当前位置:文档之家› 聚合物体积电阻系数和表面电阻系数的测定-高分子物理-实验15-17

聚合物体积电阻系数和表面电阻系数的测定-高分子物理-实验15-17

聚合物体积电阻系数和表面电阻系数的测定-高分子物理-实验15-17
聚合物体积电阻系数和表面电阻系数的测定-高分子物理-实验15-17

实验十五聚合物的体积电阻系数和表面电阻系数的测定

一、实验目的

1.掌握聚合物体积电阻系数和表面电阻系数的测试方法;

2.比较极性与非极性聚合物的电阻系数数值范围。

二、实验原理

材料的导电性是由于其内部存在传递电流的自由电荷,即载流子,在外加电场作用下,这些载流子作定向移动,形成电流。导电性优劣与材料所含载流子的数量、运动速度有关。常用电阻系数(电阻率)ρ或电导系数(电导率)σ表征材料的导电性,它们是一些宏观物理量,而载流子浓度和迁移率则是表征材料导电性的微观物理量。

大量高聚物是作为绝缘材料使用的,但具有特殊结构的高聚物可能成为半导体、导体,甚至人们提出了超导体的模型。决定高聚物导电性的因素有化学结构、分子量、凝聚态结构、杂质以及环境(温度、湿度等)等。

饱和的非极性高聚物具有很好的电绝缘性能,理论上计算它们的电阻系数可达到1023欧姆·米,而实测值要小几个数量级,说明高聚物中除自身结构以外的因素(如残留的催化剂、各种添加剂等)对导电性能产生了不小的影响。

极性高聚物的电绝缘性次之,微量的本征解离产生导电离子,此外,残留的催化剂、各种添加剂等都可以提供导电离子。

而一些共轭高聚物如聚乙炔则可制成半导体材料,这是由于主链上π轨道相互交叠,π电子有较高的迁移率。但是它们的导电性实际并不高,原因是受到电子成对的影响,电子成对后,只占有一个轨道,空出另一个轨道,两个轨道能量不同,电子迁移时必须越过轨道间的能级差,这样就限制了电子的迁移,材料导电率下降。采用掺杂方法可以减小能级差,电子迁移速率提高。Heeger(黑格,美国)、 MacDiarmid(麦克迪尔米德,美国)以及白川英树(日本)就成功地完成了用溴、碘掺杂聚乙炔,没有掺杂时聚乙炔的电导率为3.2X10-6?-1?cm-1,掺杂后竟达到了38?-1?cm-1,提高了1000万倍,接近金属铝和铜的电导率。并且在发现聚乙炔的导电性后,黑格发现聚乙炔的磁性、电学、光学性质都异常。为了说明聚乙炔的导电性,黑格又提出了孤子导电的新概念。他们的成果在2000年获得诺贝尔化学奖。评奖委员会的公告说:塑料本来是不导电的绝缘体。它们合成了具有共轭链的聚乙炔,用掺杂的方式使塑料出现与金属一样的导电性。导电高分子已经成为化学及物理学研究的重要领域。不仅将导电聚合物用于聚合物电池的设想正在逐步实用化,而且发光二极管、

移动电话显示屏以及将来的分子电路也有可能用导电高分子作为关键材料。

其它具有特殊结构的高聚物如π电子离域及焦化聚合物、电荷转移复合物以及金属螯合型聚合物也具有较高的导电性。

根据测试方法的不同,高聚物可以表现出不同的导电性,分体内和表面两者情况(如图1、2所示)。 1.体积电阻系数v ρ

在厚度为d 的平板状聚合物试样两相对面上各放置面积为S 的电极一个,并施加直流电压,于是在试样内部就有载流子按电场方向迁移,可测得两电极间的体积电阻值v R ,则试样的体积电阻系数为

v v

S

R d

ρ= (1) 一般在没有特别注明的情况下,电阻系数就是指体积电阻系数。

2.表面电阻系数s ρ

将两电极放在聚合物试样的同一平面上,若电极的长度为,电极间距离为b ,在对两电极施加直流电压后,所测得的电极间电阻值是试样的表面电阻值l s R ,则试样的表面电阻系数为

s s l

R b

ρ= (2)

I

t

图1 体积电阻 图2 表面电阻

图3 电介质的电流时间曲线

在对聚合物试样施加一稳定直流电压后,通过试样体积内部的电流随时间而减小,直到趋近一恒定值,该电流恒值叫漏电流,实为电导电流,而电流随时间变化的部分称为吸收电流。

聚合物中这种电流的时间依赖现象叫介质吸收,它反映了聚合物电介质与金属材料的结构以及导电机理的本质区别。聚合物中吸收电流的产生是由于其结构内部不同带电粒子,主要是偶极子,在电场作用下进行极化时需要一定时间以克服粘滞阻力所致。

电流达到稳定值所需的时间一般约为一分钟,因此实验中常在加电压一分钟后读取电流值。

三、仪器和试样

本实验使用国产ZC36型1017?超高阻计。

1. 仪器外形(图4)

(1) 指示表头 (2) 倍率选择 (3) 测试电压选择开关

图4 ZC36型超高阻计面板图

(4)

“+”、“-”极性开关,当旋钮指向“+”时

测量“+”的直流信号,指向“-”时测量“-”的直流信号,指向“0”时表头开路。

(5)

放电-测试开关当旋纽处于放电位置时,测试电压未加到被测试样上;当旋钮指

向测试时,测试电压经接线柱(红色)加到被测试样上。

(6) 指示灯 (7) 电流开关

(8) 满度调整旋钮(调整表头指向满度)

(9)

“0”、“∞”调整旋钮(调整表头指向“0”或“∞”处)

(10) 输入短路开关,当开关打到短路位置时,被测信号短路。表头无指示 (11) 高压端,测试电压由此引出 (12) 接地端

(13)

2. 高阻计测试线路(图5(1) 直流高压源 (2) 三电极系统 (3) 样品 (4) 标准电阻R 0

(5) 放大器 (6)

指示仪表

图5 高阻计测试线路图

图5中K 1为放电-测试开关,K 2是R s -R v 转换开关。测试时,被测试样R x 与高阻抗直流放大器的输入电阻(标准电阻)R 0串接,并跨接于直流高压测试电源上,

R 0上的分压信号经放大后馈送指示仪表,可由指示仪表直接读得电阻值,因为R x >>R 0,

x U

R R U = (3) 式中,U 、U 0分别是测试电压及标准电阻上的电压。 四、实验步骤

1. 先仔细阅读第八部分(安全事项)

2. 试样准备

(1) 尺寸:截取直径为 250 mm 或 100 mm 的圆,用螺旋测微器测量试样的厚度五次,取其平均值,精确到0.01 mm 。

(2) 外观及处理:截取试样时应注意避免表面裂缝并用绸布擦去表面污物(或用不溶解试样的有机溶剂〕。做标准测试时应对试样进行恒温恒湿处理,一般要求在25±2℃及相对湿度为65%的条件下放置16小时以上。 3. 测试前仪器准备

