意义,掌握波动方程向程函方程的过渡条件与推 导过程。 (三)地震资料采集 1、理解地震有效波与干扰波的概念、地震干扰波的类型与特征。 2、理解地震波的激发震源类型、道间距的选择、空间假频、震源组合和检波器组合的概 念。 3、理解简单连续观测系统和多次覆盖观测系统的原理。 (四)地震资料处理 1、理解动校正、野外静校正、剩余静校正、折射静校正和共中心点叠加的原理。 2、理解滤波器的分类、子波的相位延迟、理想滤波器、理想低通滤波器、理想带通滤波 器、理想高通滤波器、伪门现象、吉普斯现象和二维视速度滤波原理。 3、理解最小平方反褶积、脉冲反褶积、预测反褶积、同态反褶积和地表一致性反褶积的 原理,提高纵向分辨率存在的困难,提高纵向分辨率与提高信噪比的关系,用预测反褶积消除鸣震干扰。 4、理解偏移概念、叠后与叠前偏移、时间与深度偏移、二维与三维偏移、Kirchhoff积 分偏移、F-K域波动方程偏移和有限差分法波动方程偏移优缺点。 5、理解速度分析、速度谱、速度扫描、真速度、层速度、平均速度、均方根速度、射线 速度、叠加速度的概念,理解各种速度之间的关系和层速度的计算。 6、理解多次波分类和表面多次波的常用压制方法。 主要参考书目 何樵登,地震勘探,北京:地质出版社,2009 陆基孟,地震勘探原理,北京:石油大学出版社,2006 牟永光等,地震数据处理方法,北京:石油工业出版社,2007 考试大纲编写人: 2013年7月

地震勘探原理作业习题

地震勘探原理 1.什么是各向同性和各向异性介质?什么是的均匀介质和非均匀介质?什么是层状介质和连续介质? 2.什么是应力?简述正应力和剪切应力的物理含义。 3.什么是应变?简述正应变和剪切应变的物理含义。 4.试叙述杨氏弹性模量、剪切模量及泊松比的物理含义。 5.试叙述纵波和横波的传播特点。 6.设流体中的压强为P =Kθ,试证明流体中的纵波满足以下方程 01222=??-?t P V P p , ρK V p = 7.解释名词: (1)波前和波尾; (2)振动图和波剖面;(3)波的球面扩散; (4)同相轴和等相位面;(5)时间场和等时面;(6)频谱分析 8.什么叫视速度定理? 9.从反射和折射波形成的机制,分析反射和折射波形成的条件是什么? 10.试述面波传播的特点及频散现象? 11.一个三层模型如下图所示, 如果波从第一层顶界面出发振幅为A 0,法线入射波到第二层,试写出波在第三曾底界面上反射波返回至第一层顶界面时的振幅值。模型中R 表示反射系数;h 表示地层厚度;α表示吸收系数。 12.地震波在薄层介质中传播的动力学特点如何? 13.讨论绕射的产生过程。 14.什么是大地滤波作用? 15.一个以α=300出射的反射波的视周期T *=40ms ,视波长λ*=250m 。试计算其视频率f *和介质中的波速。当视周期不变,出射角变为200时,f *,λ*、、k *、v * 有无变化?若有变化,应当变为多少? 16.若脉冲g 1(t)的谱为G 1(f),而脉冲g 2(t)=g 1(at), a 为常数,试求g 2(t)的谱G 2(f),并分析其结果的物理意义。 试绘出点震源激发的p 波、SH 波和SV 波的振动方向示意图 17.假设声波、面波、直达纵波沿界面传播的视速度分别为350、700、1400(m/s),试在同一直角坐标系中画出它们的时距曲线。 18.水平反射界面以上介质的传播速度为2000m/s ,在同一直角坐标系中,画出h=500, 1000, 1500, 2000 m 的反射波时距曲线。 19.水平反射界面的埋藏深度为2000m ,在同一直角坐标系中画出v 1=1500, 2000, 3000, 4000m/s 时反射波的时距曲线。 20.简述“平均速度”、“均方根速度”、“叠加速度”、“射线速度”等的定义及R 1 R 2 R 3

