当前位置:文档之家› 连续碳纤维增强PPBES基复合材料的力学性能

连续碳纤维增强PPBES基复合材料的力学性能

连续碳纤维增强PPBES基复合材料的力学性能
连续碳纤维增强PPBES基复合材料的力学性能

碳纤维材料性能及应用

碳纤维材料的性能及应用 碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。 碳纤维的微观结构类似人造石墨,是乱层石墨结构。另外,碳纤维是指含碳量高于90%的无机高分子纤维。其中含碳量高于99%的称石墨纤维。 性能特点: 碳纤维的比重小,抗拉强度高,轴向强度和模量高,无蠕变,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理。总之,碳纤维是一种力学性能优异的新材料。 应用领域: 用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。1999年发生在南联盟科索沃的战争中,北约使用石墨炸弹破坏了南联盟大部分电力供应,其原理就是产生了覆盖大范围地区的碳纤维云,这些导电性纤维使供电系统短路。 目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。目前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。目前,碳纤维主要是制成碳纤维增强塑料来应用。这种增强塑料比钢、玻璃钢更优越,用途非常广泛,如制造火箭、宇宙飞船等重要材料;制造喷气式发动机;制造耐腐蚀化工设备等。羽毛球:现在大部分羽毛球拍杆由碳纤维制成。【碳纤维】carbon fibre 含碳量高于90%的无机高分子纤维。其中含

碳纤维板力学性能

碳纤维板力学性能 一、卡本碳纤维板加固技术优点 1、抗拉强度高,是同等截面钢材的7-10倍; 2、自重轻、易使用,作业轻松且不需大型机械设备; 3、在平板下端如有配管交错放置或受空间限制的情况,便于直接作业; 4、粘贴碳纤维板时,碳板胶不流淌,减少对作业周边环境的影响; 5、补强后基本不改变构件的形状及重量和使用空间; 6、粘贴1层碳纤维板的补强效果相当于4~8层碳纤维布,从而可以更大程度的提高结构性能; 7、在遇有中间梁或壁的平板时,只要能凿穿使碳纤维板能够通过的孔洞即可,无需截断,更加提高补强效果; 8、施工后很容易进行目视或锤击法检查。 二、卡本碳纤维板力学性能 1、碳纤维板原材料力学指标 纤维类别性能项目抗拉强度(MPa)弹性模量(GPa)伸长率(%) 碳纤维 高强度Ⅰ级≥4900≥240≥2.0 高强度Ⅱ级≥4100≥210≥1.8 2、碳纤维板性能指标 产品型号 纤维 方向 厚度 (mm) 幅宽 (mm) 长度 (m) 抗拉强度 (MPa) 弹性模量 (GPa) 纤维体 积含量 (%) 伸长率 (%) CFP-I-512/514 单向 1.2/1.4 50 50/100 ≥2400≥160≥65≥1.70 CFP-I-1012/1014 单向 1.2/1.4 100 50/100 ≥2400≥160≥65≥1.70 CFP-II-512/514 单向 1.2/1.4 50 50/100 ≥2000≥140≥55≥1.50 CFP-II-1012/1014 单向 1.2/1.4 100 50/100 ≥2000≥140≥55≥1.50 3、碳纤维板设计计算指标 性能项目单向织物(布)

聚丙烯腈碳纤维性能表征规范

聚丙烯腈碳纤维性能表征规范 聚丙烯腈碳纤维的性能主要有力学性能、热物理性能和电学性能。对于碳纤维材料来说,拉伸力学性能,包括拉伸强度、拉伸模量以及断裂伸长率是其主要力学性能指标。由于纤维材料本身的特点,很难对其压缩力学性能进行有效的表征,因此基本不考虑纤维本身的压缩性能。碳纤维的热物理性能包括热容、导热系数、线膨胀系数等,也是材料应用的重要指标。电性能主要为体积电阻率以及电磁屏蔽方面的性能。对于碳纤维的拉伸力学性能测试,各国都已经基本形成了相应的测试标准系列,这些标准系列同时包括了在力学性能测试时需要的线密度、体密度、上浆量等相关的测试。对于热物理性能,相关的测试标准较少。 5.5.1 碳纤维性能测试标准 日本从1986年开始发布了其碳纤维力学性能测试标准,有关标准见表5.30,其中JIS R7601-1986《碳纤维试验方法》涵盖了碳纤维单丝、束丝的拉伸力学性能测试方法外,还包括以及密度、上浆剂含量、线密度等测试方法及规范。JIS R7601-2006《碳纤维试验方法(修正1)》是在国际对石棉制品应用规定严格的条件下,将JIS R7601-1986中拉伸性能测试中夹持用垫片的石棉材料进行了删除。相比于JIS R7601-1986,JIS R7608-2007《碳纤维-树脂浸渍丝拉伸性能测试方法》被广泛地用于碳纤维力学性能的测试,其可操作性和规范性也更强。 表5.30 日本碳纤维测试标准 序号标准号标准名称 1 JIS R7601-1986 碳纤维试验方法 2 JIS R7602-1995 碳纤维织物试验方法 3 JIS R7603-1999 碳纤维-密度的试验方法