(1) 测试电压开关置于“10V”档。 (2) 倍率开关置于最低档(1×102)。 (3) 放电-测试开关置于放电位置。 (4) 电源开关置于“断”位。

(5) 输入短路开关置于“短路”位置。 (6) 极性开关置于“0”位。

(7) 将仪器接地端用导线妥善接地。 (8) 合上电源开关(指示灯亮,并有鸣声)。

(9) 仪器预热30分钟后将极性开关置于“+”处,此时指针可能偏离“∞”及“0”的位,缓慢调节“∞”及“0”的电位器,使指针置于“∞”及“0”处直至不再变动。

(10) 将输入端开关拨向开路,倍率开关由 1×102转到满度位置,这时指针将从“∞”位置指于满度,然后再次将开关拨回1×102档,使指针仍指于“∞”,反复上述操作多次。 4. 测试步骤

(1) 将试样放入三电极中间,用测量电缆线接至Rx 测试端钮和高压接线柱,将K 2拨到Rv 档。

(2) 将测试电压选择开关置于“1000V”档,短路开关仍置于“短路”档。

(3) 将放电-测试开关置于测试档,并同时按下秒表。经对试样充电15秒后即可将输入短路开关拨向输入方向,过一分钟后进行读数,并记下数据。为保证读数准确,指针拟取1—10刻度,通过改变倍率档进行调节,并记下倍率档的读数值。(注意:若出现指针很快超出满度现象,应立即将输入短路开关拨回路端,将放电测试开关拨回放电位置,查明原因以免损坏仪器。

(4) 测试完毕,将放电测试开关拨回放电位置,输入短路开关拨到短路位置。 (5) 间隔二分钟后,将 K 2拨向Rs 。

(6) 测量Rs,为此重复2、3、4操作步骤,记下测试电压,读取指示数值及倍率值,由此测定总绝缘电阻。

(7) 去除保护电压,将K 2投到v R 重复上述2、3、4操作步骤,记下测试电压,读取指示数值及倍率值,由此得到总绝缘电阻。

(8) 换试样,重复上述2、3、4、5、6、7操作步骤,以获得其v R 、s R 及R 值。 五、数据处理 1.体积电阻系数

(1)由仪表读数计算体积电阻值v R

将仪表指示读数乘以倍率开关所示的倍率及测试开关所指示的系数(1000V 时为1,100V 时为0.1,以此类推〕后所得结果为试样的体积电阻值v R 。 (2)按公式(1)计算体积电阻系数v ρ

2

v v v S r R R d d

πρ==

式中,d 为试样厚度,cm ;S 为测量电极的面积,cm 2。本实验所用测量电极半径 r 为2.5cm 。 2. 表面电阻系数

(1)由仪表读数计算表面电阻值s R ,步骤同v R 。

(2)计算表面电阻系数s ρ,如前所述,进行表面电阻系数测试时,保护电极连接仪器高压端,此时表面电阻系数须按下式计算:

()

212ln v s

R D D π

ρ=

式中D 2是保护电极内径,本实验所用电极的D 2为5.4cm 。D 1是测量电极的直径。 3.总电阻值R

去保护电极后,按测试步骤(7)所得的电阻即为实验的总电阻值。 六、思考题

1.测定表面电阻系数时,保护电极起什么作用?

2.聚合物电介质的电阻系数温度依赖性与金属的有何不同?为什么?

3.近年来已经发现聚合物还可能是半导体、导体甚至超导体,你对此有多少了解? 4.你了解2000年度诺贝尔化学奖获得者Heeger (黑格,美国)、MacDiarmid (麦克迪尔米德,美国)和白川英树(日本)的工作吗? 七、参考文献

1. 何平笙,朱平平,杨海洋.在“高聚物的结构与性能”课程中讲透高聚物的特点.高分子通报,

2001,(5): 74~79

2. He Pingsheng, Yang Haiyang, Zhu Pingping. What are the characters of polymers, comparing

with low molecular weight compounds? International Journal of Engineering Education.: Theory and Practice , 2003, 12(8):66~69

3. 徐种德,何平笙,周漪琴,马德柱等.高聚物的结构与性能.北京:科学出版社,1981;马德

柱,何平笙,徐种德,周漪琴.第二版,1995,第七章 4. 晨光化工厂编.塑料测试.北京:燃料化学工业出版社,1973 5. J.V .Schmitz. Ed. Testing of Polymers. 1965,V ol.1,Chap.6

6. 董炎明,张海良.高分子科学教程.北京:科学出版社,2004

7. 何曼君,陈维孝,董西侠,高分子物理,修订版,上海:复旦大学出版社,1990 8. 平郑骅,汪长春,高分子世界,上海:复旦大学出版社,2001 八、安全事项

1.本实验使用的是高压直流电源(1000V ),实验中必须注意安全,测试前务请认真阅读本书,测试中必须严格按照操作步骤,注意,切勿用人体部位触及x R 高压端。 2.切勿误将x R 高压端接地,否则引起烧机责任事故。

3.每完成一个试样的测试后,务必先将放电-测试开关拨向放电位置,输入短路开关拨至短

路位置,2min后方可取出试样,以免受电容器中残余电荷的电击。

高分子物理实验

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 《高分子物理实验》是高分子科学体系的重要组成部分,是从事高分子科学与材料研究的最基础的实验技术,是研究和表征聚合物结构和性能关系的一门实验科学,是高分子材料与工程专业的一门专业必修课。本实验课的主要内容是使学生掌握研究和表征聚合物的结构、力学性能、电性能、热性能及溶液性质的基本方法和手段,掌握基础的相关实验技能与数据分析处理方法。通过实验使学生能够理论结合实践,进一步加深高分子物理专业知识的理解,使学生基本掌握高分子物理实验的基本原理、操作过程、数据采集、数据分析与处理,实验知识和技能,提高学生的动手能力与实验技能,培养学生严谨的科学态度与思维方法,为后续的高分子材料与科学的相关实践和毕业设计打下基础。 2.设计思路: 本课程实验内容主要包括以下几个方面:高聚物结构的表征与分析(包括实验一、五、六、七、九、十),力学性能的表征与分析(包括实验二、三、四),电性能(实验十一、十二)及热性能(实验七与实验九涉及到了材料的热性能)。实验中既有基本实验技能的操作,又有实验报告、数据处理分析及相应的思考题,使学生通过实验原理学习、实验操作、数据分析与讨论,掌握高分子物理结构与性能研究的基本方法与过程、操作技能、数据分析处理能力,分析解决问题能力,加深对实际科研实践的认识,提高理论知识的综合运用能力和实践能力,为后续的实验、实践和毕业设计打下基础。 - 6 -

