当前位置:文档之家› 实验一:matlab实现apriori算法源代码

实验一:matlab实现apriori算法源代码

实验一:matlab实现apriori算法源代码
实验一:matlab实现apriori算法源代码

实验一:matlab 实现apriori 算法源代码

一、实验目的

通过实验,加深数据挖掘中一个重要方法——关联分析的认识,其经典算法为apriori 算法,了解影响apriori 算法性能的因素,掌握基于apriori 算法理论的关联分析的原理和方法。

二、实验内容

对一数据集用apriori 算法做关联分析,用matlab 实现。

三、方法手段

关联规则挖掘的一个典型例子是购物篮分析。市场分析员要从大量的数据中发现顾客放入其购物篮中的不同商品之间的关系。如果顾客买牛奶,他也购买面包的可能性有多大? 什么商品组或集合顾客多半会在一次购物时同时购买?例如,买牛奶的顾客有80%也同时买面包,或买铁锤的顾客中有70%的人同时也买铁钉,这就是从购物篮数据中提取的关联规则。分析结果可以帮助经理设计不同的商店布局。一种策略是:经常一块购买的商品可以放近一些,以便进一步刺激这些商品一起销售,例如,如果顾客购买计算机又倾向于同时购买财务软件,那么将硬件摆放离软件陈列近一点,可能有助于增加两者的销售。另一种策略是:将硬件和软件放在商店的两端,可能诱发购买这些商品的顾客一路挑选其他商品。

关联规则是描述数据库中数据项之间存在的潜在关系的规则,形式为

1212

......m n A A A B B B ∧∧∧?∧∧∧,其中(1,2...,)i A i m =,(1,2...,)j A j n =是数据库中的数据项.数据项之间的关联规则即根据一个事务中某些项的出现,可推导出另一些项在同一事务中也出现。

四、Apriori 算法

1.算法描述

Apriori 算法的第一步是简单统计所有含一个元素的项集出现的频率,来决定最大的一维项目集。在第k 步,分两个阶段,首先用一函数sc_candidate(候选),通过第(k-1)步中生成的最大项目集L k-1来生成侯选项目集C k 。然后搜索数据库计算侯选项目集C k 的支持度. 为了更快速地计算C k 中项目的支持度, 文中使用函数count_support 计算支持度。 Apriori 算法描述如下:

(1) C 1={candidate1-itemsets};

(2) L 1={c ∈C 1|c.count ≥minsupport};

(3) for(k=2,L k-1≠Φ,k++) //直到不能再生成最大项目集为止 (4) C k =sc_candidate(L k-1); //生成含k 个元素的侯选项目集 (5) for all transactions t ∈D //办理处理

(6) Ct=count_support(C k ,t); //包含在事务t 中的侯选项目集 (7) for all candidates c ∈C t (8) c.count=c.count+1; (9) next

(10) L k ={c ∈C k |c.count ≥minsupport}; (11) next

(12) resultset=resultset ∪L k 其中, D 表示数据库;minsupport 表示给定的最小支持度;resultset 表示所有最大项目集。

Sc_candidate函数

该函数的参数为L k-1,即: 所有最大k-1维项目集,结果返回含有k个项目的侯选项目集C k。事实上,C k是k维最大项目集的超集,通过函数count_support计算项目的支持度,然后生成Lk。

该函数是如何完成这些功能的, 详细说明如下:

首先, 通过对L k-1自连接操作生成C k,称join(连接)步,该步可表述为:

insert into C k

select P.item1,P.item2,...,P.item k-1,Q.item k-1 from L k-1P,L k-1Q

where P.item1=Q.item1,...,P.item k-2=Q.item k-2,P.item k-1

若用集合表示:C k={X∪X'|X,X'∈L k-1,|X∩X'|=k-2}

然后,是prune(修剪)步,即对任意的c,c∈C k, 删除C k中所有那些(k-1)维子集不在L k-1中的项目集,得到侯选项目集C k。表述为:

for all itemset c∈C k

for all (k-1)维子集s of c

if(s不属于L k-1) then delete c from C k;