碳纤维复合材料结构设计要点

强度与刚度 既然是结构部件,那么设计者首先要考虑的是强度和刚度。部件在外力载荷的作用下,有抵 抗变形与破坏的能力,但是这个能力又是有限度的。 如何4定部件的使用载荷,不会超出部件的能力极限,是通过材料力学计算得出。而部件的 这个能力极限,就是碳纤维复合材料结构设计者需要考虑的问题。 通过合理的搭配纤维和树脂,优化纤维排布,用最少的材料,满足设计需求,体现了复合材 料设计者精湛的技巧。不过决定复合材料强度与刚度的因素,不但与纤维和树脂的种类有关,还与碳纤维的铺层方向以及层与层之间结合搭配有关。 所以,设计者在设计碳纤维复合材料结构部件时,需要考虑三个层级结构的力学性能。 由基体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何(各 相材料的形状、分布、含量)和界面区的性能。 由单层材料层合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何(各单层的 厚度、铺设方向、铺层序列) 。 最顶层结构是指通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结 构几何。 稳定性 除了强度与刚度要求,设计者还需考虑复合材料部件的失稳,尤其是对一些细长杆结构,在 受压时,应该能够保证其原有的直线平衡状态。对于一些框架结构部件,如果铺层不均匀, 也会产生翘曲失稳,所以在制造过程中尤其注意。最好采用对称铺层,以防变形不均匀。 一般情况下,在部件没有达到极限载荷之下,不允许产生失稳现象。但是如果对于一些特殊 要求,可以产生失稳现象,那么设计过程中,要考虑失稳过程不会因此影响极限载荷。 铺层结构 铺层结构是碳纤维复合材料结构设计的关键,如何把单层结构的优异性能传递到复合材料结 构部件上,铺层结构起到承上启下的作用。关于复合材料铺层应注意以下几点: 1. 树脂是碳纤维复合材料力学性能的短板,所以尽量避免将载荷直接加到层间或者树脂之间。也就是说,0°、±45°、90°的纤维都要有,否则载荷会将部件从没有纤维排布的方向撕裂。 2. 为了防止层合板边缘开裂,尽量避免重复单一方向的铺层,设计时最多不超过5层。 3. 为了防止最外层铺层的剥离,在部件的主载荷方向,应铺放±45°纤维,而不能铺放0°和90°纤维。另外,避免最外层铺层间断或不完整。 4. 若使用非对称铺层,每层因同方向上热膨胀系数不同会出现翘曲,因此,一般要采用对称 铺层。 5. 当增加补强铺层时,每层阶梯最少要3.8- 6.4mm,附加铺层也应尽量采用对称铺层。

碳纤维布加固技术

碳纤维布加固技术 一、特点 1、高强高效:抗拉强度2500~3550MPA,弹性模量2.35×105~5.0×105 MPA 。 2、重量轻,厚度薄:比重1.8g/cm3,每层后0.1~0.2MM,基本不增加加固 构件自重及截面尺寸。 3、适用面广:广泛适用于建筑物桥梁隧道等各种结构类型、结构形状的加固修 复荷抗震加固及节点的结构加固。 4、施工便捷:不需大型机具,没有湿作业,无需动火,无需现场固定设施,施 工占用场地少,施工工效高。 5、高耐久性:由于不会生绣,非常适合高酸、碱、盐及大气腐蚀环境中使用。 二、适用范围 1、适用于各种结构类型,各种结构部位的加固修补,如梁、板、柱、屋架、桥 墩、桥梁、筒体,壳体等结构。 2、适用于港口工程和水利水电等工程中混凝土结构、砌体结构、木结构的补强 荷抗震加固,特别适合于曲面及节点等复杂形式的结构加固。 3、基层混凝土的强度要求不低于C15。 4、施工环境温度在5~35℃范围内,相对湿度不大于70%。 三、工艺原理