地震勘探原理复习题及答案

地震勘探原理总复习 一、名词解释 1.地球物理方法(Exploration Methods): 利用各种仪器在地表观测地壳上的各种物 理现象,从而推断、了解地下的地质构造特点,寻找可能的储油构造。它是一种间接找油的方法。 特点:精度和成本均高于地质法,但低于钻探方法。 2、地震勘探:就是利用人工方法激发的地震波(弹性波),研究地震波在地层中传播的规律,以查明地下的地质构造,从而来确定矿藏(包括油气、矿石、水、地热资源等)等的位置,以及获得工程地质信息。 二、简答题 1、了解地下资源信息有那些主要手段。 (1)、地质法(2)、地球物理方法(3)、钻探法(4)、综合方法:地质、物探(物化探)、钻 探结合起来,进行综合勘探。其中,地质法贯穿始终,物探是关键,钻探是归宿。 2有几种主要地球物理勘探方法,它们的基本原理。 地球物理勘探方法是以岩矿石(或地层)与其围岩的物理性质差异为物质基础,用专门的仪器 设备观测和研究天然存在或人工形成的物理场的变化规律,进而达到查明地质构造寻找矿产资源 和解决工程地质、水文地质以及环境监测等问题为目的勘探,叫地球物理勘探,简称物探。相应 的各种勘探方法,叫地球物理勘探方法,简称为物探方法,有地震勘探、重力勘探、磁法勘探、 电法勘探、地球物理测井。 (1)重力勘探:利用岩石、矿物(地层)之间的密度差异,引起重力场变化,产生重力异常,用重力仪测量其异常值,根据异常变化情况反演地下地质构造情况。 (2)磁法勘探:利用岩石、矿物(地层)之间的磁性差异,引起磁场变化,产生磁力异常,用 磁力仪测量其异常值,根据异常变化情况反演地下地质构造情况。 (3)电法勘探:利用岩石、矿物(地层)之间的电性差异,引起电(磁)场变化,产生电性异常, 用电法(磁)仪测量其异常,根据异常变化情况反演地下地质构造情况。

地震勘探原理的基本问题

地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法. 水平叠加:将不同接收点收到的来自地下同一反射点的不同激发点的信号,经动校正后叠加起来,这种方法可以提高信噪比,改善地震记录的质量,特别是压制一种规则干扰波效果最好 波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x方向的波形曲线. 动校正:在水平界面情况下,从观测到的波的旅行时中减去正常时差Δt1得到x/2处的t0时间,这一过程叫动校正或正常时差校正. 多次覆盖:对被追踪的界面进行多次观测. 剖面闭合:是检查对比质量,连接层位,保证解工作正确进行的有效办法,他包括测线交点闭合,测线网的闭合,时间闭合等. 几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学. 水平分辨率:指沿水平方向能分辨多大的地质体,其值为根号下0.5λh. 时距曲线:从地震源出发,传播主观测点的时间t与观测中点相对于激发点的距离x之间的关系 剩余时差:把某个波按水平界面一次反射波作动校正后的反射波时间与共中心点处的时间tom之差. 绕射波:地震波在传播过程中,如遇到一些岩性的突变点,这些突变点就会成为新震源,再次发出球面波,想四周传播,这就叫绕射波. 三维地震:就是在一个观测面上进行观测,对所得资料进行三维偏移叠加处理,以获得地下地质体构造在三维空间的特征. 水平切片:就是用一个水平面去切三维数据体得出某一时刻tk各道的信息,更便于了解地下构造形态个查明某些特殊地质现象. 同相轴:一串套合很好的波峰或波谷. 相位:一个完整波形的第i个波峰或波谷. 纵波:传播方向与质点振动方向一致的波. 转换波:当一入射波入射到反射界面时,会产生与其类型相同的反射波或透射波,也会产生类型不同的,与其类型不同的称为转换波. 反射定律:入射波与反射波分居法线两侧,反射角等于入射角,条件为:上下界面波阻抗存在差异,入射波与反射波类型相同. 地震子波:震源产生的信号传播一段时间后,波形趋于稳定,我们称这时的地震波为地震子波。 爆炸时产生的尖脉冲,在爆炸点附近的介质中以冲击波的形式传播,当传播到一的距离后,波形逐渐稳定,我们称这时的地震波为地震子波。 正常时差的定义第一种定义:界面水平情况下,对界面上某点以炮检距x进行观测得到的反射波旅行时同以零炮检距(自激自收)进行观测得到的反射波旅行时之差,这纯粹是因为炮检距不为零引起的时差. 第二种定义:在水平界面情况下,各观测点相对于爆炸点纯粹是由于炮检距不同而引起的反射波旅行时间差. 1.简述地震勘探原理 地震勘探根据岩石的弹性差别进行工作的,波遇到障碍物会发生反射和透射,折射.通过测反射波和透射波的性质,可以确定障碍物的距离.地震勘探是人工激发地震波.通过在地面布置测线,接收反射波,然后进行一些处理,从而来反映地下构造情况,为寻找油气和其他勘探目的的服务,生产工作包括三个环节:1野外数据采集2室内数据处理3地震资料解释,与其他方法

