当前位置:文档之家› 不同Al含量α-Ni(OH)2的制备及电化学性能研究

不同Al含量α-Ni(OH)2的制备及电化学性能研究

不同Al含量α-Ni(OH)2的制备及电化学性能研究
不同Al含量α-Ni(OH)2的制备及电化学性能研究

?692?稀脊金属材料与工程第35漆

含量为O%时得到的样品不怒貔-Ni(OH)2,而是镍婚碱式盐【16】,该碱式盐与6c-Ni(OH)2的结构基本相同,层闻鬻离子撵列更加规则,导致层闻距减小,这联由XI①得到的结果一致。

图3为不同Al添加量样晶的热重分析曲线。由图3可知:壤有样晶均表现为2步失重,第l步失熏茸归因子吸附水和层间水的脱除。第2步失重是由于样品失去OH‘和阴离子分解成为Ni和Al的氧化物,表现莠一个较大的失重台阶。随着Al添麴量的降低,样品的分解温度逐渐升高,Al添加量为20%,10%,5%和O%时样品的分解温度分别为270℃,280℃,290℃窝32§℃,说饔瘦.Ni(0嚣)2豹熟稳定性隧Al添嬲量的降低而增加,碱式盐的热稳定性最好,这与碱式盐中阴离子不再是松散的嵌入层间,而是与金属离子紧密结合,在层闻规则撵襄的翁莱一致。毒个样品的第l步失重分别为13.1%,18.7%,18.2%和13.1%,第2步失重分别为19.3%,20.5%,19.2%和27。2%。当Al添加爨蠢20%下降至l§%耱5%对,样品中的吸附水和层间水的含量迅速增加,而嵌入层间的阴离子含量相差不大。不含Al的碱式盐中的吸附水和层间水的含量与20%Al添加董的祥晶楣同,僵层溺阴离子的含量远高于后者。

图3不同Al添加量样品的热重分析曲线

Fig.3Thennogravimetricanalysescurvesforsamples

wi氇d主j您fe珏£Alad程itiveeo珏£e稳ts

3.2电化学性能

图霹为不同众l添翔量撵瑟的獯繇性戆。壶图4可以看出,随着Al添加量的减少,联.Ni(OH)2的放电比容量先升高,然后又降低。Al的添加量为20%时,穗.Ni(o瓣)2的最大放电眈容量为306擞A?彩g:丽Al添加量降至10%时,最大放电比容量增加为330H演?11,g;

继续降低A1添加鬟至5%时,a—Ni(ol{)2的最大放电比容量蒸本不变,仍荛330蚣?彰g左右;当Al添攘量降至2%时,最大放电比容量下降很快,为313

mA?Ⅳg,下降了17mA?彰g;Al添加量降至O.5%时,样品的最大放电比容量与添加凝为2%时的基本相嬲,为3lO掇A-魄左右;但当Al添加量降至O%时,样晶的最大放电比容量迅速降低为274lⅡA?h/g,与Al添加量为0.5%时相比,降低了36mA?h/g。由此说明豢Al的添翔量较低毽又能保持榉品为a.Ni<O竭2结构对,样品的放电比容爨较大,因为Al本身不参加充放电反应,Al含量越低,活性物质中能参加反应的Ni含量越高(见表2),滔性物质的放电比容鬟也就越高。但Al含量继续降低时,虽然仍能保持a.Ni(OH)2结构,但放电比容量基本不变。当A1禽量太低,样品不再魁技.NifoH)2,蔼是帮a攥i(o珏)2绣梅福同的溅式盐,此时样品仍县有可充放电性能,但放电比容爨下降较大,且充放电曲线与a.Ni(0H)2相比有较大差别(见图5)。

CyeleN嘲b妫弹

网4不同Al添加量样晶的循环性能

Fig.4Theeyelic

perfo撒anceofsafr攀leswithdi攫.erent

Aladditivecontents

表2不同Al添加量样品的ICP和NEE数据1阻ble2薹CPa矗dNE嚣dat盎fof圣魏es窭mple

w耋鼍歉di瑜lIe珏重

AladditivecOntents

NominalActualActualActualActualAl…一3A11,∥%A11,∥%A12,彩蹴Ni2,甜/%andNi2,∞腻”。。

表2为不同Al添加量样品中每个Ni原子交换的最大电子数强ⅨEE),计算公式梵【"l:

NEE23600Cexp/”F

其中,Ce;。为实验测得的每克样品的最大放电比容量(A纛。g。),聪为每克掸龋中Ni蕊潦尔数,∥为法拉第常数(96485C?moI。)。Elj表2可以看出,当Al的添加量一。。A

醅舛¨嬲一~一一~一~一霉嗡一

。,m弱一~一

不同Al含量α-Ni(OH)2的制备及电化学性能研究

作者:张倩, 徐艳辉, 王晓琳, Zhang Qian, Xu Yanhui, Wang Xiaolin

作者单位:张倩,王晓琳,Zhang Qian,Wang Xiaolin(清华大学,北京,100084), 徐艳辉,Xu Yanhui(清华大学,北京,100084;Fuel Science Lab. Faculty of Mechanic Engineering and

Production, Hamburg University of Applied Sciences, Hamburg 20099, Germany)

刊名:

稀有金属材料与工程

英文刊名:RARE METAL MATERIALS AND ENGINEERING

年,卷(期):2006,35(5)

被引用次数:1次

参考文献(18条)

1.Biljana Pejova;Tanja Kocareva;Metodija Najdoski A solution growth route to nanocrystalline nickel oxide thin films[外文期刊] 2000(4)

2.Indira L;Mridula Dixit;Vishnu Kamath P查看详情[外文期刊] 1994

3.Zhang Hengbin;Liu Hansan;Cao Xuejing Preparation and properties of the aluminum-substituted alpha-Ni(OH)(2)[外文期刊] 2003(1)

4.冷拥军;刘兵铝取代氢氧化镍制备、结构与电化学性能Ⅱ结构分析[期刊论文]-电源技术 2000(06)

5.Vishnu Kamath P查看详情[外文期刊] 1994

6.Faure C;Delmas C查看详情 1991

7.Delmas C;Braconnier J J;Borthomieu Y查看详情[外文期刊] 1987

8.Delmas C;Faure C;Borthomieu Y查看详情 1992(02)

9.Armstrong R D;Briggs G W D;Charles E A查看详情 1988

10.Demourgues-Guerlou L;Denage C;Delmas C查看详情[外文期刊] 1994

11.Bode H;Dehmelt K;Witte J查看详情 1966

12.杨飘萍;宿美平;杨胥微尿素法合成高结晶度类水滑石[期刊论文]-无机化学学报 2003(05)