3. 课程与其他课程的关系 先修课程:高分子化学、高分子物理。本课程需要学习材料与化学的相关基础课程,这些课程是学习高分子化学与高分子物理的基础,因此在此不再列出。 二、课程目标 本实验课的目的是使学生掌握测定和研究聚合物的结构、力学性能、电性能、热性能及溶液性质的方法和手段,对聚合物结构与性能之间关系获得初步认识。通过本课程的学习使学生增加感性认识,加深理论知识的理解,提高学生的动手能力和实验技能,培养学生的科学态度和工作作风。使学生逐步具备一定的从事科学研究的思维方法和实验能力。 基本要求: 1、使学生进一步理解高分子物理学中的一些基本概念与相关理论知识。 2、使学生掌握测定和表征聚合物结构与性能的基本方法的原理、正确进行仪器操作与使用。 3、能够互相配合完成实验过程,处理实验过程中遇到的简单问题。 4、能够独立进行数据处理分析,并完成实验报告。 三、学习要求 高分子物理实验是理论基础上的实验操作技能课,有利于学生加深对基础理论的理解与实际运用,对提高学生的实验动手能力与实践能力非常重要。另外,课程在实验室进行,因此必须严格遵守实验室的相关规章制度,保障实验过程中的实验安全与人身安全。具体要求如下: 1、学生必须严格遵守实验室的相关规章制度,严禁违反实验室安全要求的任何行为。 2、实验前认真阅读讲义,实验前进行预习,就实验目的、原理、实验注意事项等书写预习报告。实验必须准时,不能擅自更换实验时间。 3、实验时要认真操作,认真观察现象,做好记录。必须准备实验记录本,所有原始记录(实验数据及现象)均记录在记录本上,不允许记在他处。不允许篡改,编造实验数据与记录。 4、实验时,遵守操作规程,注意安全。有与实验相关问题,及时与老师交流,未 - 6 -

《高分子物理实验讲义》

实验1 平衡溶胀法测定交联聚合物的溶度参数与交联度 溶度参数是与物质的内聚能密度有关的热力学参数,实际上也是表征分子间作用力的物理量。在高分子溶液性质的研究中以及生产实际中,常常凭借溶度参数来判断非极性体系的互溶性。例如,溶度参数对聚合物的溶解、油漆和涂料的稀释、胶黏剂的配制、塑料的增塑、聚合物的相容性、纤维的溶液纺丝等等,都有一定的参考价值。 对于交联聚合物,与交联度直接相关的有效链平均分子量 C M 是一个重要的结构参数,C M 的大小对交联聚合物的物理机械性能具有很大的影响。 因此,测定和研究聚合物的溶度参数与交联度十分重要,平衡溶胀法是间接测定交联聚合物的溶度参数与有效链平均分子量 C M 的一种简单易行的方法。另外还可间接测得高分子-溶剂的相互作用参数1x 。 一、实验目的: (1)了解溶胀法测聚合物溶度参数及 C M 的基本原理。 (2)掌握重量法测交联聚合物溶胀度的实验技术。 (3)粗略地测出交联聚合物的溶度参数、C M 及1x 。 二、实验原理: 聚合物的溶度参数不像低分子化合物可直接从汽化热测出,因为聚合物分子间的相互作用能很大,欲使其汽化,势必裂解为小分子,所以只能用间接的方法测定,平衡溶胀法是其中的一种方法。交联结构的聚合物不能为溶剂所溶解,但能吸收大量的溶剂而溶胀。溶胀过程中,溶剂分子渗入聚合物内使体积膨胀,以致引起三维分子网的伸展,而分子网受到应力产生了弹性收缩力,阻止溶剂进入网状链。当这两种相反的倾向相互抵消时,即溶剂分子进入交联网的速度与被排出的速度相等,就达到了溶胀平衡态。 溶胀的凝胶实际上是聚合物的溶解液,能溶胀的条件与线性聚合物形成溶液相同。根据热力学原理,聚合物能够在液体中溶胀的必要调节是混合自由能 m F <0 ,而

NTC热敏电阻原理及应用.

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) B 值( K )

高分子物理实验解析

高分子物理实验指导书 刘艳辉周金华 材料科学与工程学院

目录 实验一、偏光显微镜法观察聚合物球晶 (2) 实验二、聚合物熔体流动速率的测定 (4) 实验三、聚合物拉伸强度和断裂伸长率的测定 (6) 实验四、聚合物材料弯曲强度的测定 (9) 实验五、聚合物材料冲击强度的测定 (11) 实验六、聚甲基丙烯酸甲酯温度—形变曲线的测定 (13) 实验七、介电常数及介电损耗测定 (14) 实验八、聚合物电阻的测量 (17) 实验九、用旋转黏度计方法测定聚合物浓溶液的流动曲线 (18) 实验十、稀溶液粘度法测定聚合物的分子量 (20) 实验一偏光显微镜观察聚合物的结晶形态 (28) 实验二激光小角散射法测聚合物球晶 (30) 实验三相差显微镜法观察共混物的结构形态 (34) 实验四粘度法测定高聚物的分子量 (37) 实验五高聚物熔融指数的测定 (42) 试验六高分子材料的电阻值的测定 (45) 实验七应力——应变曲线实验 (52) 附:塑料冲击实验 (58)

实验一、偏光显微镜法观察聚合物球晶 一、实验目的 1.熟悉偏光显微镜的构造,掌握偏光显微镜的使用方法。 2.观察不同结晶温度下得到的球晶的形态,估算聚丙烯球晶大小。 3.测定聚丙烯在不同结晶度下晶体的熔点。 4.测定25℃下聚丙烯的球晶生长速度。 二、实验原理 聚合物的结晶受外界条件影响很大,而结晶聚合物的性能与其结晶形态等有密切的关系,所以对聚合物的结晶形态研究有着很重要的意义。聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维晶等等,而其中球晶是聚合物结晶时最常见的一种形式。球晶可以长得比较大,直径甚至可以达到厘米数量级.球晶是从一个晶核在三维方向上一齐向外生长而形成的径向对称的结构,由于是各向异性的,就会产生双折射的性质。聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图形,因此,普通的偏光显微镜就可以对球晶进行观察。 偏光显微镜的最佳分辨率为200 nm,有效放大倍数超过100—630倍,与电子显微镜、x射线衍射法结合可提供较全面的晶体结构信息。 球晶的基本结构单元是具有折叠链结构的片晶,球晶是从一个中心(晶核)在三维方向上一齐向外生长晶体而形成的径向对称的结构,即—个球状聚集体。光是电磁波,也就是横波,它的传播方向与振动方向垂直。但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波,即偏振光。—束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。光波在各向异性介质中传播时,其传播速度随振动方向不同而变化。折射率值也随之改变,一般都发生双折射,分解成振动方向相互垂直、传播速度不同、折射率不同的两条偏振光。而这两束偏振光通过第二个偏振片时。只有在与第二偏振轴平行方向的光线可以通过。而通过的两束光由于光程差将会发生干涉现象。 在正交偏光显微镜下观察,非晶体聚合物因为其各向同性,没有发生双折射现象,光线被正交的偏振镜阻碍,视场黑暗。球晶会呈现出特有的黑十字消光现象,黑十字的两臂分别平行于两偏振轴的方向。而除了偏振片的振动方向外,其余部分就出现了因折射而产生的光亮。在偏振光条件下,还可以观察晶体的形态,测定晶粒大小和研究晶体的多色性等等。 三、实验仪器和材料 1.偏光显微镜(图1-1)及电脑一台、附件一盒、擦镜纸、镊子; 2.热台、恒温水浴、电炉。 3.盖玻片、裁玻片。 4.聚丙烯薄膜。 四、实验步骤 1.启动电脑,打开显微镜摄像程序AVerMedia EZCapture. 2.显徽镜调整 (1)预先打开汞弧灯10min,以获得稳定的光强,插入单色滤波片。 (2)去掉显微镜目镜,起偏片和检偏片置于90°,边观察显微镜筒,边调节灯和反光镜