地震勘探原理精选试题四答案

地震勘探原理考试试题(D)参考答案 一、名词解释 1、地震采样间隔 地震勘探中检波器接受的模拟信号要转换为数字信号存储,所以需要采样离散化,这个采样间隔就称为地震采样间隔。 2、均匀介质 均匀介质是认为反射界面以上的介质是均匀的,即地震波传播速度是一个常数. 3、时间域和频率域: 把信号表示为振幅随时间变化的函数,称为信号在时间域的表现形式,把信号表示为振幅和相位随频率变化的函数,称为信号在频率域的表现形式 二、填空题 1. 目前用于石油天然气勘探的物探方法, 主要包括___地震__勘探,__重力___勘探和_磁法_勘探以及____电法____勘探, 其中最有效的物探方法是_____地震_____勘探. 2. 振动在介质中___传播____就形成波. 地震波是一种___弹性________波. 3. 地震波传播到地面时通过____检波器_______将_______机械振动信号_______转变为____电信号_____. 4. 炮点和接收点之间的____相互位置______关系,被称为___观测系统________ 5. 三维地震勘探工中沿构造走向布置的测线称为____联络测线________测线,垂直于构造走向的测线称为____主测线______. 6. 波阻抗是______密度_______和_____速度_______的乘积. 7. 反射系数的大小取决于__界面上下_____地层的______波阻抗差异________的大小. 8. 一般进行时深转换采用的速度为____平均速度___.研究地层物性参数变化需采用___层速度______. 9. 用于计算动校正量的速度称为____叠加_______速度,它经过倾角校正后即得到____均方根速度_____. 10. 几何地震学的观点认为:地震波是沿____最短时间_______路径在介质中传播,传播过程中将遵循____费马______时间原理. 三、选择题 1. 野外放炮记录,一般都是.( C ) A:共中心点. B:共反射点. C:共炮点. 2. 把记录道按反射点进行组合,就可得到( C )道集记录. A:共中心点. B:共炮点. C:共反射点. 3. 共反射点道集记录,把每一道反射波的传播时间减去它的正常时差这就叫做.( A ) A:动校正. B:静校正. C:相位校正. 4. 所谓多次复盖,就是对地下每一个共反射点都要进行( C )观测. A:一次. B:四次. C:多次. 5. 地震纵波的传播方向与质点的振动方向( B ). A:垂直. B:相同 C:相反. 6. 波在介质中传播时,如果在某一时刻把空间中所有刚刚开始振动 1