13.Gianni Caravaggio A;Christian Detellier;Zbigniew Synthesis, stability and electrochemical properties of NiAl and NiV layered double hydroxides[外文期刊] 2001(03)

14.Michael Rajamathi;Vishnu Kamath P查看详情[外文期刊] 1998

15.Michael Rajamathi;Vishnu Kamath P Urea hydrolysis of cobalt(II) nitrate melts: synthesis of novel hydroxides and hydroxynitrates[外文期刊] 2001(07)

16.张倩;徐艳辉;王晓琳均相沉淀法制备α-Ni(OH)2及其电化学性能研究[期刊论文]-稀有金属材料与工程

2004(12)

17.张倩;徐艳辉;王晓琳Al代α-Ni(OH)2的结构与电化学性能[期刊论文]-稀有金属材料与工程 2003(10)

18.Faure C;Delmas C;Fouassier M查看详情 1991

引证文献(1条)

1.刘颖慧.彭淑鸽.张艳慧.许莉晓.王垒氢氧化镍纳米晶的制备与表面有机化[期刊论文]-河南科技大学学报(自然科学版) 2008(3)

本文链接:https://www.doczj.com/doc/be13845392.html,/Periodical_xyjsclygc200605005.aspx

锂电负极有哪些核心性能指标负极材料的发展情况和趋势的概述

锂电负极有哪些核心性能指标负极材料的发展情况和趋势的概述锂电负极二十年复盘与展望 投资观点: 负极的技术指标众多,且难以兼顾。 负极材料有克容量、倍率性能、循环寿命、首次效率、压实密度、膨胀、比表面积等多项性能指标,且难以兼顾,如大颗粒的压实密度好、克容量高,但倍率性能不好;小颗粒反之。负极制造商需要通过优化生产工艺,提高材料的整体、综合性能。 凭借资源和工艺优势,用十年时间打败日本完成国产化。 目前主流的负极仍然是天然石墨和人造石墨,天然石墨是从黑龙江、青岛的矿山采矿并经过浮选、球形化、表面包覆制成,人造石墨则是以石油或煤化工的副产物煤焦油沥青或减压渣油为原料,经延迟焦化制成针状焦,并经过造粒、石墨化制成。2000年之前,负极行业全部掌握在日本企业手中,之后经过贝特瑞(首家掌握天然鳞片石墨的球形化技术,还掌控上游的矿山和浮选)、上海杉杉(国产化CMS打败日本大阪煤气、05年首创FSN-1之后十年都是行业模仿抄袭的对象)、江西紫宸(G1系列高各向同性、极低的膨胀,实现FSN-1之后的又一次突破)三家企业长时间的努力,目前日本企业的占有率仅剩三成左右。人造石墨替代天然石墨仍是未来的趋势。 从供应链来看,国内动力电池基本全部使用循环、膨胀、倍率性能更优的人造石墨,国外动力电池(除松下外)则以价格低廉的天然石墨为主。消费电池方面也是天然石墨的用量更大,但以ATL为代表的软包电池和松下为代表的超高容量圆柱电池,则偏爱人造石墨。从未来的趋势来看,LG等日韩动力电池厂商将转向人造和天然混合的复合石墨,提高人造石墨的用量;消费电池中,软包和超高容量圆柱电池的渗透率也将持续提升,因此人造石墨仍将继续对天然石墨形成替代。 江西紫宸收入规模已超过上海杉杉成为国内第一人造石墨负极制造商,国际上也仅次于日立化成排名全球第二。市场普遍认为江西紫宸主要生产消费电池的负极材料,未来增长空间有限。但我们认为,消费电池虽然行业增长不快,但目前主要采用天然石墨,随着软包

电池制作及其电化学容量充放电曲线的测定

电池制作及其电化学容量充放电曲线的测定 [单项选择题] 1、下列四种电池(或仪器)中哪一种是不能用作直流电源()。 A.蓄电池 B.干电池 C.标准电池 D.直流稳压电源 参考答案:C [单项选择题] 2、电池在充、放电过程中,两电极间的电势差值常和由能斯特方程计算的不一样,主要原因是()。 A.充电过量 B.放电过量 C.用于连接的导线上的电阻太大 D.电极上极化现象存在 参考答案:D [单项选择题] 3、在实际测量中,电池的实际容量比理论容量()。 A.高 B.低 C.相等 D.不能缺定 参考答案:B [单项选择题] 4、实验中建议的充放电制度一般采用的是()。 A.0.01-0.1C B.0.1-0.4C C.0.5-1.0C D.任意方式 参考答案:B [单项选择题]

5、电池的充放电一般可采用的方式正确的说法是()。 A.恒电流充电 B.恒电压充电 C.恒电流放电 D.上述三种方式都是 参考答案:D [单项选择题] 6、放电控制中,一般放到端电压多少为止?() A.1.0V B.2.0V C.3.0V D.4.0V 参考答案:A [单项选择题] 7、在给定的充或放电条件下,所测得的电池的充电或放电曲线是()。 A.电压随充或放电时间的变化关系曲线 B.电压与电流的变化关系曲线 C.电流随充或放电时间的变化关系曲线 参考答案:A [单项选择题] 8、在电极上产生极化的主要因素是()。 A.来自电极表面电荷的积累 B.来自电极表面浓度的变化 C.来自电极或溶液内阻 D.以上三种因素之和 参考答案:D [单项选择题] 9、根据氢化物电极组成的电池,阴极贮氢的充电过程时电势随KOH浓度的增加而()。 A.升高 B.降低 C.不变 D.不能确定 参考答案:A

仪器分析 试题库

复习题库 绪论 1、仪器分析法: ()2、以下哪些方法不属于电化学分析法。 A、荧光光谱法 B、电位法 C、库仑分析法 D、电解分析法()3、以下哪些方法不属于光学分析法。 A、荧光光谱法 B、电位法 C、紫外-可见吸收光谱法 D、原子吸收法 ()4、以下哪些方法不属于色谱分析法。 A、荧光广谱法 B、气相色谱法 C、液相色谱法 D、纸色谱法 5、简述玻璃器皿的洗涤方法和洗涤干净的标志。 6、简述分析天平的使用方法和注意事项。 第一章电位分析法 1、电化学分析法: 2、电位分析法: 3、参比电极: 4、指示电极: 5、pH实用定义: ()6、以下哪些方法不属于电化学分析法。 A、荧光光谱法 B、电位法 C、库仑分析法 D、电解分析法()7、在电位分析法,作为指示电极,其电极电位应与测量离子的活度。 A、符合能斯特方程式 B、成正比 C、与被测离子活度的对数成正比 D、无关 ()8、饱和甘汞电极的外玻璃管中装的是。 A、0.1mol/L KCl溶液 B、1mol/L KCl溶液 C、饱和KCl溶液 D、纯水 ()9、关于pH 玻璃电极膜电位的产生原因,下列说法正确的是。 A、氢离子在玻璃表面还原而传递电子 B、钠离子在玻璃膜中移动 C、氢离子穿透玻璃膜而使膜内外氢离子产生浓度差 D、氢离子在玻璃膜表面进行离子交换和扩散的结果 ()10、下列不是直接电位法中常用的pH标准缓冲溶液。