热敏电阻包括正温度系数和负温度系数热敏电阻

热敏电阻包括正温度系数和负温度系数热敏电阻。 新晨阳电子- 热敏电阻 的主要特性是:1.锐敏度比拟高,其电阻感温系数要比非金属大10~100倍之上;2.任务感温范畴宽,常温机件实用于-55℃~315℃,低温机件实用感温高于315℃(眼前最高可到达2000℃)高温机件实用于-273℃~55℃; 3.容积小,可以丈量其余温度表无奈丈量的空儿、腔体及生物体内血脉的感温;4.运用便当,电阻值可正在0.1~100kΩ间恣意取舍;5.易加工成简单的外形,可少量量消费; 6.稳固性好、超载威力强. 因为半超导体热敏电阻有共同的功能,因为正在使用范围它能够作为丈量组件(如丈量感温、流量、液位等),还能够作为掌握组件(如感温电门、限流器)和通路弥补组件。热敏电阻宽泛用来家用电器、风力轻工业、通信、军事迷信、宇航等各个畛域,发展前途极端宽广。 一、PTC热敏电阻 PTC(Positive Temperature Coeff1Cient)是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻现象或材料,可专门用作温度传感器。该材料是以BaTiO3或SrTiO3或PbTiO3为主要成分的烧结体,其中掺入微量的Nb、Ta、Bi、Sb、Y、La等氧化物进行原子价控制而使之半导化,常将这种半导体化的BaTiO3等材料简称为半导(体)瓷;同时还添加增大其正电阻温度系数的Mn、Fe、Cu、Cr的氧化物和起其他作用的添加物,采用一般陶瓷工艺成形、高温烧结而使钛酸铂等及其固溶体半导化,从而得到正温度的热敏电阻材料.其温度系数及居里点温度随组分及烧结条件(尤其是冷却温度)不同而变化。 钛酸钡晶体属于钙钛矿型结构,它是一种铁电材料,纯钛酸钡是一种绝缘材料。在钛酸钡材料中加入微量稀土元素,进行适当热处理后,在居里温度附近,电阻率陡增几个数量级,产生PTC效应,此效应与BaTiO3晶体的铁电性及其在居里温度附近材料的相变有关。钛酸钡半导瓷是一种多晶材料,晶粒之间存在着晶粒间接口。该半导瓷当达到某一特定温度或电压,晶体粒界就发生变化,从而电阻急剧变化。 钛酸钡半导瓷的PTC效应起因于粒界(晶粒间界)。对于导电电子来说,晶粒间接口相当于一个势垒。温度低时,由于钛酸钡内电场的作用,导致电子极容易越过势垒,则电阻值较小。当温度升高到居里点温度(即临界温度)附近时,内电场受到破坏,它不能说明导电电子越过势垒。这相当于势垒升高,电阻值突然增大,产生PTC效应。钛酸钡半导瓷的PTC效应的物理模型有海望表面势垒模型、丹尼尔斯等人的钡缺位模型和迭加势垒模型,它们分别从不同方面对PTC 效应作出了合理解释。 PTC热敏电阻于1950年出现,随后1954年出现了以钛酸钡为主要材料的PTC

NTC负温度系数热敏电阻专业术语.

NTC负温度系数热敏电阻专业术语 ?零功率电阻值RT (Q) RT指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T - 1/TN) RT :在温度T (K )时的NTC热敏电阻阻值。 RN :在额定温度TN (K )时的NTC热敏电阻阻值。 T :规定温度(K )。 B : NTC热敏电阻的材料常数,又叫热敏指数。 exp :以自然数e为底的指数(e = 2.71828…)。 该关系式是经验公式,只在额定温度TN或额定电阻阻值RN的有限范围内才具有一定的精确度,因为材料常数B本身也是温度T的函数。 ?额定零功率电阻值R25 (Q) 根据国标规定,额定零功率电阻值是NTC热敏电阻在基准温度25 C时测得的电阻值R25,这个电阻值就是NTC热敏电阻的标称电阻值。通常所说NTC 热敏电阻多少阻值,亦指该值。 ?材料常数(热敏指数)B值(K ) B值被定义为: TiTj Rn RT1 :温度T1 (K )时的零功率电阻值。 RT2 :温度T2 (K )时的零功率电阻值。 T1,T2 :两个被指定的温度(K )。 对于常用的NTC热敏电阻,B值范围一般在2000K?6000K之间。?零功率电阻温度系数(a T ) 在规定温度下,NTC热敏电阻零动功率电阻值的相对变化与引起该变化的温度变化值之比值。 B R dT

a T :温度T (K )时的零功率电阻温度系数 RT :温度T (K )时的零功率电阻值。 T :温度(T )。 B :材料常数。 ?耗散系数(S) 在规定环境温度下,NTC热敏电阻耗散系数是电阻中耗散的功率变化与电阻体相应的温度变化之比值。 - AP S: NTC热敏电阻耗散系数,(mW/ K)。 △ P : NTC热敏电阻消耗的功率(mW)。 △ T : NTC热敏电阻消耗功率△ P时,电阻体相应的温度变化(K )0?热时间常数(T) 在零功率条件下,当温度突变时,热敏电阻的温度变化了始未两个温度差的63.2%时所需的时间,热时间常数与NTC热敏电阻的热容量成正比,与其耗散系数成反比。 C T ------------- 6 T:热时间常数(S )。 C: NTC热敏电阻的热容量。 S: NTC热敏电阻的耗散系数。 ?额定功率Pn 在规定的技术条件下,热敏电阻器长期连续工作所允许消耗的功率。在此功率下,电阻体自身温度不超过其最高工作温度。 ?最高工作温度Tmax 在规定的技术条件下,热敏电阻器能长期连续工作所允许的最高温度。即: 丁max - 丁0士f T0-环境温度。 ?测量功率Pm