用集合表示:C k={X∈C k|X的所有k-1维子集在L k-1中}

2.Apriori算法的举例

示例说明Apriori算法运作过程,有一数据库D, 其中有四个事务记录, 分别表示为

在Apriori,并和预定义的最小支持度比较,来确定该步的最大项目集。

首先统计出一维项目集,即C1.这里预定义最小支持度minsupport=2,侯选项目集中满足最小支持度要求的项目集组合成最大的1-itemsets。为生成最大的2-itemsets,使用了sc_candidate函数中join步,即:L1joinL1,并通过prune步删除那些C2的那些子集不在L1中的项目集。生成了侯选项目集C2。搜索D中4个事务,统计C2中每个侯选项目集的支持度。然后和最小支持度比较,生成L2。侯选项目集C3是由L2生成.要求自连接的两个最大2-itemsets中,第一个项目相同,在L2中满足该条件的有{I2,I3},{I2,I5}.这两个集合经过join步后, 产生集合{I2,I3,I5}.在prune步中,测试{I2,I3,I5}的子集{I3,I5},{I2,I3},{I2,I5}是否在L2中,由L2可以知道{I3,I5},{I2,I3},{I2,I5}本身就是最大2-itemsets.即{I2,I3,I5}的子集都是最大项目集.那么{I2,I3,I5}为侯选3-itemset.然后搜索数据库中所有事务记录,生成最大的3-tiemsets L3。此时, 从L3中不能再生成侯选4-itemset 。Apriori算法结束.

算法的图例说明

test.txt格式及内容如下:

实验结果如下:

六、实验总结

Apriori算法可以很有效地找出数据集中存在的关联规则且能找出最大项的关联规则,但从以上的算法执行过程可以看到Apriori算法的缺点:

第一,在每一步产生侯选项目集时循环产生的组合过多,没有排除不应该参与组合的元素;第二,每次计算项集的支持度时,都对数据库D中的全部记录进行了一遍扫描比较,如果是一个大型的数据库的话,这种扫描比较会大大增加计算机系统的I/O开销。而这种代价是随着数据库的记录的增加呈现出几何级数的增加。因此人们开始寻求一种能减少这种系统1/O开销的更为快捷的算法。

七、实验程序

function my_apriori(X,minsup)

clc;

%%%%主函数,输入X数据集,判断产生大于minsup最小支持度的关联规则%%%%%%%%%%%%%%%%%%%%%%%%%%打开test.txt文件file = textread('test.txt','%s','delimiter','\n','whitespace','');

[m,n]=size(file);

for i=1:m

words=strread(file{i},'%s','delimiter',' ');

words=words';

X{i}=words;

end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% minsup=0.3; %预先定义支持度

[m,N]=size(X); %求X的维数

temp=X{1}; %用已暂存变量存储所有不同项集

for i=2:N

temp=union(temp,X{i}); %找出所有不同项(种类)

end

%%%%%%%%%%%%%%%%%%%%找出k-频繁项

L=Sc_candidate(temp); %找出2-项候选项集

sum=1; %统计满足条件的最多项集

while(~isempty(L{1})) %循环终止条件为第k次频繁项集为空sum=sum+1;

C=count_support(L,X,minsup); %挑选出满足最小支持度的k-频繁项

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

sprintf('%s%d%s','满足要求的',sum,'次频繁项集依次为') %显

for i=1:size(C,1) %示disp(C{i,1}); %部end %分

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

L=gen_rule(C); %依次产生k-频繁项(依据apriori算法规则)

End

%%%%%%%%%%%%%%%%%%%%%%%%各个子程序如下function y=cell_union(X,Y) %实现两cell元组合并功能,由k-1项集增加到k项集函数

[m,n]=size(X);

if(~iscellstr(X)) %判断X是否元组

L{1}=X;

L{1,2}=Y;

else

L=X;

L{1,n+1}=Y;

end

y=L;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y=count_support(L,X,minsup)

%找出符合大于支持度sup的候选集,L为候选集,X为总数据集

X=X';%转置

%%%%%%%%%%%%%%%%%统计频繁项

[m,n]=size(L);

[M,N]=size(X);

count=zeros(m,1);

for i=1:m

for j=1:M

if(ismember(L{i},X{j}))

count(i)=count(i)+1;

end

end

end

%%%%%%%%%%%删除数据表中不频繁的项

p=1;