A、pH=4.02 B、pH=6.86 C、pH=7.00 D、pH=9.18 ()11、实验室常用的pH=6.86(25℃)的标准缓冲溶液为。 A、0.1 mol/L 乙酸钠+ 0.1 mol/L 乙酸 B、0.025 mol/L 邻苯二甲酸氢钾 C、0.1 mol/L 氢氧化钠 D、0.025 mol/L 磷酸二氢钾和磷酸氢二钠 ()12、pH复合电极的参比电极是。 A、饱和甘汞电极 B、银-氯化银电极 C、铂电极 D、银电极 ()13、经常不用的pH复合电极在使用前应活化。 A、20min B、30min C、12h D、8h ()14、pH复合电极在使用前应用下列哪种溶液活化。 A、纯水 B、饱和KCl 溶液 C、0.1mol/L KCl 溶液 D、0.1mol/LHCl溶液 ()15、已知待测水样的pH大约为5左右,定位溶液最好选。 A、pH4 和pH7 B、pH2 和pH7 C、pH7 和pH9 D、pH4 和pH9 ()16、已知待测水样的pH大约为8左右,定位溶液最好选。 A、pH4 和pH7 B、pH2 和pH7 C、pH7 和pH9 D、pH4 和pH9 ()17、用离子选择性电极进行测量时,需用磁力搅拌器搅拌溶液,这是为了。 A、减小浓差极化 B、加快响应速度 C、使电极表面保持干净 D、降低电极电阻 20、一般测量电池电动势的电极有电极和电极两大类。 21、直接电位法中,常用的参比电极是,常选用的敏感电极是。 22、在电位分析法中,对参比电极的主要要求是电极的电位已知且,最常用的参比电极有电极和电极。 23、电位分析法是通过测定来求得物质含量的方法,此方法又可分为电位法和电位法两大类。 25、溶液pH测定的基本原理是什么?怎样用pH计测定溶液的pH值? 28、玻璃电极与饱和甘汞电极组成化学电池,在25℃时测得pH=4.00的标准缓冲溶液的电池电动势为0.209V。当下列未知溶液的电动势为:(1)0.088V;(2)-0.17V,求未知溶液的的pH 值。(10分)

电化学工作站技术参数

电化学工作站技术参数 1、仪器整体需为插板式设计,扩展槽至少3个,需配数据接口卡1个,提供4个外置设备 接口,连接大电流外置恒电位仪能做±8A充放电测试; 2、频率范围:10μHz~3MHz,模数分辨率不低于18 bit; 3、最大输出电流不低于±2.2 A;CV扫速范围:0.3 μV/s ~80 kV/s; 4、频率精度及频率分辨率至少达到0.0028%; 5、最高电流精度不低于0.05%; 6、测试阻抗精度:100 mΩ~10 MΩ/0.2%;1 mΩ~1 GΩ / 2%;30μΩ~1 GΩ/3%; 7、大电流外置恒电位仪调制输出频率范围不窄于10μHz-150KHz;输出功率不小于180W; 最大输出电流及电压不小于±8A,±18V;大电流外置恒电位仪必须可以驱动光源、控制光源强度、调制光谱; 8、外置光强计必须能实时检测样品被照射强度,能通过光强闭环控制系统实时反馈给大电 流外置恒电位仪对光源进行实时调节。 9、快速光强瞬态测试模块最高采样速率不低于16MHz(双通道),时间分辨率不超过60ns, 能用于快速光强瞬态测试,光电瞬态响应,电流遮断,电子寿命测试,载流子传输时间测试; 10、软件:具备交流阻抗测试,电荷提取测试,时间域测试,快速光强瞬态测试,动态调制光电压谱IMVS/光电流谱IMPS,光电流/光电压对快速变化光源的瞬态响应,斩光伏安测试。 11、配置要求: 除电化学工作站主机外还需有以下配件: ①大电流外置恒电位仪; ②光具座、外置光强计、光强放大反馈系统及光强闭环回路控制系统; ③快速瞬态记录仪; ④1000W/m^2 白光LED光源; ⑤340W/m^2 绿光LED光源。 12、需提供厂家宣传彩页或官网说明证明其投标响应参数的真实性。 13、技术服务要求 ①免费安装、现场培训,受训人员掌握仪器的基本原理、结构,达到独立操作和进行方法条件摸索开发的水平,能够对仪器进行日常维护。 ②厂家为用户免费保修至少一年,保修期自仪器验收合格之日起计算。 ③厂家接到用户维修申请后24小时内做出响应,并在三个工作日内派维修人员到现场维修。

电化学技术表征能量存储器件的性能

电化学技术表征能量存储器件的性能 一. 循环伏安曲线(CV) 【原理简介】 循环伏安法是以线性扫描伏安法的电位扫描到头后,再回过头来扫描到原来的起始电位值,所得的电流—电压曲线为基础的分析方法。扫描电压呈等腰三角形。如果前半部扫描(电压上升部分)为去极化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。 在一个典型的循环伏安实验中,工作电极一般为浸在溶液中的固定电极。为了尽可能降低欧姆电阻,最好采用三电极系统。在三电极系统中,电流通过工作电极和对电极。工作电极电位是以一个分开的参比电极(如饱和甘汞电极,SCE)为基准的相对电位。在循环伏安测试实验中,工作电极的电位以10 mV/s 到200 mV/s 的扫描速度随时间线性变化(Fig.1a),在此同时记录在不同电位下的电流(Fig.1b)。 图一 【实验原理】 若电极反应为O+e →R,反应前溶液中只含有反应粒子O且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势φ正得多的起始电势j i处开始势作 0附近时,O 正向电扫描,电流响应曲线则如图所示。当电极电势逐渐负移到φ 平 开始在电极上还原,并有法拉第电流通过。由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。当O的表面浓度下