(推荐)《高分子物理实验》word版

南昌大学实验报告 实验项目名称:_______膨胀计法测定聚合物的玻璃化转变温度______________学生姓名:____________ 学号:___________ 专业班级:______________实验类别:基础专业实验类型:验证综合设计 创新 实验要求:必修选修实验日期:___________ 实验成绩:________ 一、实验目的 1. 了解膨胀计测量聚合物玻璃化温度的方法。 2. 深入理解自由体积概念在高分子学科中的重要性。 二、实验基本原理 在玻璃态下,由于链段运动被冻结,自由体积也被冻结,聚合物随温度升高而发 T以上,除了正常的分子生的膨胀只是由于正常的分子膨胀过程造成的,而在 g 膨胀过程外,还有自由体积的膨胀,因此高弹态的膨胀系数比玻璃态的膨胀系数 T就要发生斜率的变化。 来得大。若以比容对温度作图,在 g 三、主要仪器设备及耗材 膨胀计、水浴及加热器、颗粒状尼龙6、丙三醇。 四、实验步骤 1. 洗净膨胀计,烘干。装入尼龙6颗粒至比重瓶的4/5体积。 2. 在膨胀管内加入丙三醇作为介质,用玻璃棒搅动(或抽气)使膨胀管内没有气泡。 3. 再加入丙三醇至比重瓶口,插入毛细管,使丙三醇的液面在毛细管下部,磨口接头用弹簧固定,如果管内发现有气泡要重装。 4. 将装好的膨胀计浸入水浴中,于30C恒定20min后,设置最高温度为60C,控制水浴升温速率约为1.25C/min。

5. 读取水浴温度和毛细管内丙三醇液面的高度,从30~55 C 每升高1C 读数一次(升温速率控制为0.5C/min ),到55C 为止。 6. 毛细管内液面高度对温度作图。从直线外延点求得升温速度 1.25 C/min 下尼龙6的g T 。 五、实验数据及处理结果 3.3 3.4 3.5 3.6 3.73.8 3.9 4.0 h /m m Tamperature /o C 升温速度1.25C/min 下尼龙6的g T 为44C 。 六、思考讨论题或体会或对改进实验的建议 略 七、参考资料 1.何平笙,杨海洋,朱平平,瞿保均. 高分子物理实验. 合肥:中国科学技术大学出版社,2002 2.陈义旺. 高分子物理实验补充讲义. 南昌大学,2006

热敏电阻

热敏电阻根据温度系数分为两类:正温度系数热敏电阻和负温度系数热敏电阻。由于特性上的区别,应用场合互不相同。 正温度系数热敏电阻简称PTC(是Positive Temperature Coefficient 的缩写),超过一定的温度(居里温度---居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。)时,它的电阻值随着温度的升高呈阶跃性的增高。其原理是在陶瓷材料中引入微量稀土元素,如La、Nb...等,可使其电阻率下降到10Ω.cm以下,成为良好的半导体陶瓷材料。这种材料具有很大的正电阻温度系数,在居里温度以上几十度的温度范围内,其电阻率可增大 4~10个数量级,即产生所谓PTC效应。 目前大量被使用的PTC热敏电阻种类:恒温加热用PTC热敏电阻;低电压加热用PTC热敏电阻;空气加热用热敏电阻;过电流保护用PTC热敏电阻;过热保护用PTC热敏电阻;温度传感用PTC热敏电阻;延时启动用PTC 热敏电阻。 负温度系数热敏电阻简称NTC(是Negative Temperature Coefficient 的缩写),泛指负温度系数很大的半导体材料或元器件。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 PTC、NTC两种热敏电阻都可以用作温度传感,在目前的实际应用中,多采用NTC热敏电阻作为温度测量、控制的温度传感器。 NTC负温度系数热敏电阻专业术语 零功率电阻值R T(Ω) R T指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

高分子物理实验讲解--实用.doc

实验 1 平衡溶胀法测定交联聚合物的溶度参数与交联度 溶度参数是与物质的内聚能密度有关的热力学参数,实际上也是表征分子 间作用力的物理量。在高分子溶液性质的研究中以及生产实际中,常常凭借溶度参数来判断非极性体系的互溶性。例如,溶度参数对聚合物的溶解、油漆和涂料的稀释、胶黏剂的配制、塑料的增塑、聚合物的相容性、纤维的溶液纺丝等等, 都有一定的参考价值。 对于交联聚合物,与交联度直接相关的有效链平均分子量M C是一个重要的结构参数, M C的大小对交联聚合物的物理机械性能具有很大的影响。 因此,测定和研究聚合物的溶度参数与交联度十分重要,平衡溶胀法是间接 测定交联聚合物的溶度参数与有效链平均分子量M C的一种简单易行的方法。另外还可间接测得高分子-溶剂的相互作用参数x1。 一、实验目的: (1)了解溶胀法测聚合物溶度参数及M C的基本原理。 (2)掌握重量法测交联聚合物溶胀度的实验技术。 (3)粗略地测出交联聚合物的溶度参数、M C及x1。 二、实验原理: 聚合物的溶度参数不像低分子化合物可直接从汽化热测出,因为聚合物分 子间的相互作用能很大,欲使其汽化,势必裂解为小分子,所以只能用间接的方法测定,平衡溶胀法是其中的一种方法。交联结构的聚合物不能为溶剂所溶解, 但能吸收大量的溶剂而溶胀。溶胀过程中,溶剂分子渗入聚合物内使体积膨胀, 以致引起三维分子网的伸展,而分子网受到应力产生了弹性收缩力,阻止溶剂进入网状链。当这两种相反的倾向相互抵消时,即溶剂分子进入交联网的速度与被 排出的速度相等,就达到了溶胀平衡态。 溶胀的凝胶实际上是聚合物的溶解液,能溶胀的条件与线性聚合物形成溶液相同。根据热力学原理,聚合物能够在液体中溶胀的必要调节是混合自由能 F m<0,而

正温度系数

正温度系数正温度系数热敏电阻 正温度系数 正温度系数热敏电阻热敏电阻的一种,正温度系数热敏电阻其电阻值随着PTC热敏电阻本体温度的升高呈现出阶跃性的增加, 温度越高,电阻值越大。 热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,利用的原理是温度引起电阻变化.若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为: σ=q(nμn+pμp) 因为n、p、μn、μp都是依赖温度T的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理. 热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR).它们的电阻-温度特性. 热敏电阻的主要特点是: 1、使用方便,电阻值可在0.1~100kΩ间任意选择; 2、易加工成复杂的形状,可大批量生产;⑥稳定性好、过载能力强; 3、工作温度范围宽,常温器件适用于- 55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃; 4、体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度; 5、灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;