加固机理是将碳纤维布采用高性能的碳纤维配套树脂粘结于混凝土构件的表面,利用碳纤维材料良好的抗拉强度达到增强构件承载能力及刚度的目的。 四、工艺流程及操作要点 1、工艺流程:卸荷→基底处理→涂底胶→找平→粘贴→保护 2、操作要点: ①卸荷 加固前对于承受二次荷载的构件不需卸荷,不承受二次荷载的构件必需卸荷,卸荷方式如下: a.对老建筑采用拆除原有的吊顶、墙面装饰、地面面层、设备等方法,以达 到卸静荷的目的。 b.对一些不能卸静荷的构件,可采用千斤顶顶升的方式卸荷;对于承受均布 荷载的梁,应采用多点均匀顶升;对于有次梁作用的主梁,每根次梁下需设1 台千斤顶顶升,顶升吨位由设计计算确定。 c.卸活荷载 ②基底处理 a.混凝土表层出现剥落、空鼓、蜂窝、腐蚀等劣化现象的部位应予以凿除, 对于较大面积的劣质层在凿除后应用环氧砂浆进行修复。 b.裂缝部分如有必要应首先进行封闭或灌浆处理。 c.用混凝土角磨机、砂纸等工具除去混凝土表面的浮浆、油污等杂质,构件 基面的混凝土要打磨平整,尤其是表面的凸起部位要磨平,转角粘贴处要进行倒角处理并打磨成圆弧状(R≥10mm)。

碳纤维是一种力学性能优异的新材料

碳纤维是一种力学性能优异的新材料。他的比重不到钢的1/4,比铝还要轻,比强度是铁的20倍。同钛、钢、铝等金属材料相比,碳纤维在物理性能上具有强度大、模量高、密度低、线膨胀系数小等特点,可以称为新材料之王。因此,可以应用于飞机制造等军工领域、风力发电叶片等工业领域、GOLF球棒等体育休闲领域。 由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的飞机以及卫星、火箭等宇宙飞行器,噪音小,而且因质量小而动力消耗少,可节约大量燃料。据报道,航天飞行器的质量每减少1kg,就可使运载火箭减轻500kg。 碳纤维除了具有一般碳素材料的特性:耐高温, 耐磨擦, 导电, 导热及耐腐蚀等, 其外形有显著的各向异性, 柔软, 可加工成各种织物, 又由于比重小, 沿纤维轴方向表现出很高的强度, 碳纤维增强环氧树脂复合材料, 其比强度、比模量综合指标, 在现有结构材料中是最高的。碳纤维还具有极好的纤度〔纤度的表示法之一是9000米长纤维的克数〕,一般仅约为19克, 拉力高达300kg/mm2。目前几乎没有其他材料像碳纤维那样具有那么多一系列的优异性能, 因此在旨度、刚度、重度、疲劳特性等有严格要求的领域,在要求高温,化学稳定性高的场合,碳纤维复合材料具备不可替代的仇势。 碳纤维的物理性质如下: (1)碳纤维的密度在1.5—2.0g/cm3之间,这除与原丝结构有关外,主要决定于炭化处理的温度。一般经过高温(3000℃)石墨化处理,密度可达2.0g/cm3。 (2)碳纤维的热膨胀系数与其它纤维不同,它有各向异性的特点。平行于纤维方向是负值(-0.72×10-6~-0.90×10-6 K-1),而垂直于纤维方向是正值(32×10-6~22×10-6 K-1)。 (3)碳纤维的比热容一般为7.12×10-1KJ/(kg·K)。热导率随温度升高而下降。 (4)碳纤维的比电阻与纤维的类型有关,在25℃时,高模量为775ìù/cm,高强度碳纤维为1500ìù/cm。碳纤维的电动势为正值,而铝合金的电动势为负值。因此当碳纤维复合材料与铝合金组合应用时会发生化学腐蚀。 碳纤维的物理性质如下: 碳纤维的化学性质与碳相识,它除能被强氧化剂氧化外,对一般碱性是惰性的。在空气中,温度高于400℃时则出现明显的氧化,生成CO与CO2。在不接触空气和氧化剂时,碳纤维具有突出的耐热性能,与其他材料相比,碳纤维要温度高于1500℃时强度才开始下降,而其他材料的晶须性能也早已大大的下降。另外碳纤维还具有良好的耐低温性能,如在液氮温度下也不脆化,它还有耐油、抗辐射、抗放射、吸收有毒气体和减速中子等特性。 表1 不同种类碳纤维的力学性能