降到近于零,电流也增加到最大值I pc,然后电流逐渐下降。当电势达到j r后,又改为反向扫描。随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大, 0时,表面上的电化学平衡应当向着越来越有利于生成R 在电势接近并通过φ 平 的方向发展。于是R开始被氧化,并且电流增大到峰值氧化电流I pa,随后又由于R的显著消耗而引起电流衰降。整个曲线称为“循环伏安曲线”。如图2所示: 图二 【应用】 基于CV曲线的电容器容量计算,可以根据公式(1)计算。 (ν为扫速,单位V/s) (1) 从式(1)来看,对于一个电容器来说,在一定的扫速下做CV测试。充电状态下,通过电容器的电流i是一个恒定的正值,而放电状态下的电流则为一个恒定的负值。这样,在CV图上就表现为一个理想的矩形。由于界面可能会发生氧化还原反应,实际电容器的CV图总是会略微偏离矩形。因此,CV曲线的形状可以反映所制备材料的电容性能。对双电层电容器,CV曲线越接近矩形,说明电容性能越理想;而对于赝电容型电容器,从循环伏安图中所表现出的氧化还原峰的位置,我们可以判断体系中发生了哪些氧化还原反应。 二. 恒电流充放电曲线(CCD) 【原理简介】 恒电流充放电法,又称计时电势法。一种研究材料电化学性能中非常重要的方法之一。在恒流条件下对被测电极进行充放电操作,记录其电位随时间的变化规律,研究电位随时间的函数变化的规律。它的基本工作原理是:在恒流条件下对被测电极进行充放电操作,记录其电位随时间的变化规律,进而研究电极的充

详解电化学储能在发电侧的应用

详解电化学储能在发电侧的应用 随着国家环境保护力度的不断加强,新能源发电装机占比逐渐攀升,我国能源结构正在逐步转型。储能系统因其响应速率快、调节精度高等特点,成为能源行业中提升电能品质和促进新能源消纳的重要支撑手段,受到越来越多的重视。并且由于储能技术的进步、产品质量的提高及成本的不断降低,储能技术已具备商业化运营的条件,尤其是多种电化学储能技术的发展逐步扩展了储能的应用领域。 除了技术的进步,国家政策法规的颁布、电力市场改革的不断深化,也促进了电化学储能技术的应用推广。本文从数据的角度概要分析了储能在全球电力行业中的应用现状,对国内电化学储能产业政策和标准的发展进行了总结,并介绍了电化学储能的种类、技术路线以及系统集成关键技术。除此之外,针对发电侧,重点从功能、政策和应用项目等方面论述了电化学储能技术在大规模新能源并网、辅助服务及微电网等有商业价值的应用场景。最后对电化学储能技术在未来能源系统中的前景和发展趋势做了展望,并在促进储能商业化运营及推广方面对储能企业提出了发展建议。 目前,我国电力生产和消费总量均已居世界前列,且保持高速增长的趋势。国家统计局发布的数据显示,2018年1~12月份,全国规模以上发电企业累计完成发电量67914 kW·h,同比增长6.8%,全国全社会用电量68449 kW·h,同比增长8.5%。而在电能供给和利用方面我国却还存在结构不合理、综合利用效率较低、新能源渗透率较低、电力安全水平亟待提升等问题[1],因此如何保障经济发展中电力生产与供应的安全,同时又实现节能减排与环境保护,是我国电力行业发展的重大战略任务。近年来飞速发展的储能技术为解决以上问题提供了可行性。储能成本和性能的改进、全球可再生能源运动带来的电网现代化与智能化,以及电力市场改革带来的净电量结算政策的淘汰、参与电力批发市场、财政激励、FIT(太阳能发电上网电价补贴政策)等因素的驱动,使得储能在全球掀起了一场发展热潮。储能使电能具备时间空间转移能力,对于保障电网安全、改善电能质量、提高可再生能源比例、提高能源利用效率具有重要意义。基于储能

RSTF电化学工作站技术指标

RST5080F电化学工作站 技术指标、测试方法 一、技术指标: 1 仪器架构: 恒电位仪、恒电流仪、交流阻抗谱仪,F型 2 接地模式:可根据体系要求设置成实地模式或浮地模式 3 槽压: ±15V 4 电位扫描范围: ±12.8V 5 CV最小电位增量: 0.0125mV 6 电位控制精度:<±0.5mV 7 电位控制噪声: <0.01mV 8 电位上升时间: <0.25uS 9 电位测量零位: 自动校正 10 电位更新及阻抗采集速率: 10MHz 11 电位测量低通滤波器: 自动或手动设置 12 电位测量精度:满量程的0.1% 13 扫描速度: 0.000001V/S~20000V/S 14 参比电极输入阻抗//电容: >1013Ω// <10pF 15 最大恒电流输出:±0.5A 16 输入偏置电流: <0.1pA 17 电流测量分辨率: 电流量程的0.00076%,最小0.2fA 18 电流测量零位: 自动校正 19 电流测量量程: 1pA~0.5A(共25档) 20 前置放大倍数: 5×10×100 21 电流测量最高灵敏度: 1×10-12A/V 22 电流测量精度:满量程的0.1% 23 电流测量低通滤波器: 自动或手动设置 24 方波伏安法频率 1Hz~100kHz 25 交流伏安法频率 0.1Hz~10kHz 26 SHACV频率 0.1Hz~5KHz 27 交流阻抗谱频率: 0.00001Hz~1MHz(11个频段) 28 正弦波幅度: 0.01mV~2.3V 29 CA和CC脉冲宽度: 0.1mS~1200S 30 DPV脉冲宽度: 0.05mS~64S 31 IR降补偿:自动或手动设置(10Ω~1MΩ) 32 多阶跃循环次数: 1000次 33 限压反馈恒流换向时间: 0.1mS 34 电池全容量充电工步:激活、恒流、恒压、涓流

储能产业发展的几大技术方向

储能产业发展的几大技术方向 发表于:2018-06-01 09:32:58 来源:计鹏新能源作者:贾婧 目前全球和中国储能累计装机中,抽水蓄能最高,占比超过90%,熔融盐储热第二,电化学储能排名第三;从发展速度来看,电化学增长较快,截至2016 年底,全球电化学储能装机规模达1756.5MW,近 5 年复合增长率27.5%,其中以锂离子电池累计规模最大,超过50%以上。