正温度系数热敏电阻 PTC热敏电阻是一种典型具有温度敏感性的半导体电阻,超过一定的温度(居里温度)时,它的电阻值随着温度的升高呈阶跃性的增高。 热敏电阻的一种,正温度系数热敏电阻其电阻值随着PTC热敏电阻本体温度的升高呈现出阶跃性的增加,温度越高,电阻值越大。 PTC是Positive Temperature Coefficient 的缩写,意思是正的温度系数,泛指正温度系数很大的半导体材料或元器件。通常我们提到的PTC是指正温度系数热敏电阻,简称PTC热敏电阻。 PTC热敏电阻是一种典型具有温度敏感性的半导体电阻,超过一定的温度(居里温度)时,它的电阻值随着温度的升高呈阶跃性的增高。 热敏电阻的一种,正温度系数热敏电阻其电阻值随着PTC热敏电阻本体温度的升高呈现出阶跃性的增加,温度越高,电阻值越大。 PTC是Positive Temperature Coefficient 的缩写,意思是正的温度系数,泛指正温度系数很大的半导体材料或元器件。通常我们提到的PTC是指正温度系数热敏电阻,简称PTC热敏电阻。 正温度系数热敏电阻特点 1、稳定性好、过载能力强. 2、工作温度范围宽,常温器件适用于- 55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃; 3、灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化; 4、易加工成复杂的形状,可大批量生产; 5、体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度; 6、使用方便,电阻值可在0.1~100kΩ间任意选择;

2016高分子物理实验复习

高分子物理实验复习 实验一橡胶的表面电阻系数与体积电阻系数的测定 1.为什么测量时仪器的读数总是不稳? 一般的材料其导电性不是严格像标准电阻样在一定的电压下有很稳定的电流,有很多材料特别是防静电材料其导电性不符合欧姆定律,所以在测量时其读数不稳。 这不是仪器的问题,而是被测量物体的性能决定的。有的标准规定以测量1分钟时间的读数为准。通常在测量高电阻或微电流时测量准确度因重复性不好,对测量读数只要求2位或3位。另外在测量大电阻时如果**不好也会因外界的电磁信号对仪器测量结果造成读数不稳 体积电阻率表面电阻率测试仪工作原理: 根据欧姆定律,被测电阻R等于施加电压V除以通过的电流I。即V=R/I传统的仪器的工作原理是测量电压V固定,通过测量流过被测物体的电流I以标定电阻的刻度来读出电阻值。从上式可以看出,由于电流I是与电阻成反比,而不是成正比,所以电阻的显示值是非线性的,即电阻无穷大时,电流为零,即表头的零位处是∞,其附近的刻度非常密,分辨率很低。整个刻度是非线性的。又由于测量不同的电阻时,其电压V也会有些变化,所以普通的高阻计的精度是很难提高的。 2.为什么测量同一物体时用不同的电阻量程有不同的读数? 误差区间不一样 实验二橡胶抗张力实验 实验速度对拉伸强度有什么影响? 速度快,强度高,伸长率小,数据不稳定,测试时间短 速度慢,强度低,伸长率大,数据相对稳定,测试时间长 具体的还是要根据材料的特性来定速度 实验三DMA动态力学分析仪操作实验 1.DMA主要测量的基本物理量是?其在高分子材料测试方面的应用是什么?

样品受到变化着的外力作用时,产生相应的应变,在这种外力作用下,对样品的应力-应变关系随温度等条件的变化进行分析 2.DMA的夹具有哪些,他们对尺寸的要求分别是什么? 3.以下两个DMA曲线图,分别是丙烯酸丁酯? 实验四塑料冲击性能测试 实验五偏光显微镜法测高聚物球晶形态 1.为什么说球晶是多晶体? 因为球晶是以一个晶核为中心沿各径向方向生长而成的。由于各方向上的生长速度相同,因而生成一圆球状的多晶聚集体。球晶的尺寸约为0.1μm到几毫米,通常为1μm到100μm之间。球晶是聚合物最常见的、最重要的一类结晶形态。所以说它是多晶体。 2.解释球晶在偏光显微镜中出现十字消光图像和同心圆消光图像的原因? 答:当偏振光照射到各向异性的晶体表面时,会发生双折射现象,即原来的一束偏正光会分解为振动平面互相垂直的光线,由于两束光线在两个方向上的折射率不同,从而光线通过样品时的速度也不同,这样两束光就就会产生一定的相位差,发生干涉现象,这样有些光线可以通过检偏器,而有些光线不能通过检偏器,在照片上就形成了明暗的区域,即所谓的黑十字现象、又由于球晶中各个径向发射堆砌的条状晶片有时按照一定的周期规则的螺旋形扭转,使得球晶在偏振显微镜中呈现出一系列的消光同心圆环。 2.说明选择结晶温度的理论依据? 刚好达到熔点,缓慢降温,生成少量晶核,以便生成大球晶 实验六小角激光光散射法观察聚合物球晶 1.与光学显微镜相比,用小角激光光散射法研究结晶态聚合物的球晶结构有什么优点?

NTC负温度系数热敏电阻

NTC 负温度系数热敏电阻 热敏电阻分为三类:正温度系数热敏电阻(PTC ),负温度系数热敏电阻(NTC ),临界温度电阻器(CTR )。 图1-1 NTC 负温度系数热敏电阻 负温度系数热敏电阻器如图1-39所示。其电阻值随温度的增加而减小。NTC 热敏电阻器在室温下的变化范围在10O ~1000000欧姆,温度系数-2%~-6.5%。 ⑴ 负温度系数热敏电阻温度方程 )(T f =ρ T B T e A /'=ρ T B T B T T Ae e S l A S l R //'===ρ 其中:S l A A ' = 电阻值和温度变化的关系式为: )1 1(exp N N T T T B R R -= R T --在温度T ( K )时的NT C 热敏电阻阻值。 R N --在额定温度T N ( K )时的NTC 热敏电阻阻值。以25°C 为基准温度时测得的电阻值R N =R25,R25就是NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指R25值。 B---NTC 热敏电阻的材料常数,又叫热敏指数。T T T R R T T T T B 0 00ln -= 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数B 本身也是温度 T 的函数。NTC 热敏电阻器在室温下的变化范围在10O ~1000000欧姆,温度系数-2%~-6.5%。 已知温度T 、额定温度T N 和R25即可求的热敏电阻阻值R T 。 ⑵ 负温度系数热敏电阻主要特性 电阻温度系数σ

dT dR R T T 1= σ 微分式(),可得 2 T B -=σ 热敏电阻的温度系数是负 值。 -----温度测量电桥应用 温度测量电桥的A 点所在的桥臂的电阻是固定的,故A U 是固定的。B 点所在的桥臂的电阻t R 随温度变化,故B U 是变动的。电阻t R 为负温度系数热敏电阻, t R =1.5K 指NTC 热敏电阻的标称电阻值R 25。为了方便取2R 与t R 成比例,这里取 K R R t 5.12==,同时,13 1 1212 E E R R R A U =+= ,得Ω=7501R 。 在前面已知条件下,推导13’ 3P R R R +=: 约束条件:① U U U U U B A i ??+-=??-,② 13 1 E A U =。 由测量电桥平衡0=-=B A i U U U 时,得Ω==+=750113’ 3R R R R P 。 又由1'3 1131E R t R t R E U U U B A i +-=-=,得R p R R R ?±Ω=+=75013'3。故取K R P 11=。 ⑴ 温度控制器电路 温度控制器电路如图3-7所示,由测量电桥、测量放大器、滞回比较器 及驱动电路等组成。由于温度的不同,因而在测量电桥的A 、B 点时会产生不同的电压差,这个差值经过测量放大器放大后进入到滞回比较器的反相输入端,与比较电压U R 比较后,由滞回比较器输出信号进行加热或停止加热。