C=cell(1);

for i=1:m

if(count(i)>minsup*M) %小于支持度的项为不频繁数,将删除,大于的保留

C{p}=L{i};

p=p+1;

end

end

y=C';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y=gen_rule(C) %apriori算法规则判断是否产生k-候选项集if(~isempty(C{1})) %判断C是否为空

[M,N]=size(C);

[m,n]=size(C{1});

temp1=C;

L=cell(1);

for i=1:M

temp2{i}=temp1{i}{n};

temp1{i}{n}=[];

end

p=1;

for i=1:M

for j=i+1:M

if(isequal(temp1{i},temp1{j})) %判断前k-1项候选集是否相等

L{p}=cell_union(C{i},temp2{j}); %若相等,则增加至k-项集

p=p+1;

end

end

end

y=L';

else

y=cell(1);%否则y返回空

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y=Sc_candidate(C) %产生2-项候选集函数

C=C'; %转置

[m,n]=size(C);

bcount=zeros(m*(m-1)/2,1);

L=cell(m*(m-1)/2,1);

p=1;

for i=1:m-1 %注意

for j=i+1:m

L{p}=cell_union(C{i},C{j}); %产生2-项候选集

p=p+1;

end

end

y=L;

function y=count_support(L,X,minsup)

%找出符合大于支持度sup的候选集,L为候选集,X为总数据集

X=X';%转置

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%统计频繁项[m,n]=size(L);

[M,N]=size(X);

count=zeros(m,1);

for i=1:m

for j=1:M

if(ismember(L{i},X{j}))

count(i)=count(i)+1;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%删除数据表中不频繁的项

p=1;

C=cell(1);

for i=1:m

if(count(i)>minsup*M) %小于支持度的项为不频繁数,将删除,大于的保留

C{p}=L{i};

p=p+1;

end

end

y=C';

图论算法及其MATLAB程序代码

图论算法及其MATLAB 程序代码 求赋权图G =(V ,E ,F )中任意两点间的最短路的Warshall-Floyd 算法: 设A =(a ij )n ×n 为赋权图G =(V ,E ,F )的矩阵,当v i v j ∈E 时a ij =F (v i v j ),否则取a ii =0,a ij =+∞(i ≠j ),d ij 表示从v i 到v j 点的距离,r ij 表示从v i 到v j 点的最短路中一个点的编号. ①赋初值.对所有i ,j ,d ij =a ij ,r ij =j .k =1.转向② ②更新d ij ,r ij .对所有i ,j ,若d ik +d k j <d ij ,则令d ij =d ik +d k j ,r ij =k ,转向③. ③终止判断.若d ii <0,则存在一条含有顶点v i 的负回路,终止;或者k =n 终止;否则令k =k +1,转向②. 最短路线可由r ij 得到. 例1求图6-4中任意两点间的最短路. 解:用Warshall-Floyd 算法,MATLAB 程序代码如下: n=8;A=[0281Inf Inf Inf Inf 206Inf 1Inf Inf Inf 8607512Inf 1Inf 70Inf Inf 9Inf Inf 15Inf 03Inf 8 Inf Inf 1Inf 3046 Inf Inf 29Inf 403 Inf Inf Inf Inf 8630];%MATLAB 中,Inf 表示∞ D=A;%赋初值 for (i=1:n)for (j=1:n)R(i,j)=j;end ;end %赋路径初值 for (k=1:n)for (i=1:n)for (j=1:n)if (D(i,k)+D(k,j)

聚类分析Matlab程序实现

2. Matlab程序 2.1 一次聚类法 X=[11978 12.5 93.5 31908;…;57500 67.6 238.0 15900]; T=clusterdata(X,0.9) 2.2 分步聚类 Step1 寻找变量之间的相似性 用pdist函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore 函数进行标准化。 X2=zscore(X); %标准化数据 Y2=pdist(X2); %计算距离 Step2 定义变量之间的连接 Z2=linkage(Y2); Step3 评价聚类信息 C2=cophenet(Z2,Y2); //0.94698 Step4 创建聚类,并作出谱系图 T=cluster(Z2,6); H=dendrogram(Z2); Matlab提供了两种方法进行聚类分析。 一种是利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法; 另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用 linkage函数定义变量之间的连接;(3)用 cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。 1.Matlab中相关函数介绍 1.1 pdist函数 调用格式:Y=pdist(X,’metric’) 说明:用‘metric’指定的方法计算 X 数据矩阵中对象之间的距离。’ X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。 metric’取值如下: ‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离; ‘minkowski’:明可夫斯基距离;‘cosine’: ‘correlation’:‘hamming’: ‘jaccard’:‘chebychev’:Chebychev距离。 1.2 squareform函数 调用格式:Z=squareform(Y,..) 说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。 1.3 linkage函数 调用格式:Z=linkage(Y,’method’) 说明:用‘method’参数指定的算法计算系统聚类树。 Y:pdist函数返回的距离向量;