电化学储能具有设备机动性好、响应速度快、能量密度高和循环效率高等优势,是当前储能产业发展和研究的热点,主要应用在电网辅助服务、可再生能源并网、电力输配、分布式发电及微网领域。从我国已投运的电化学储能项目来看,分布式发电及微网领域的装机规模最大,其余依次为可再生能源并网领域、电力辅助服务领域和电力输配领域。 从技术方向来分类,主流电化学储能技术包括先进铅酸电池、锂离子电池、液流电池和钠硫电池等。 传统铅酸蓄电池凭借其安全可靠、容量大、性价比高等优点,在储能领域仍具有稳固的地位。特别近年来,以铅炭电池为代表的新兴铅酸技术的出现,大大弥补了传统铅酸电池比能量低、寿命短等缺点,使其在大规模储能领域的应用成为可能。 锂离子电池由正负电极、隔膜、电解液组成,具有能量密度大、工作温度范围宽、无记忆效应、可快速充放电、环境友好等诸多优点,目前在国内已广泛应用于各类电子产品、新能源车和电化学储能等领域。特别受下游新能源车动力电池需求增长拉动,产业规模和技术发展加速,技术和产业链正在进一步成熟。 液流电池具有充放电性能好、循环寿命长的特点,适合大规模储能应用。目前较为成熟的液流电池体系有全钒、锌溴、铬铁、多硫化钠-溴等双液体系,目前应用和研究最广的为全钒液流电池,但由于成本过高、体积密度低等原因,产业还处于起步阶段。锌溴、铬铁、多硫化钠等电池的技术或被垄断、或处于研发阶段,未能实现产业化。 钠硫电池以单质硫和金属钠为正负极,β-氧化铝陶瓷为电解质和隔膜,其工作温度在300-350 摄氏度之间,具有能量密度高、功率特性好、循环寿命长、成本相对低等优点,其规模约占全球电化学储能总装机量的30-40%,仅次于锂离子电池。但由于技术垄断,目前在国内无法大规模推广。 从技术成熟度、经济性、安全环保性等来看,锂电池是我国发展较快、有望率先带动储能商业化的电化学储能技术。

最新《仪器分析》知识点整理

教学内容 绪论 分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS 第一章绪论 ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。 仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。 化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。 ⒉仪器的主要性能指标的定义 1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。 2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。 3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。 4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。 5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。 ⒊简述三种定量分析方法的特点和应用要求 一、工作曲线法(标准曲线法、外标法) 特点:直观、准确、可部分扣除偶然误差。需要标准对照和扣空白 应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。 二、标准加入法(添加法、增量法) 特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响 应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况 三、内标法 特点:可扣除样品处理过程中的误差 应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰 第2章光谱分析法引论 习题1、吸收光谱和发射光谱的电子能动级跃迁的关系 吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。M+hv→M* 发射光谱:物质通过激发过程获得能量,变为激发态原子或分子M*,当从激发态过渡到低能态或某态时产生发射光谱。M*→M+hv 2、带光谱和线光谱 带光谱:是分子光谱法的表现形式。分子光谱法是由分子中电子能级、振动和转动能级的变化产生。 线光谱:是原子光谱法的表现形式。原子光谱法是由原子外层或内层电子能级的变化产生的。 第6章原子吸收光谱法(P130) 熟识: 原子吸收光谱产生的机理以及影响原子吸收光谱轮廓的因素 了解: 原子吸收光谱仪的基本结构;空心阴极灯产生锐线光源的原理 掌握:火焰原子化器的原子化历程以及影响因素、原子吸收光谱分析干扰及其消除方法、AAS测量条件的选择及定量分析方法(实验操作) 1、定义:它是基于物质所产生的原子蒸气对特定谱线的吸收来进行定量分析的方法。基态原子吸收其共振辐射,外层电子由基态跃迁至激发态而产生原子吸收光谱。 原子吸收光谱位于光谱的紫外区和可见区。 2、原子吸收定量原理:频率为ν的光通过原子蒸汽,其中一部分光被吸收,使透射光强度减弱。 3、谱线变宽的因素(P-131): ⑴多普勒(Doppler)宽度ΔυD:由原子在空间作无规热运动所致。故又称热变宽。 Doppler宽度随温度升高和相对原子质量减小而变宽。 ⑵压力变宽ΔυL(碰撞变宽):由吸收原子与外界气体分子之间的相互作用引起 外界压力愈大,浓度越高,谱线愈宽。 4、对原子化器的基本要求:①使试样有效原子化;②使自由状态基态原子有效地产生吸收;③具有良好的稳定性和重现形; ④操作简单及低的干扰水平等。 1.测量条件选择 ⑴分析线:一般用共振吸收线。 ⑵狭缝光度:W=DS没有干扰情况下,尽量增加W,增强辐射能。 ⑶灯电流:按灯制造说明书要求使用 ⑷原子条件:燃气:助燃气、燃烧器高度石墨炉各阶段电流值 ⑸进样量:(主要指非火焰方法) 2.分析方法 (1).工作曲线法 最佳吸光度0.1---0.5,工作曲线弯曲原因:各种干扰效应。 ⑵. 标准加入法 精品文档

技术指标和性能指标

电位滴定仪技术要求 一、品牌型号: 1.品牌:瑞士梅特勒 2.型号:新超越系列T5 二、运行环境 1、电源电压:100~240VAC±10%;频率:50~60HZ;环境温度:5--40℃;相对空气湿度: 31℃时最大80%。 2、用途 用于各种电化学滴定分析,如酸碱滴定、络合滴定、沉淀滴定、氧化还原滴定、电导滴定、恒pH滴定、永停滴定、容量法卡氏水分测定、库仑法卡氏水分测定,两相滴定(如表面活性剂类样品)、光度滴定,并能直接测量pH值、离子浓度、氧化还原电位、温度、电导率值、极化电压、极化电流、透光率和吸光率等 三、技术指标 1、仪器的硬件连接 ①滴定仪控制方式:分体式七英寸中文彩色触摸屏和中文电脑软件双通道控制,自由切换。 ②搅拌方式:同时具有磁力搅拌器和螺旋桨搅拌器2种,搅拌速度随意可调。 ③电极接口类型:两个智能电势(mV/pH)测量电极接口、极化电极接口,温度电极接口, 电导率电极接口,库仑法电解电极接口,标配Lims接口。 2、电势(mV/pH)测量电极 2.1 mV测量电极接口 ①测量范围:-2000mV~2000mV ②分辨率:0.1mV ③最大的可能误差:0.2mV 2.2 pH测量电极接口 ①测量范围:-26.0~40.0pH ②辨率:0.001pH ③最大的可能误差:0.003pH 3、极化电极接口(Upol) ①极化电压:0-2000mV(交流电,增量0.1mV); ②测量范围:0-200μA;