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维布

碳纤维布 碳纤维布又称碳素纤维布、碳纤布、碳纤维编织布、碳纤维预浸布、碳纤维加固布、碳布、碳纤维织物、碳纤维带、碳纤维片材(预浸布)等。碳纤维加固布是一种单向碳纤维加固产品,通常采用12K碳纤维丝织造。[1] 可提供两种厚度:0.111mm(200g)和0.167mm(300g)。多种宽度:100mm、150mm、200mm、300mm、500mm及其他工程所需的特殊宽度。随着碳纤维布行业的不断发展,越来越多的行业和企业运用到了碳纤维布,也有部门企业进入到了碳纤维布行业并发展。 碳纤维布用于结构构件的抗拉、抗剪和抗震加固,该材料与配套浸渍胶共同使用成为碳纤维复合材料,可构成完整的性能卓越的碳纤维布片材增强体系,适用于处理建筑物使用荷载增加、工程使用功能改变、材料老化、混凝土强度等级低于设计值、结构裂缝处理、恶劣环境服役构件修缮、防护的加固工程。 产品特点: 强度高,密度小,厚度薄,基本不增加加固构件自重及截面尺寸。适用面广,广泛适用于建筑物桥梁隧道等各种结构类型、结构形状的加固修复和抗震加固及节点的结构加固。施工便捷,无需大型机具设备,没有湿作业,无需动火,无需现场固定设施,施工占用场地少,施工工效高。高耐久性,由于不会生锈,非常适合高酸、碱、盐及大气腐蚀环境中使用。 高性能碳纤维布 适用于各种结构类型,各种结构部位的加固修补,如梁、板、柱、屋架、桥墩、桥梁、筒体、壳体等结构。适用于港口工程和水利水电等工程中混凝土结构、砌体结构、木结构的补强和抗震加固,特别适合于曲面及节点等复杂形式的结构加固。基层混凝土的强度要求不低于C15。施工环境温度在5~35℃范围内,相对湿度不大于70%。