Floyd算法Matlab程序

Floyd算法Matlab程序第一种: %floyd.m %采用floyd算法计算图a中每对顶点最短路 %d是矩离矩阵 %r是路由矩阵 function ,d,r,=floyd(a) n=size(a,1); d=a; for i=1:n for j=1:n r(i,j)=j; end end r for k=1:n for i=1:n for j=1:n if d(i,k)+d(k,j)

end k d r end 第二种: %Floyd算法 %解决最短路径问题,是用来调用的函数头文件 %[D,path]=floyd(a) %输入参数a是求图的带权邻接矩阵,D(i,j)表示i到j的最短距 离,path(i,j)i,j之间最短路径上顶点i的后继点 %[D,path,min1,path1]=floyd(a,i,j) %输入参数a是所求图的带权邻接矩阵,i,j起点终点,min1表示i与j最短距离,path1为最短路径function [D,path,min1,path1]=floyd(a,start,terminal) D=a;n=size(D,1);path=zeros(n,n); for i=1:n for j=1:n if D(i,j)~=inf path(i,j)=j; end end end for k=1:n for i=1:n

for j=1:n if D(i,k)+D(k,j)

MATLAB实现FCM 聚类算法

本文在阐述聚类分析方法的基础上重点研究FCM 聚类算法。FCM 算法是一种基于划分的聚类算法,它的思想是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。最后基于MATLAB实现了对图像信息的聚类。 第 1 章概述 聚类分析是数据挖掘的一项重要功能,而聚类算法是目前研究的核心,聚类分析就是使用聚类算法来发现有意义的聚类,即“物以类聚” 。虽然聚类也可起到分类的作用,但和大多数分类或预测不同。大多数分类方法都是演绎的,即人们事先确定某种事物分类的准则或各类别的标准,分类的过程就是比较分类的要素与各类别标准,然后将各要素划归于各类别中。确定事物的分类准则或各类别的标准或多或少带有主观色彩。 为获得基于划分聚类分析的全局最优结果,则需要穷举所有可能的对象划分,为此大多数应用采用的常用启发方法包括:k-均值算法,算法中的每一个聚类均用相应聚类中对象的均值来表示;k-medoid 算法,算法中的每一个聚类均用相应聚类中离聚类中心最近的对象来表示。这些启发聚类方法在分析中小规模数据集以发现圆形或球状聚类时工作得很好,但当分析处理大规模数据集或复杂数据类型时效果较差,需要对其进行扩展。 而模糊C均值(Fuzzy C-means, FCM)聚类方法,属于基于目标函数的模糊聚类算法的范畴。模糊C均值聚类方法是基于目标函数的模糊聚类算法理论中最为完善、应用最为广泛的一种算法。模糊c均值算法最早从硬聚类目标函数的优化中导出的。为了借助目标函数法求解聚类问题,人们利用均方逼近理论构造了带约束的非线性规划函数,以此来求解聚类问题,从此类内平方误差和WGSS(Within-Groups Sum of Squared Error)成为聚类目标函数的普遍形式。随着模糊划分概念的提出,Dunn [10] 首先将其推广到加权WGSS 函数,后来由Bezdek 扩展到加权WGSS 的无限族,形成了FCM 聚类算法的通用聚类准则。从此这类模糊聚类蓬勃发展起来,目前已经形成庞大的体系。 第 2 章聚类分析方法 2-1 聚类分析 聚类分析就是根据对象的相似性将其分群,聚类是一种无监督学习方法,它不需要先验的分类知识就能发现数据下的隐藏结构。它的目标是要对一个给定的数据集进行划分,这种划分应满足以下两个特性:①类内相似性:属于同一类的数据应尽可能相似。②类间相异性:属于不同类的数据应尽可能相异。图2.1是一个简单聚类分析的例子。