③分辨率:0.1μA; ④误差范围:0.2μA; 4、极化电极接口(Ipol) ①极化电流:0-24μA(交流电,增量0.1μA); ②测量范围:0-2000mV; ③分辨率:0.1mV; ④误差范围:2mV; 5、PT1000温度电解接口 ①测量范围:-20-130; ②分辨率:0.1℃; ③误差范围:0.2℃; 6、滴定仪主机可直接扩展电导率电极接口,实现电导率直接测量和电导率滴定。 ①测量范围:±2000m V; ②分辨率:0.1mV; ③误差范围:0.2mV; 7、滴定仪主机可直接扩展电解电极接口,实现库仑法水分测定和溴指数测定(电量法) ①库仑法水分测定电流范围:可选100、200、300、400mA或Auto ②溴指数测定电流范围:可选1、5、100、200、300、400mA或Auto 8、滴定管 & 滴定管驱动器 ①滴定管驱动器的分辨率:滴定管体积的1/20000(10mL滴定管为例:0.5uL) ②具备各种体积的滴定管(包括1毫升、5毫升、10毫升、20毫升) ③滴定管可以方便安装、拆除,无需工具进行操作 ④滴定管具有滴定剂(名称、浓度)自动识别(RFID)的功能,并支持热插拔,更换滴定 管无需重启仪器,即插即用。 ⑤滴定管驱动器工作类型:上推式滴定管驱动器,保证气泡能够完全排空,从而保证结果 的准确性 四、性能指标: 1、*使用彩色TFT触摸屏为控制终端,且彩色触摸屏不低于7寸,同时具备StatusLight TM (状态指示灯),通过红、黄、绿三种颜色有效指示滴定的工作状态 2、主机内置状态指示灯,且具有声音信号的喇叭; 3、*主机内置SmartSample阅读器,无需手动输入,直接把重量等信息传入主机,实现从 天平到滴定仪的高效安全的无线数据传输,避免抄写错误; 4、*具备全面的多级用户权限管理功能,并可设置指纹或密码保护 5、具备RS232,USB,以太网和PDF等输出方式,并可输出PDF,csv,XML等格式的数据 6、*具备多次标准加入法,可实现自动化的钠,钾,钙,硝酸根等离子的含量测定,内置

锂离子电池材料的制备和电化学性能表征

锂离子电池材料的制备和电化学性能表征(24学时) 一、实验目的 1.了解尖晶石化合物的组成和结构特点。 2.了解无机材料制备方法-共沉淀制备前驱体、高温固相煅烧制备的反应原理和反应过程中影响产物性质的一般因素。 3.了解嵌入-脱嵌反应和锂离子电池的工作原理。 4.了解电池性能的主要参数和测试的主要方法。 二、实验原理 由于具有电压高、容量高、无污染、安全性好、无记忆效应等优异性能,锂离子电池自1991年实现商品化以来,其种类、性能和应用领域都得到了巨大的发展,已经成为最重要的二次电池之一,在手机、笔记本电脑、摄像机、便携式DVD、电动汽车甚至核潜艇上都得到了广泛应用。而锂离子电池的相关研究也成为当前化学电源研究的重要领域。 锂离子电池性能的优劣主要取决于电池的正极。锰酸锂LiMn2O4是重要的锂离子电池正极活性材料之一,其结构见图1。该结构为锂离子的迁移提供了三维通道。 图1 尖晶石晶体结构图 在充电过程中,锂离子从正极脱出,嵌入负极活性物质;而放电过程中,是锂离子的回嵌的过程,因此锂离子电池又称为“摇椅式”电池。电池充放电时,正极活性材料中Li+的迁移过程可用下式表示。 充电时:LiMn2O4→ xLi+ + Li1-x Mn2O4 + xe- 放电时:Li1-x Mn2O4 + yLi++ ye-→ Li1-x+y Mn2O4(0≤x≤1,0≤y≤x)

LiMn2O4的制备方法很多,常用的有高温固相法、低温固相法和液相法等。其中,低温固相法和液相法(溶胶-凝胶法)虽然反应温度低,但产物的电化学性能不能令人满意,且不适合工业化生产的需要。所谓高温固相法,就是在高温下使锰源化合物与锂源化合物反应生成LiMn2O4。 由于LiMn2O4在高温下容量衰减较快,需通过钴离子掺杂进行改性制备LiMn1.85Co0.15O4. 对固相反应而言,原料的分散状态(粒度)、孔隙度、装填密度、反应物的接触面积等对固-固反应速度有很大的影响。必须将反应物粉碎并混合均匀以使原子或离子的扩散比较容易进行。就本实验所制LiMn1.85Co0.15O4,采用共沉淀制备锰钴碳酸盐前驱体以达到离子程度的均匀混合,然后混锂后再进行高温煅烧制备出目标化合物。 三、仪器和试剂 1.仪器 X射线衍射仪,充放电测试仪,箱式电阻炉(马弗炉,Mufflefurnace),磁力搅拌器,陶瓷坩埚, 电子分析天平,恒温鼓风干燥箱,研钵,压力机,手套箱。 2.试剂 2 mol·L-1硝酸锰钴(Mn/Co=1.85:0.15)溶液,碳酸钠,碳酸锂,金属锂片,Celgard 2400隔膜,PVDF粘合剂(13%),导电炭黑,石墨,电解液(1.15mol·L-1LiPF6的碳酸乙烯酯(EC)-碳酸二甲酯(DMC)-碳酸二乙酯混合溶液(质量比:EC:DMC:DEC=3:1:1),电池壳。所有试剂均为分析纯。 四、实验步骤 1.Mn0.925Co0.075CO3的制备 取2mol·L-1的硝酸锰钴溶液40mL(约0.08mol), 至于烧杯中。称取8.9g碳酸钠(MW105.99)(0.084mol)至于另一烧杯中,然后加去离子水约80mL,摇动至完全溶解。将搅拌磁子至于硝酸锰钴溶液中,然后置于电磁搅拌器上进行搅拌,并开动加热,待温度升至约50℃,用滴管将碳酸钠溶液缓慢加入到硝酸锰钴溶液中(约半小时加完),控制溶液最终pH值约7.5~8,持续搅拌1h,将沉淀抽滤并用蒸馏水洗涤5~6次,而后置于恒温鼓风干燥箱中于110℃烘干。 2.锂锰钴复合氧化物LiMn1.85Co0.15O4的制备 将干燥的Mn0.925Co0.075CO3(MW 115.24)与摩尔比1:0.27的碳酸锂(MW 73.89)在研钵中研磨混匀(约需45~60min),转入陶瓷坩埚中,压实,开口放置在马弗炉中,于600℃下反应4h,然后升温至850℃反应12h,自然冷却到室温。 3.结构表征 将反应产物从马弗炉中取出,用研钵研细,装袋,标明合成人和合成条件,然后进行XRD表征。 4.电极的制备 将LiMn2O4粉末、石墨、乙炔黑以及作为粘合剂的PVDF(13%)按质量分数比86:2:6:6的比例混合均匀,加入适量的溶剂N-甲基吡咯烷酮(NMP)后,