大丝束碳纤维复合材料力学性能研究

第28卷第6期2003年12月高斟拉纤维与应用 Hj妇h Fiber&AppJic州on V01.28.No.6 Dec。2003 大丝束碳纤维复合材料力学性能研究 刘宝锋1,陈绍杰‘,李佩兰1 (1.北京航空材料研究院,北京100096;2.沈阳飞机设计研究所,辽宁沈阳ll0035) 摘要:本文研究了大丝柬碳纤维(48K)复合材料的常规力学性能及耐湿热性能,并与小韭束碳纤维(髓00。3K)复合材料进行了对比,研究结果可为太丝束复合材料在航空器的次承力件或非承力件的应用提供技术基础.关键词:大丝束碳纤维(48K):复合材料;力争】生能 中图分类号:T03”3文献标识码:A文章编号:1007-9815(2003)06删8.04 刖舌 由于大丝束碳纤维(≥48K)具有价格低、来源容易、性能与12K碳纤维相当等优点,其复合材料在钓鱼竿、高尔夫球杆、建筑补强、天然气储罐、医疗器械等方面应用广泛”…,随着大丝束碳纤维价格的进一步降低,其应用领域将不断扩大。 目前,航空航天领域所用复合材料主要使用3K—12K碳纤维,还未见有大丝束碳纤维在此领域应用的报道。它能否在航空航天领域应用的关键决定于其复合材料的力学性能及其稳定性。 本文结合实际科研工作,利用自行研制的高温固化(180℃)树脂体系5222B和国外进口的48K碳纤维制成预浸料,并对复合材料层合板力学性能进行了研究。测试了大丝束复合材料单向板和多向板的拉伸、压缩、弯曲、剪切性能及湿热老化性能,并与小丝束碳纤维(T300—3K)复合材料的相应性能进行了对比,将为大丝束碳纤维复合材料在航空航天领域的应用提供技术依据。 1实验部分 1.1主要原材料 5222B高温固化改性环氧树脂体系,浅黄色粘稠体,靠为222℃,北京航空材料研究院自行 研制。 PANEx33.48K碳纤维,性能见表l,美国zoLTEK公司制造。 1.2试验方法 (1)预浸料树胎含量或面密度,按GB厂r7192.1982进行。 (2)拉伸性能,按GB厂r3354—1982进行。 (3)压缩性能,按GB/T3856-1983进行。 “)面内剪切强度、模量,按GB厂r3355.1982进行。 (5)弯曲性能,按GB厂r3356.1982进行。 (6)层问剪切强度,按JC厂r773.1982(1996)进行。 1.3制备大丝束碳纤维预浸料 先用1.22m热熔胶膜机制备320mm幅宽、外观均匀平整的5222B树脂胶膜,然后将胶膜再与48K碳纤维在1.22m热熔预浸机上进行复合浸渍,通过调整预浸温度、压力、速度、纤维张力等工艺参数,制出幅宽300mm的48K碳纤维预浸料,其纤维面密度为(130±5)g,秆,预浸料树脂质量分数。为(38±3)%,预浸料外观均匀、平整、无干纱。 1.4制备大丝束复合材料层压板 将16层的48K碳纤维预浸料按O。方向铺贴成单向板;将20层48K碳纤维预浸料按f45。/O。^45。/90。/45。/0。/-45。/0。/45。/-45。l。铺贴成多向板后,分别在热压机上模压成型。所制 收稿日期:2003-ll—12;修定日期:2∞3-12一05 作者简介:刘宝锋【1967一),男,高级工程师,主要从事复合材料树脂基体及预浸料研制开发工作.

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

碳纤维布加固

4.2构件混凝土缺陷(破损、缺失)的修补工程 1.主要材料:环氧砂浆; 3.作业条件 (1)熟悉图纸:对修补施工工艺、技术条款、现场情况进行全面了解及熟悉。 (2)根据修补特点和施工工艺要求,结合现场实际条件,认真做好环氧砂浆修补施工方案。并对施工人员进行安全、质量、技术交底。 4.施工工艺 (1)施工工艺流程 (2)基面处理 (3)对混凝土蜂窝、麻面、松散、空洞以及破碎、剥落等损伤部位及钢筋外露区域,采用人工凿除将松散污损部分清除,使该部位露出坚硬密实部分,并确保表面无油污、油脂、蜡状物、灰尘以及附着物等影响修补效果的物质。用角磨机、手钎或其他工具将混凝土面疏松部分凿除后,再用插尺或其他工具检查需要修补的区域,分析判断需修补的厚度是否大于5mm,如不够5mm则需对其进 行凿除,使该区域的修补厚度达到5mm。同时对修补区域的边缘进行凿槽处理, 避免在修补区边缘形成浅薄的边口。用角磨机将需修补的、凿除处理好的基面的污染物、松散颗粒清除干净,直至露出新鲜、密实的骨料。

4)用压缩空气吹去表面砂粒、灰尘,再用高压水冲洗混凝土基底,使基 面干净无灰尘,最后再用风干、压缩空气冲吹或采用其他干燥措施使基面充分干 燥。 5)配制环氧砂浆 在专用调制器具内进行配制,以人工或电动工具将其完全调匀,注意翻看环 氧砂浆的颜色,确保配好的修补砂浆色泽一致、搅拌均匀、和易性良好。 6)修补 ①用灰刀抹砂浆进行破损修补,涂抹时必须用力挤压,使其与混凝土粘结 密实。如遇有气泡则应刺破压紧,保证表面密实。当修补厚度较大时则应分层涂 抹,每层厚度不能超过1cm,边涂抹边压实找平,表面提浆。 ②涂抹的修复砂浆应连接平滑、流畅,且应严格控制修补区的高程及其与 未修补区的平顺过渡。 ③在树脂型修补砂浆初凝前,用灰刀将其表面抹平收光,表面平整且表面 不应有连接缝和下滑现象。 7)养护 环氧砂浆的养护在空气中干燥养护即可,对温度在25C以上时,养护时间 达到72小时后即可,若温度较低时(低于25C)可以适当延长养护时间或进行 保温养护。 8)应注意的质量问题 底板基面应处理好并做好隐蔽验收记录;环氧砂浆的厚度、表面平整度控制在设计范 围以内;设专人配制树脂型修补砂浆,并做好记录;树脂型修补砂浆固化期间不得对 其有任何扰动并不得用水湿润;