蚁群算法TSP问题matlab源代码

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta ,Rho,Q) %%===================================================== ==================== %% ACATSP.m %% Ant Colony Algorithm for Traveling Salesman Problem %% ChengAihua,PLA Information Engineering University,ZhengZhou,China %% Email:aihuacheng@https://www.doczj.com/doc/bb3236413.html, %% All rights reserved %%------------------------------------------------------------------------- %% 主要符号说明 %% C n个城市的坐标,n×4的矩阵 %% NC_max 最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%===================================================== ==================== %%第一步:变量初始化 n=size(C,1);%n表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=max( ((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5,min(abs(C(i,3)-C(j,3)),144- abs(C(i,3)-C(j,3))) );%计算城市间距离 else D(i,j)=eps; end D(j,i)=D(i,j); end end Eta=1./D;%Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n);%Tau为信息素矩阵 Tabu=zeros(m,n);%存储并记录路径的生成 NC=1;%迭代计数器 R_best=zeros(NC_max,n);%各代最佳路线

matlab实现Kmeans聚类算法

题目:matlab实现Kmeans聚类算法 姓名吴隆煌 学号41158007

背景知识 1.简介: Kmeans算法是一种经典的聚类算法,在模式识别中得到了广泛的应用,基于Kmeans的变种算法也有很多,模糊Kmeans、分层Kmeans 等。 Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定标记样本调整类别中心向量。K均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是一种概率密度梯度估计方法(优点:无需求解出具体的概率密度,直接求解概率密度梯度。),所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans 和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些

点应该分在一个组中。当一堆点都靠的比较近,那这堆点应该是分到同一组。使用k-means,可以找到每一组的中心点。 当然,聚类算法并不局限于2维的点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量) 2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。但这也并不意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上

最短距离聚类的matlab实现-1(含聚类图-含距离计算)

最短距离聚类的matlab实现-1 【2013-5-21更新】 说明:正文中命令部分可以直接在Matlab中运行, 作者(Yangfd09)于2013-5-21 19:15:50在MATLAB R2009a(7.8.0.347)中运行通过 %最短距离聚类(含距离计算,含聚类图) %说明:此程序的优点在于每一步都是自己编写的,很少用matlab现成的指令, %所以更适合于初学者,有助于理解各种标准化方法和距离计算方法。 %程序包含了极差标准化(两种方法)、中心化、标准差标准化、总和标准化和极大值标准化等标准化方法, %以及绝对值距离、欧氏距离、明科夫斯基距离和切比雪夫距离等距离计算方法。 %==========================>>导入数据<<============================== %变量名为test(新建一个以test变量,双击进入Variable Editor界面,将数据复制进去即可)%数据要求:m行n列,m为要素个数,n为区域个数(待聚类变量)。 % 具体参见末页测试数据。 testdata=test; %============================>>标准化<<=============================== %变量初始化,m用来寻找每行的最大值,n找最小值,s记录每行数据的和 [M,N]=size(testdata);m=zeros(1,M);n=9999*ones(1,M);s=zeros(1,M);eq=zeros(1,M); %为m、n和s赋值 for i=1:M for j=1:N if testdata(i,j)>=m(i) m(i)=testdata(i,j); end if testdata(i,j)<=n(i) n(i)=testdata(i,j); end s(i)=s(i)+testdata(i,j); end eq(i)=s(i)/N; end %sigma0是离差平方和,sigma是标准差 sigma0=zeros(M); for i=1:M for j=1:N sigma0(i)=sigma0(i)+(testdata(i,j)-eq(i))^2; end end sigma=sqrt(sigma0/N);