电化学储能体系的特点及其未来发展的思考

电化学储能体系的特点及其未来发展的思考 摘要:电化学储能的发展史,是一部材料科技的进步史,工艺的改进使其量变,新材料的改进使其质变。突破应用范围,提高能量密度,始终是电化学储能技术的不便追求,各类电化学储能电池在生产和研究中具有不同的创新和应用方向。当前主要的电化学储能电池有铅酸电池、氧化还原液流电池、钠硫电池、超级电容器、锂离子电池。 关键词:电化学储能铅酸电池氧化还原液流电池钠硫电池超级电容器锂离子电池 正文:电能是现代社会人类生活、生产中必不可缺的二次能源。随着社会经济的发展,,人们对电的需求越来越高。电力需求昼夜相差很大,但发电厂的建设规模必须与高峰用电相匹配,投资大利用率较低。另一方面,随着化石能源的不断枯竭,人们对风能、水能、太阳能等可再生能源的开发和利用越来越广泛。为了满足人们生产及生活的用电需求,减少发电厂的建设规模,减少投资,提高效率,以及保证可再生能源系统的稳定供电,开发经济可行的储能(电)技术,使发电与用电相对独立极为重要。目前储能技术应用最为广泛的是电化学储能,电化学储能的发展史,是一部材料科技的进步史,工艺的改进使其量变,新材料的改进使其质变。突破应用范围,提高能量密度,始终是电化学储能技术的不便追求,各类电化学储能电池在生产和研究中具有不同的创新和应用方向。当前主要的电化学储能电池有铅酸电池、氧化还原液流电池、钠硫电池、超级电容器、锂离子电池。下面分别介绍这几种储能电池的特点。 铅酸电池:自从1859年法国人普兰特发明了铅酸电池,至今已有140多年的历史。在这一百多年来以来,人们对它进行不断的研究和改进,是铅酸电池得到了极大的发展,目前主流的是阀控式铅酸电池。铅酸电池由于材料来源广泛,价格低廉,性能优良,目前应用比较广泛。 铅酸电池的优点:

超级电容器材料电化学电容特性测试

华南师大学实验报告 学生:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:超级电容器材料电化学电容特性测试 实验类型:验证设计综合实验时间:2014年5月19日-26日实验指导老师:易芬云组员:吕俊、郭金海、余启鹏 一、实验目的 1、了解超级电容器的原理; 2、了解超级电容器的比电容的测试原理及方法; 3、了解超级电容器双电层储能机理的特点; 4、掌握超级电容器电极材料的制备方法; 5、掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。 二、实验原理 1、超级电容器的原理 超级电容器是由两个电极插入电解质中构成。超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。

图1 超级电容器的结构图 从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。 (1) 双电层超级电容器的工作原理 双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离(分散层)产生与电极上的电荷等量的异性离子电荷,使其保持电中性;当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。根据双电层理论,双电层的微分电容约为20μF/cm2,采用具有很大比表面积的碳材料可获得较大的容量。双电层电容具有响应速度快,放电倍率高的特点,但储能比电容较小。 (2) 法拉第鹰电容的工作原理 法拉第鹰电容器是在电极表面或体相中的二维或准二维空间上,电极活性物质进行欠电位沉积,发生高度可逆的化学吸附脱附或氧化还原反应,产生与电极充电电位有关的电容。对于法拉第准电容,其储存电荷的过程不仅包括双电层上的存储,而且包括电解液中离子在电极活性物质中由于氧化还原反应而将电荷储存于电极中。对于其双电层中的电荷存储与上述类似,对于化学吸脱附机理来说,一般过程为电解液中的离子一般为或在外加电场的作用下由溶液中扩散到电极溶液界面,而后通过界面的电化学反应而进入到电极表面活性氧化物的体相中若电极材料具有较大比表面积的氧化物,就会有相当多的这样的电化学反应发生,大量的电荷就被存储在电极中。放电时这些进入氧化物中的离子又会重新返回到电解液中,同时所存储的电荷通过外电路而释放出来,这就是法拉第准电容的充放电机理。法拉第鹰电容可以产生高的比电容,但因为法拉第反应的限制,倍率性能比双电层电容小。

电化学工作站技术参数

电化学工作站技术参数 一、主机与配置规格 1.测试通道配置数量:安装4个7 MHz电化学阻抗测试通道板; 2.通道测试功能:所有通道都具备电化学交流阻抗测试功能、循环伏安、电化学噪声、极化曲线、恒电位、恒电流、脉冲伏安、恒定加载放电、恒功率放电、电位滴定、电流滴定、恒电流充放电等测试功能; 3.浮地功能:4个通道全部具备; 二、测试通道的技术参数要求 1.★EIS电化学阻抗频率测试范围:50 μHz– 7 MHz(4个); 2.EIS频率分辨率:<0.001%; 3.EIS电化学阻抗频率最高测试精度:<0.5%; 4.电流量程:不少于400 mA,可选配放大器升级到100 A以上; 5.施加电流分辨率:<0.006%; 6.电流测试精度:<0.1%; 7.测试电流分辨率:<0.004%; 8.工作电压:+/-10V; 9.电压测试精度:<0.1%; 10.带宽:8 MHz; 11.★数据采集速率:不少于800,000点/秒; 12.★电池正负极阻抗测试:4个通道都具备运行一次阻抗测试可同时测量工作电极对参比, 辅助电极对参比,工作电极对辅助电极的3个阻抗谱; 13.电池正负极电压记录:4个通道都具备一次实验,同时记录工作电极对参比,对电极对参 比,工作电极对对电极的电压值; 14.★无线控制:用户可通过WIFI网络控制仪器进行测试; 15.双恒电位:可以组建2套双恒电位仪,同时连接2套RRDE旋转环盘电极系统同步测量; 16.软件升级:支持每年升级一次新版本软件; 17.硬件升级:可升级到48 V高电压,120 A大电流; 三、售后服务 1年免费保修,免费上门安装培训与技术支持

镍钴锰酸锂电化学性能测试 首次放电比容量及首次充放电效率测试

I C S77.160 H21 中华人民共和国国家标准 G B/T37201 2018 镍钴锰酸锂电化学性能测试首次放电比容量及首次充放电效率 测试方法 E l e c t r o c h e m i c a l p e r f o r m a n c e t e s t o f l i t h i u mn i c k e l c o b a l tm a n g a n e s e o x i d e T e s tm e t h o d f o r d i s c h a r g e s p e c i f i c c a p a c i t y a n d c h a r g e-d i s c h a r g e c o u l o m b i c e f f i c i e n c y o f t h e f i r s t c y c l e 2018-12-28发布2019-11-01实施 国家市场监督管理总局