碳纤维增强镁合金层合板及其基本力学性能

碳纤维增强镁合金层合板及其基本力学性能 Investigat ion into the T ension Propert ies of Carbon Fiber Reinforced M agnesium A lloy Lam inates 郑长良1,朱公志1,刘文博2,王荣国2, (1大连海事大学机电与材料工程学院,辽宁大连116026; 2哈尔滨工业大学复合材料研究所,150001) ZH ENG Chang liang1,ZH U Gong zhi1,LIU Wen bo2,WANG Ro ng g uo2 (1Electro mechanics and Mater ials Engineering Co lleg e, Dalian M aritime Univ er sity,DaLian116026,China;2Center fo r Co mposite M aterials,H arbin Institute of T echnolog y,H ar bin150001,China) 摘要:对碳纤维增强镁合金金属层合板FM L(F iber M etal L aminates)进行了初步的探索和研究。在几种不同层数和体分比下,制备了碳环氧/镁合金层合板这种轻型结构材料,通过对这种新材料的初步力学性能的试验测试,给出了碳纤维增强镁合金金属层合板的应力 应变曲线,以及强度极限、弹性模量与纤维/环氧复合材料百分含量的关系。 关键词:碳纤维;层合板;镁合金;拉伸 文献标识码:A 文章编号:1001 4381(2007)Suppl 0148 03 Abstract:T he Fiber reinforced mag nesium alloy laminates are investigated Some laminates w ith dif ferent m unber of layer and different vo lum e ratio of composite are fabricated The basic m echanics pro perties such as limite streng th,mo duls and stress strain curves are tested and discussed Key words:carbon fiber;lam inate;mag nesium alloy;tensio n 近些年来,FM L(Fibre M etal Laminates,纤维增 强金属层合板)因其具有高比强度、高比模量及优良的耐疲劳等良好的特性而越来越受到关注[1],开始应用于航空结构中,并有越来越多的趋势,由于潜力巨大,有望成为 下一代飞机结构材料[3-5]。目前,开发研制纤维增强金属层合板有ARA LL(aramid fiber/alu m inium,芳纶纤维增强铝合金层合板)、GLARE (glass fiber/alum inium玻璃纤维增强铝合金层合板)等。其中GLARE已在空中客车结构中得到应用,表明这种结构材料在性能上具有强大的竞争力和优势。目前我国已将 大飞机研制列入 十一五规划,使得FM L研发的重要性和紧迫性大幅度提高。 目前,纤维增强金属层合板,多数采用铝、锂合金。相比之下,镁合金的密度更低,只有铝合金的三分之二,是当前最轻的金属材料[2]。因此,在重量方面更具有优势,更适于FM L结构材料的开发,有望制造出比强度、比刚度更高的纤维增强金属层合板。而镁合金金属层合板的研究还很少见。 本工作将就碳纤维增强镁合金层合板及其基本力学性能进行初步探索和研究。1 材料及试件制作 图1展示了由两层碳纤维/环氧树脂铺层与三层镁合金板交替铺设的纤维增强镁合金金属层合板的结构形式。本研究制备了三种不同铺层的层合板,碳纤维/环氧复合材料铺层体积百分比变化的实现是通过增加复合材料的厚度和层数来实现的。经测定,三种层板的纤维复合材料的体分比分别为:26%,42%, 55%。文中用v f来表示复合材料占整个试件的体积百分比。试验所用镁板的厚度为0 3m m,是营口银河镁合金有限公司生产的。所用纤维为T800,胶粘剂是环氧树脂。从室温加热至120!,保温4h,再在炉内冷却至室温进行固化。 2 性能测试 每种体分比的金属层合板,我们制备了五个等截面矩形试件,试件的宽度是15mm,长度是300mm。在试件的两端粘接四个垫片,材料为铝板。试件及垫片的结构及尺寸如图2所示。 148 材料工程/2007年增刊1(China SA M P E2007)