高分子物理实验思考题(自整理)讲解

实验一黏度法测定聚合物分子量 1.实验操作中,哪些因素对实验结果有影响? 粘度管口径,粘度管是否垂直及是否干净,溶液密度,人的读数误差,秒表精度等等。 2.如何测定mark-houwink方程中的参数k,α值? 答:将聚合物式样进行分级,获得分子量从小到大比均一的组分,然后测定各组分的平均分子量及特性粘度[η]=kMα,两边取对数,作图得斜率和截距。 实验二偏光显微镜法观察聚合物球晶 1.聚合物结晶体生长依赖什么条件,在实际生产中如何控制晶体的形态? 依赖于分子结构的对称性与规整性,以及温度,浓度,成核剂,杂质,机械力等条件。 ①控制形成速度:将熔体急速冷却生成较小球晶,缓慢冷却则生成较大球晶 ②采用共聚的方法:破坏链的均一性和规整性,生成小球晶3外加成核剂可获得甚至更微小的球晶。 实验三扫描电镜观察物质表面微观结构 1.为什么样品边缘或者表面斜坡处比较亮? 因为扫描电镜收集的是二次电子,通过收集的二次电子成像,而样品的边缘和斜坡处由于形貌都比较尖锐突出,所以对二次电子的反射强度高,因而在边缘和斜坡处的图像比较发亮。 2. 电镜的固有缺陷有哪几种?像闪是怎样产生的? 球差,色差,衍色差,像闪。极革化材料加工精度,极革化材料结构和成分不均匀性影响磁饱和,导致场的不均匀性造成像闪。

实验四DSC,DTA 1.解释DSC和DTA测试原理的差异 DTA是测量试样和参比物的温度差,而DSC使试样和参比物的温度相等,而测的是维持试样和参比物的温度相等所需要的功率 DTA:测温差,定性分析,测温范围大,灵敏性低 DSC:测能量差,定量分析,精度高,测温范围小(相对DTA)灵敏度高 2.同一聚合物样品,TGA测试得到样品分解温度及分解步骤有差异,可能原因是什么? 1,通入气体的种类即气氛不同,N2不参与反应,热效应小,影响不大;2升温速率不同,如果升温速率太快反应温度就会不均匀不能得到准确的峰,相反,试量少一些温度会相对均匀,就可以得到尖锐的峰形和相对准确的峰温;3,实验开始时仪器的校准不准确;4样品用量的多少,用量多一点好,在侧重感相同的情况下,可以得到较高的相对精度。 实验五电子拉力机测定聚合物的应力-应变曲线 1. 拉伸速度对测试结果有何影响? 一般情况下,拉伸速度越大,所测得的强度值越高。在低的拉伸速度下,有充足的时间利于缺陷的发展,从而强度值较小,而较大的拉伸速度下,材料的断裂主要是其化学键的破坏引起,测得的强度值较大。 2. 根据拉伸过程中屈服点的表现、伸长率大小及断裂情况,应力-应变曲线大致可分为几种类型? 目前大致可归纳成5种类型

高分子物理课程电子教案

《高分子物理》课程电子教案 《高分子物理》课程教学大纲 英文名称: Polymer Physics 课程类别:学科基础课 学时:64 学分:4 适用专业:高分子材料与工程 一、本课程的性质、任务 高分子物理课程包括:高聚物的结构、高高分子物理学是高分子材料与工程专业的基础课。通过本门课程的学习,要求学生对高分子的合成、加工、应用、改性等具有全面的了解。并使学生重点掌握结构、性能及两者之间关系的一些基本概念、必要的知识、分析测试方法、一定的计算能力,从而为专业课的学习打下理论基础,并为高分子材料的合成、加工、选材、应用、改性、性能测试等提供理论依据,进而指导生产实践。高分子物理课程教学包括理论教学和实验教学。结合本门课程的实验,对学生进行相关的基本训练,培养学生分析问题和解决问题的实际工作能力。总之,通过本门课程的学习及实验为后续专业课的学习提供必备的基础知识。 二、本课程的基本要求 本课程包括高分子的链结构和聚集态结构、高分子的溶液性质、高分子的运动和高分子力学性能和电性能四大部分。通过学习,要使学生对教学内容达到“了解”、“认识和理解”、“掌握”和“熟练掌握”层次要求。即通过学习要求学生对基本分析方法、各种测试方法、各种实验的基本原理、高分子尺寸表示方法及其推导要全面了解。对高聚物的结晶结构模型、非晶态结构、液晶结构、织态

结构有明确的认识和理解。掌握高聚物的各种力学状态、力学行为、各种性能曲线的详细分析和典型推导。熟练掌握高聚物结构、性能及两者之间相互关系的基本概念、必要的知识。熟练掌握高聚物的各种特征温度、测定方法。 三、讲授内容 1 高分子链的结构 1.1 概论 1.1.1 高分子科学的诞生与发展 1.I.2 高分子结构的特点 I.1.3 高分子结构的内容 1.2 高分子链的近程结构 1.2.1 结构单元的化学组成 1.2.2 键接结构 1.2.3 支化与交联 1.2.4 共聚物的结构 1.2.5 高分子链的构型 1.3 高分子链的远程结构 1.3.1 高分子的大小 1.3.2 高分子涟的内旋持构象 1.3.3 高分子链的柔顺性 1.4 高分子链的构象统计 1.4.1 均方末端距的几何计算法 1.4.2 均方末端距的统计计算法 1.4.3 高分子链柔顺性的表征 1.4.4 高分子链的均方旋转半径 2 高分子的聚集态结构 2.1 高聚物分子间的作用