Floyd算法_计算最短距离矩阵和路由矩阵_查询最短距离和路由_matlab实验报告

实验四:Floyd 算法 一、实验目的 利用MATLAB 实现Floyd 算法,可对输入的邻接距离矩阵计算图中任意两点间的最短距离矩阵和路由矩阵,且能查询任意两点间的最短距离和路由。 二、实验原理 Floyd 算法适用于求解网络中的任意两点间的最短路径:通过图的权值矩阵求出任意两点间的最短距离矩阵和路由矩阵。优点是容易理解,可以算出任意两个节点之间最短距离的算法,且程序容易实现,缺点是复杂度达到,不适合计算大量数据。 Floyd 算法可描述如下: 给定图G 及其边(i , j )的权w i, j (1≤i≤n ,1≤j≤n) F0:初始化距离矩阵W(0)和路由矩阵R(0)。其中: F1:已求得W(k-1)和R(k-1),依据下面的迭代求W(k)和R(k) F2:若k≤n,重复F1;若k>n,终止。 三、实验内容 1、用MATLAB 仿真工具实现Floyd 算法:给定图G 及其边(i , j )的权 w i , j (1≤i≤n ,1≤j≤n) ,求出其各个端点之间的最小距离以及路由。 (1)尽可能用M 函数分别实现算法的关键部分,用M 脚本来进行算法结 果验证; (2)分别用以下两个初始距离矩阵表示的图进行算法验证:

分别求出W(7)和R(7)。 2、根据最短路由矩阵查询任意两点间的最短距离和路由 (1)最短距离可以从最短距离矩阵的ω(i,j)中直接得出; (2)相应的路由则可以通过在路由矩阵中查找得出。由于该程序中使用的是前向矩阵,因此在查找的过程中,路由矩阵中r(i,j)对应的值为Vi 到Vj 路由上的下一个端点,这样再代入r(r(i,j),j),可得到下下个端点,由此不断循环下去,即可找到最终的路由。 (3)对图1,分别以端点对V4 和V6, V3 和V4 为例,求其最短距离和路由;对图2,分别以端点对V1 和V7,V3 和V5,V1 和V6 为例,求其最短距离和路由。 3、输入一邻接权值矩阵,求解最短距离和路由矩阵,及某些点间的最短路径。 四、采用的语言 MatLab 源代码: 【func1.m】 function [w r] = func1(w) n=length(w); x = w; r = zeros(n,1);%路由矩阵的初始化 for i=1:1:n for j=1:1:n if x(i,j)==inf r(i,j)=0; else r(i,j)=j; end, end end; %迭代求出k次w值 for k=1:n a=w; s = w; for i=1:n

蚁群算法matlab程序代码

先新建一个主程序M文件ACATSP.m 代码如下: function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q) %%================================================== ======================= %% 主要符号说明 %% C n个城市的坐标,n×2的矩阵 %% NC_max 蚁群算法MATLAB程序最大迭代次数 %% m 蚂蚁个数 %% Alpha 表征信息素重要程度的参数 %% Beta 表征启发式因子重要程度的参数 %% Rho 信息素蒸发系数 %% Q 表示蚁群算法MATLAB程序信息素增加强度系数 %% R_best 各代最佳路线 %% L_best 各代最佳路线的长度 %%================================================== =======================

%% 蚁群算法MATLAB程序第一步:变量初始化 n=size(C,1);%n表示问题的规模(城市个数) D=zeros(n,n);%D表示完全图的赋权邻接矩阵 for i=1:n for j=1:n if i~=j D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; else D(i,j)=eps; % i = j 时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示 end D(j,i)=D(i,j); %对称矩阵 end end Eta=1./D; %Eta为启发因子,这里设为距离的倒数 Tau=ones(n,n); %Tau为信息素矩阵 Tabu=zeros(m,n); %存储并记录路径的生成

数学实验05聚类分析---用matlab做聚类分析

用matlab做聚类分析 Matlab提供了两种方法进行聚类分析。 一种是利用clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法; 另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。1.Matlab中相关函数介绍 1.1pdist函数 调用格式:Y=pdist(X,’metric’) 说明:用‘metric’指定的方法计算X数据矩阵中对象之间的距离。’X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。 metric’取值如下: ‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离; ‘minkowski’:明可夫斯基距离;‘cosine’: ‘correlation’:‘hamming’: ‘jaccard’:‘chebychev’:Chebychev距离。 1.2squareform函数 调用格式:Z=squareform(Y,..)