《碳纤维复合材料》阅读练习及答案

阅读文章,回答问题。 碳纤维复合材料 ①2018年11月6日,两年一度的珠海航展上,中俄合作研制的280座远程宽体客机CR929,以1:1的展示样机首次亮相国际航展。在这款最新一代的大型飞机上,复合材料的使用比例有望..超过50%。同样,在去年5月5日首飞的C919大客机上,使用的复合材料占到飞机结构重量的12%。这里的复合材料,主要就是碳纤维复合材料。 ②碳纤维是火箭、卫星、导弹、战斗机和舰船等尖端武器装备必 不可少的战略基础材料。它不存在腐蚀生锈的问题。由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的卫星、火箭等宇宙飞行器,噪音小,质 量小,动力消耗少,可节约大量燃料。 ③碳纤维还是让大型民用飞机、汽车、高速列车等现代交通工具 实现“轻量化”的完美材料。航空应用中对碳纤维的需求正在不断增多,新一代大型民用客机空客A380和波音787使用了约为50%的碳纤维复合材料。这使飞机机体的结构重量减轻了20%,比同类飞机可节省20%的燃油,从而大幅降低了运行成本、减少二氧化碳排放。碳 纤维作为汽车材料,最大的优点是质量轻、强度大。它的重量仅相当 于钢材的20%到30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。 ④随着航空航天、汽车轻量化、风电、轨道交通等行业领域对碳

纤维的需求爆发,碳纤维工业应用开始进入规模化生产。业内预测, 预计到2020年,全球碳纤维需求量将超过16万吨,到2025年,将超过33万吨。面对如此巨大而重要的市场,国内企业既要通过掌握 关键技术来实现碳纤维的稳定批量生产和大规模工程化应用,同时也要瞄准国产新一代碳纤维及其复合材料及早研发和布局,2016年2月15日,中国突破日本管制封锁研制出高性能碳纤维。2018年2月,中国完全自主研发出第一条百吨级T1000碳纤维生产线,这标志着我国已经牢牢站稳全球高端碳纤维市场的一席之地。 101.阅读选文第①段和第③段,回答问题。 (1)选文第①段加点词“有望”能删去?请说出理由。 (2)选文第③段画线句运用了哪些说明方法?有何作用? 102.随着科学技术的发展,请你设想一下生活中将会有哪些碳纤维 复合材料的产品。 【答案】 101.(1)不能删去,“有望”是有希望的意思,说明“在这款最新 一代的大型飞机上,复合材料的使用比例”未来有希望超过“50%”,该词体现了说明文语言的准确性和科学性。 (2)列数字、作比较,具体准确地说明了碳纤维作为汽车材料,最 大的优点是质量轻、强度大。 102.碳纤维复合材料制成的羽毛球拍、登山器械等体育休闲用品; 汽车、地铁等交通工具;以及碳纤维复合材料制成的衣服、家具等日

碳纤维布在钢结构中的应用解读【卡本碳纤维布施工方法】

相对于当今最常见的混凝土结构,钢结构具备明显的优势。钢结构自重轻,抗震性能好,资源回收价值高,被称为可重复利用型与环保型绿色建筑。如今,钢结构的数量,更标志着一个国家或地区的经济实力,自我国提出在建筑中“积极、合理的用钢”后,我国钢结构的数量也在逐年呈上升趋势。 与混凝土结构类似,钢结构在外界环境与荷载的长期作用下,同样会不可避免的出现各种损伤与缺陷。钢结构损伤的长期累积,会导致结构力学性能劣化,甚至导致结构失效,为保证结构安全与节约资源就必须对钢结构进行加固处理。 一、钢结构传统加固方法 钢结构加固中,最传统的方式要属焊接加固。焊接加固即在结构受损部位焊接金属盖板或型钢,对钢结构起到加固补强的作用。焊接加固应用时间长,技术成熟度高,但存在焊接后材料性能变差、受操作人员影响程度高的风险。