NTC 负温度系数热敏电阻选型与应用

NTC负温度系数热敏电阻选型与应用 I、抑制浪涌电流用MF71型NTC热敏电阻应用说明 开机浪涌电流产生的原因 图1是典型的电子产品电源部分简化电路,C1是与负载并联的滤波电容。在开机上电的瞬间,电容电压不能突变,因此会产生一个很大的充电电流。根据一阶电路零状态响应模型所建立的一阶线性非齐次方程可以求出其电流初始值相当于把滤波电容短路而得到的电流值。这个电流就是我们常说的输入浪涌电流,它是在对滤波电容进行初始充电时产生的,其大小取决于启动上电时输入电压的幅值以及由桥式整流器和电解电容其所形成的回路的总电阻。 图1 电源示意图 假设输入电压V1为220Vac,整个电网内阻(含整流桥和滤波电容)Rs=1Ω,若正好在电源输入波形达到90度相位的时候开机,那么开机瞬间浪涌电流的峰值将达到 I=220×1.414/1=311(A)。这个浪涌电流虽然时间很短,但如果不加以抑制,会减短输入电容和整流桥的寿命,还可能造成输入电源电压的降低,让使用同一输入电源的其它动力设备瞬间掉电,对临近设备的正常工作产生干扰。 浪涌电流的抑制 浪涌电流的抑制方法有很多,一般中小功率电源中采用电阻限流的办法抑制开机浪涌电流。图2是一个常见的110V/220V双输入电源示意图,以此为例,我们分析一下如何使用NTC热敏电阻进行浪涌电流的抑制。 图2 110/220Vac双输入电源示意图

NTC热敏电阻,即负温度系数热敏电阻,其特性是电阻值随着温度的升高而呈非线性的下降。NTC在应用上一般分为测温热敏电阻和功率型热敏电阻,用于抑制浪涌的NTC热敏电阻指的就是功率型热敏电阻器。 图2中R1~R4为热敏电阻浪涌抑制器通常放置的位置。对于同时兼容110Vac和220Vac 输入的双电压输入产品,应该在R1和R2位置同时放两个NTC热敏电阻,这样可使在110Vac 输入连接线连接时和220Vac输入连接线断开时的冲击电流大小一致,也可单独在R3或R4处放置一个NTC热敏电阻。对于只有220Vac输入的单电压产品,只需在R3或R1位置放1个NTC热敏电阻即可。 其工作原理如下: 在常温下,NTC热敏电阻具有较高的电阻值(一般选用5Ω或10Ω),即标称零功率电阻值。参考图1的例子,串接10ΩNTC时,开机浪涌电流为:I=220×1.414/(1+10)= 28(A),比未使用NTC热敏电阻时的311A降低了10倍,有效的起到了抑制浪涌电流的作用。 开机后,由于NTC热敏电阻迅速发热、温度升高,其电阻值会在毫秒级的时间内迅速下降到一个很小的级别,一般只有零点几欧到几欧的大小,相对于传统的固定阻值限流电阻而言,这意味着电阻上的功耗因为阻值的下降随之降低了几十到上百倍,因此这种设计非常适合对转换效率和节能有较高要求的产品,如开关电源。 断电后,NTC热敏电阻随着自身的冷却,电阻值会逐渐恢复到标称零功率电阻值,恢复时间需要几十秒到几分钟不等。下一次启动时,又按上述过程循环。 改进型电源设计 上述使用NTC浪涌抑制器的电路与使用固定电阻的电路相比,已经具备了节能的特性。对于某些特殊的产品,如工业产品,有时客户会提出如下要求:1、如何降低NTC的故障率以提高其使用寿命?2、如何将NTC的功耗降至最低?3、如何使串联了NTC热敏电阻的电源电路能适应循环开关的应用条件? 对于第1、2两点,因为NTC热敏电阻的主要作用是抑制浪涌,产品正常启动后它所消耗的能量是我们不需要的,如果有一种可行的办法能将NTC热敏电阻从正常工作的电路中切断,就可以满足这种要求。 对于第3点,首先分析为什么使用了NTC热敏电阻的产品不能频繁开关。从电路工作原理的分析我们可以看到,在正常工作状态下,是有一定电流通过NTC热敏电阻的,这个工作电流足以使NTC的表面温度达到100℃~200℃。当产品关断时,NTC热敏电阻必须要从高温低阻状态完全恢复到常温高阻状态才能达到与上一次同等的浪涌抑制效果。这个恢复时间与NTC热敏电阻的耗散系数和热容有关,工程上一般以冷却时间常数作为参考。所谓冷却时间常数,指的是在规定的介质中,NTC热敏电阻自热后冷却到其温升的63.2%所需要的时间(单位为秒)。冷却时间常数并不是NTC热敏电阻恢复到常态所需要的时间,但冷却时间常数越大,所需要的恢复时间就越长,反之则越短。 在上述思路的指导下,产生了图3的改进型电路。产品上电瞬间,NTC热敏电阻将浪涌电流抑制到一个合适的水平,之后产品得电正常工作,此时继电器线圈从负载电路得电后动作,将NTC热敏电阻从工作电路中切去。这样,NTC热敏电阻仅在产品启动时工作,而当产品正常工作时是不接入电路的。这样既延长了NTC热敏电阻的使用寿命,又保证其有充分的冷却时间,能适用于需要频繁开关的应用场合。

《高分子物理》课程电子教案

《高分子物理》课程教学大纲 英文名称: Polymer Physics 课程类别:学科基础课 学时:64 学分:4 适用专业:高分子材料与工程 一、本课程的性质、任务 高分子物理课程包括:高聚物的结构、高高分子物理学是高分子材料与工程专业的基础课。通过本门课程的学习,要求学生对高分子的合成、加工、应用、改性等具有全面的了解。并使学生重点掌握结构、性能及两者之间关系的一些基本概念、必要的知识、分析测试方法、一定的计算能力,从而为专业课的学习打下理论基础,并为高分子材料的合成、加工、选材、应用、改性、性能测试等提供理论依据,进而指导生产实践。高分子物理课程教学包括理论教学和实验教学。结合本门课程的实验,对学生进行相关的基本训练,培养学生分析问题和解决问题的实际工作能力。总之,通过本门课程的学习及实验为后续专业课的学习提供必备的基础知识。 二、本课程的基本要求 本课程包括高分子的链结构和聚集态机构、高分子的溶液性质、高分子的运动和高分子力学性能和电性能四大部分。通过学习,要使学生对教学内容达到“了解”、“认识和理解”、“掌握”和“熟练掌握”层次要求。即通过学习要求学生对基本分析方法、各种测试方法、各种实验的基本原理、高分子尺寸表示方法及其推导要全面了解。对高聚物的结晶结构模型、非晶态结构、液晶结构、织态结构有明确的认识和理解。掌握高聚物的各种力学状态、力学行为、各种性能曲线的详细分析和典型推导。熟练掌握高聚物结构、性能及两者之间相互关系的基本概念、必要的知识。熟练掌握高聚物的各种特征温度、测定方法。 三、讲授内容 1 高分子链的结构 1.1 概论 1.1.1 高分子科学的诞生与发展

相关主题
文本预览
相关文档 最新文档