浅谈三维地震勘探技术

龙源期刊网 https://www.doczj.com/doc/bc15440620.html, 浅谈三维地震勘探技术 作者:刘鹏飞 来源:《科学与财富》2018年第12期 摘要:三维地震勘探技术是地球物理勘探的一种方法。三维地震勘探技术的基础是二维地震勘探技术,比二维地震勘探得到的数据更精准,更具有空间立体性,但是对于勘探环境也有更高的要求。本文简要论述了三维勘探技术的采集流程,采集环境要求和数据分析方法,并根据三维地震勘探技术的优点提出三维勘探技术的应用前景,在应用于油田煤矿的基础上延伸应用到学术性的地震勘探领域,为三维勘探技术的应用提供理论分析依据。 关键词:三维技术,地震勘探,地震技术 前言:三维地震勘探技术不是指预测地震的发生的技术,而是利用地震波的波长和波形特点对于地下地质和岩层的情况进行数字化分析。目前三维地震勘探技术广泛应用于煤矿油田的开采地点确定和开采环境分析。本研究根据三维地震勘测技术应用的基本要素提出三维地震勘测技术的其他应用,为三维地震勘测技术的发展提供科学依据。 1.三维地震勘探技术的基本要素 1.1勘测地点的地势环境要求 三维地震勘探技术对于勘测地形有着严格的要求,才能得到更精准的数据,野外地势环境对于勘测过程和勘测结果的影响非常大。勘测地点要远离附近有其他磁场或者地震波的区域,保证实验收集的数据没有其他误差的干扰。三维地震勘测的原理就是利用爆破后产生的声波信息进行数据收集和分析,如果周围还有其他声波的影响,将会严重影响到数据的准确。在其他误差排除之后还要保证地质条件符合要求,施工地点通常地形环境复杂,种类也是多种多样,但一般分为岩石区和黄土区。三维地震勘测需要在勘测区域钻孔,方便埋线和声波收集设备,对于不同的地形要进行不同的处理方法。岩石区采用风钻将岩石震碎,坚硬的岩石层变成粉末之后就可以继续打孔进行填埋工作。黄土区地表松软不需要处理岩石直接打钻即可进行填埋工作。除了钻孔工具还可以人工钻孔,利用钢柱对地表进行钻孔处理。三维地震勘测对于地势环境要求严格,但是在实际操作中不可能每次都遇到完全符合要求的地形,因此要利用一定的工具和处理方法改善不同的环境。 1.2实施三维勘探技术的流程 对环境处理保证在野外环境符合要求之后,就可以进行三维地震勘测了。三维地震勘测技术的的实施流程包括确定勘测地点,选择合适的勘测仪器和数据收集方法,建立地震勘探面的特点网格,根据不同地表层确定炮检距。勘测地点钻孔处理中后先埋检测仪器在埋电源线,然后再合适的距离以外钻浅井埋炸药作为声源,利用声波收集仪器采集数据并记录。选择地震面

06年中国石油大学华东地震勘探原理

2006 年硕士学位考试 一、名词解释 1. CDP ,共深度点(Common Depth Point) DMO ,倾角时差校正获动校正(Dip MoveOut) A VO ,振幅随偏移距的变化关系(Amplitude Vary with Offset) VSP ,垂直地震剖面(Vertical Seismic Profile) EOR ,提高采收率(Enhance Oil Recovery) 2. 费马原理, 地震波在任意介质中从一点传播到另一点时,沿所需时间最短的路径传播。费马原理规定了波传播的唯一可实现的路径,不论波正向传播还是逆向传播,必沿同一路径,因而借助于费马原理可说明地震波的可逆性原理的正确性。 惠更斯原理: 在弹性介质中,可以把已知t 时刻的同一波前面上的各点看作从该时刻产生子波的新点震源,在经过△t 时间后,这些子波的包络面就是原波前面到t+△t 时刻新的波前。 虚震源原理, 波从O 点射到地层A 点再反射回S 点所走路径,就好像波由O 点的虚点O *直接传到S 点一样 斯奈尔定律, 地震波在不同介质中传播时,上下层速度与入射透射角之间存在这样一种关系:2 121sin sin θθ=V V ,波传播满足这样的一种关系的原理就是费马原理。 采样定理: 当采样频率大于信号中最高频率的2倍时,即:fs.max>=2fmax ,则采样之后的数字信号完整地保留了原始信号中的信息,采样定理又称奈奎斯特定理。 3.Dix 公式,是一种实现了用均方根速度求层速度的公式。 Gardner 公式,是一种实现了利用地层纵横波速度求取平均密度的公式。 Wyllie 方程,给出了岩石中的波速和空隙度以及空隙中流体波速、岩石基质波速之间 的关系。 Zoeppritz 方程,用位移振幅表示的反射透射系数方程,称为Zoeppritz 方程 线性时不变系统的滤波方程,如果输出信号的谱是输入信号的谱与系统的频率特性的乘积,则描述这种关系的方程就是线性时不变系统的滤波方程。 二、简答题 1、有效波与干扰波的主要差异表现在哪些方面?分别用什么方法突出有效波而压制干扰波? 答:有效波与干扰波的主要差异表现在以下4个方面:(1) 传播方向上的不同,使用组合法突出有效波而压制面波;(2) 频谱上的差异,使用滤波方法突出有效波而压制干扰波;

相关主题
文本预览
相关文档 最新文档