另外,钢结构加固还可通过在原有钢结构上开孔,采用铆接与螺接的形式对钢结构进行加固。此种方式削弱了开孔处截面,产生新的应力集中,且受材料影响过大,加固效果不易保证。 二、碳纤维布在钢结构中的应用 碳纤维布在混凝土加固中取得的良好效果,令其在钢结构加固中也得到了关注。与钢结构中传统的修复方法相比,碳纤维布加固具有明显的优势。碳纤维布加固基本不增加原结构的重量与尺寸,最重要的是碳纤维布加固无需开孔、焊接,不会对钢结构造成损伤,保证原结构强度与整体性。 根据大量碳纤维布加固钢结构的试验与工程实例,已经证明了碳纤维布能够对钢结构起到有效加固,尤其是对受损结构与疲劳结构,能够有效提高结构承载

力,延长结构寿命。 三、钢结构加固中碳纤维材料的要求 既然钢结构可以像混凝土结构一样采用碳纤维布进行加固,是否意味着二者对于材料有着相同的需求呢?我们都知道,碳纤维布加固是通过配套浸渍胶,将碳纤维布与基材形成整体来共同受力,也就是说,碳纤维布与基材之间,能否形成整体将是影响加固效果的重要因素。而钢结构与混凝土结构属于不同种类基材,对材料的要求,自然会存在不同。 在GB 50728-2011安全性鉴定中,对钢结构中用到的浸渍胶进行了特殊的要求。相对于混凝土结构,钢结构对浸渍胶的各项指标要求有很大的提升。钢结构对胶体的高要求,导致大量在混凝土结构加固中采用的浸渍胶,在钢结构中变为不合格产品,在选择碳纤维布对钢结构进行加固时,应当尤为注意。

碳纤维复合材料在航空航天领域的应用

碳纤维复合材料在航空航天领域的应用林德春潘鼎高健陈尚开 (上海市复合材料学会)(东华大学)(连云港鹰游纺机集团公司) 碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。 可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。 本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。 1 航空领域应用的新进展 T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H 纤维。 (1)军品 碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。 美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人

碳纤维复合材料

碳纤维复合材料 编辑本段概况 在复合材料大家族中,纤维增强材料一直是人们关注的焦点。自玻璃纤维与有机树脂复合的玻璃钢问世以来,碳纤维、陶瓷纤维以及硼纤维增强的复合材料相继研制成功,性能不断得到改进,使其复合材料领域呈现出一派勃勃生机。下面让我们来了解一下别具特色的碳纤维复合材料。 编辑本段结构 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。 碳纤维是由含碳量较高,在热处理过程中不熔融的人造化学纤维,经热稳定氧化处理、碳化处理及石墨化等工艺制成的。 碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。 编辑本段用途 碳纤维的主要用途是与树脂、金属、陶瓷等基体复合,制成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在密度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。 碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,现在还广泛应用于体育器械、纺织、化工机械及医学领域。

碳纤维及其复合材料的发展和应用(精)

·开发与创新· Development and Applications of Carbon Fiber and Its Composites GAO Bo ,XU Zi-Li (Wuhan Textile University ,Wuhan Hubei 430073,China Abstract:This paper introduces performance and features of carbon fiber,briefly overviews the history,including both foreign and domestic.And analyses the properties and applications of carbon fiber composite material,emphasizes the related performance that carbon fiber adds to the metal matrix composites and points out its research prospects.Key words:carbon fiber ;composite ;metal matrix 0引言 碳纤维是含碳量高于90%的无机高分子纤维,是由有机母体纤维(聚丙烯睛、粘胶丝或沥青等采用高温分解法在1000~3000℃高温的惰性气体下碳化制成的。它是一种力学性能优异的新材料,比重不到钢的1/4,能像铜那样导电,比不锈钢还耐腐蚀,而其复合材料抗拉强度一般都在3500Mpa 以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa ,也高于钢。碳纤维按其原料可分为三类:聚丙烯腈基(PAN 碳纤维、石油沥青基碳纤维和人造丝碳纤维三类。其中聚丙烯腈基碳纤维用途最广,需求也最大[1]。 1碳纤维的发展史 1.1国外碳纤维的发展历史 20世纪50年代美国开始研究粘胶基碳纤维,1959 年生产出了粘胶基纤维Thormel-25,这是最早的碳纤维产品。同一年,日本发明了用聚丙烯腈基(PAN 原丝

相关主题
文本预览
相关文档 最新文档