中华人民共和国 国家标准 镍钴锰酸锂电化学性能测试 首次放电比容量及首次充放电效率 测试方法 G B/T37201 2018 * 中国标准出版社出版发行 北京市朝阳区和平里西街甲2号(100029)北京市西城区三里河北街16号(100045)网址:w w w.s p c.o r g.c n 服务热线:400-168-0010 2018年12月第一版 * 书号:155066四1-61848

前言 本标准按照G B/T1.1 2009给出的规则起草三 本标准由中国有色金属工业协会提出三 本标准由全国有色金属标准化技术委员会(S A C/T C243)归口三 本标准起草单位:济宁市无界科技有限公司二广东邦普循环科技有限公司二天津国安盟固利新材料科技股份有限公司二中伟新材料有限公司二四川科能锂电有限公司二格林美(无锡)能源材料有限公司二北大先行科技产业有限公司二西安赛尔电子材料科技有限公司二湖南邦普循环科技有限公司二西北有色金属研究院三 本标准主要起草人:李俊峰二蒋永善二余海军二谢英豪二李长东二林若虚二周玉林二訚硕二任永志二王一乔二岳波二许开华二徐世国二姜晓瑞二杨焕芳二冯庆二吴怡芳三

电化学储能电站施工及验收规范大纲

电化学储能电站施工及验收规范 Code for construction and acceptance of electrochemical energy storage station 一、大纲编制的基本思路 1、编制内容的边界范围 一般情况下,工程建设活动有规划、勘察、设计、施工(包括安装)与监理、验收、运行、维护、拆除等组成。 本标准内容范围将集中在储能电站施工、设备安装、验收这三个环节,且应与正在编制国家标准《电化学储能电站设计规范》保持内容上的相互支撑、补充与衔接,与未来将会制定有关运维与拆除环节的标准相衔接。 2、标准的构成格式 本次大纲主要针对正文部分和补充部分。本标准要严格按照住建部出版的《工程建设标准编制指南》规定的格式。 ●前引部分(封面、扉页、公告、前言、目次)、正文部分(总则、术语、 技术内容)、补充部分(附录、标准用词说明、引用标准名录) 3、技术内容重点 ●土建工程施工的通用性技术要求; ●土建工程施工中针对储能装置等特殊需求的专业技术要求 ●储能电站中通用电气设备的安装与调试的通用技术要求; ●电化学储能装置安装与调试的专用技术要求; ●储能电站整体系统调试的技术要求; ●土建施工及设备安装调试过程中各自针对环境与水土保持的技术要求; ●土建施工及设备安装调试过程中各自针对的安全与职业健康技术管理 规定; ●设备及储能电站的整体验收技术要求。 4、需要开展研究的工作 目前,根据查询,国际上尚没有发布关于电化学储能电站施工与验收方面的技术标准。储能电站建设案例并不是很多,在运行的储能电站数量少、运行时间短,此外,储能电站建设中

引入了许多新技术、新设备等,还处于不断进步与完善过程中。因此,编制标准的征求意见阶段需要安排必要的调研工作、技术测试与试验工作以及专题论证工作。 大纲准备阶段,应对上述情况给予重视。 5、参编单位的结构 为确保高质量完成标准的编制,参编单位中尽可能包含具有以下属性的单位:1、具有储能电站建设业绩的业主单位;2、具有储能电站建设施工业绩与经验的工程施工单位,3、具有储能电站设计业绩与经验的设计单位,4、储能电站核心设备与新技术装置的研发与生产单位,5、具有参与储能电站系统调试与试运经验的科研(或技术业务)单位,6、参与国家标准《电化学储能电站设计规范》编制的单位等。 二、规范编制大纲 本规范根据住房和城乡建设部《关于印发<2013年工程建设标准规范制订修订计划的通知>(建标[2013]6号)的要求,由中国电力企业联合会和中国电力科 学研究院会同有关单位共同编制完成。 牵头单位:中国电力企业联合会中国电力科学研究院 参编单位:(建议)上海电力设计院、冀北电力公司、北京输变电工程公司、浙江电力公司、福建电力公司、上海电力公司、许继集团有限公司、深圳比亚迪股份有限公司、宁德时代新能源科技有限公司、大连融科储能技术发展有限公司、北京普能世纪科技有限公司 目的:为保证电化学储能电站的工程质量,促进工程施工及验收技术水平的提高,确保电化学储能电站建设的安全可靠,制定本规范。 适用范围:本规范适用于新建、改建和扩建的固定式电化学储能电站,不适用于移动式储能电站工程。

“十四五”制约电化学储能发展的难点

“十四五”制约电化学储能发展的难点 2018年我国电化学储能出现爆发式增长,2019年增速又出现了急剧降低,2020年地方政府推动储能发展的意愿更加强烈。“十四五”时期,储能是否能够迎来发展机遇,这需要正视储能面临的问题,以疏通制约储能发展的瓶颈。 “十三五”时期我国电化学储能 发展历程及市场动态 我国电化学储能装机持续增长,但是增速却呈波浪式前进。2015~2019年,我国电化学储能装机从106兆瓦增至1709兆瓦,增加了15倍。从增速看,2015~2019年,我国电化学储能增速分别为25%、130%、64%、169%以及59%。值得注意的是,2019年我国电化学储能增速大幅下降,凸显出发展动能不足。 政策对储能有着至关重要的影响。从2017~2019年的政策看,2017年10月份,国家发改委等5部门联合发布了《关于促进储能技术与产业发展的指导意见》,为行业发展树立了信心,进而推动了2018年电化学储能的爆发式增长。然而,2019年上半年,国家发改委、能源局印发了《输配电定价成本监审办法》,明确提出抽水蓄能电站、电储能设施不得计入输配电定价成本。两大电网公司也相继跟进,严格限制企业内部储能投资,导致2019年电化学储能增速大幅回落。可以看到,我国推动储能发展的市场模式并未形成,储能产业政策依赖性非常强烈。 2020年,地方政府(电网)正在推动“新能源+储能”的发展模式。今年3月23日,国网湖南省电力有限公司下发了《关于做好储能项目站址初选工作的通知》,明确提出:“经多方协调,已获得28家企业承诺配套新能源项目总计建设388.6兆瓦/777.2兆瓦时储能设备,与风电项目同步投产”。3月24日,内蒙古能源局发布了《2020年光伏发电项目竞争配置方案》,明确优先支持光伏+储能建设。若普通光伏电站配置储能系统,则应保证储能系统时长为1小时及以上,配置容量达到项目建设规模的5%及以上。3月30日,新疆发改委印发了《新疆电网发电侧储能管理办法》征求意见稿,明确提出,鼓励光伏、风电等发电企业、售电企业、电力用户、独立辅助服务提供商等投资建设电储能设施,要求充电功

相关主题
文本预览
相关文档 最新文档