说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。 1.3linkage函数 调用格式:Z=linkage(Y,’method’) 说明:用‘method’参数指定的算法计算系统聚类树。 Y:pdist函数返回的距离向量; method:可取值如下: ‘single’:最短距离法(默认);‘complete’:最长距离法; ‘average’:未加权平均距离法;‘weighted’:加权平均法; ‘centroid’:质心距离法;‘median’:加权质心距离法; ‘ward’:内平方距离法(最小方差算法) 返回:Z为一个包含聚类树信息的(m-1)×3的矩阵。 1.4dendrogram函数 调用格式:[H,T,…]=dendrogram(Z,p,…) 说明:生成只有顶部p个节点的冰柱图(谱系图)。 1.5cophenet函数 调用格式:c=cophenetic(Z,Y) 说明:利用pdist函数生成的Y和linkage函数生成的Z计算cophenet相关系数。 1.6cluster函数 调用格式:T=cluster(Z,…) 说明:根据linkage函数的输出Z创建分类。

蚁群算法matlab

蚁群算法的matlab源码,同时请指出为何不能优化到已知的最好解 % % % the procedure of ant colony algorithm for VRP % % % % % % % % % % % % %initialize the parameters of ant colony algorithms load data.txt; d=data(:,2:3); g=data(:,4); m=31; % 蚂蚁数 alpha=1; belta=4;% 决定tao和miu重要性的参数 lmda=0; rou=0.9; %衰减系数 q0=0.95; % 概率 tao0=1/(31*841.04);%初始信息素 Q=1;% 蚂蚁循环一周所释放的信息素 defined_phrm=15.0; % initial pheromone level value QV=100; % 车辆容量 vehicle_best=round(sum(g)/QV)+1; %所完成任务所需的最少车数V=40; % 计算两点的距离 for i=1:32; for j=1:32;

dist(i,j)=sqrt((d(i,1)-d(j,1))^2+(d(i,2)-d(j,2))^2); end; end; %给tao miu赋初值 for i=1:32; for j=1:32; if i~=j; %s(i,j)=dist(i,1)+dist(1,j)-dist(i,j); tao(i,j)=defined_phrm; miu(i,j)=1/dist(i,j); end; end; end; for k=1:32; for k=1:32; deltao(i,j)=0; end; end; best_cost=10000; for n_gen=1:50; print_head(n_gen); for i=1:m; %best_solution=[]; print_head2(i);

matlab图论程序算法大全

精心整理 图论算法matlab实现 求最小费用最大流算法的 MATLAB 程序代码如下: n=5;C=[0 15 16 0 0 0 0 0 13 14 for while for for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j); elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j); elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;end for(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值 for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路

for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end ;end;end if(pd)break;end;end %求最短路的Ford 算法结束 if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有 while if elseif if if pd=0; 值 t=n; if elseif if(s(t)==1)break;end %当t 的标号为vs 时, 终止调整过程 t=s(t);end if(pd)break;end%如果最大流量达到预定的流量值 wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量 zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end%计算最小费用

蚁群算法MATLAB代码

function [y,val]=QACStic load att48 att48; MAXIT=300; % 最大循环次数 NC=48; % 城市个数 tao=ones(48,48);% 初始时刻各边上的信息最为1 rho=0.2; % 挥发系数 alpha=1; beta=2; Q=100; mant=20; % 蚂蚁数量 iter=0; % 记录迭代次数 for i=1:NC % 计算各城市间的距离 for j=1:NC distance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2); end end bestroute=zeros(1,48); % 用来记录最优路径 routelength=inf; % 用来记录当前找到的最优路径长度 % for i=1:mant % 确定各蚂蚁初始的位置 % end for ite=1:MAXIT for ka=1:mant %考查第K只蚂蚁 deltatao=zeros(48,48); % 第K只蚂蚁移动前各边上的信息增量为零 [routek,lengthk]=travel(distance,tao,alpha,beta); if lengthk

matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法 1.简介: Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量)

2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上有4中“标签”,每个“标签”使用不同的颜色来表示。所有黄色点我们可以用标签以看出,有3个类离的比较远,有两个类离得比较近,几乎要混合在一起了。 当然,数据集不一定是坐标,假如你要对彩色图像进行聚类,那么你的向量就可以是(b,g,r),如果使用的是hsv颜色空间,那还可以使用(h,s,v),当然肯定可以有不同的组合例如(b*b,g*r,r*b) ,(h*b,s*g,v*v)等等。 在本文中,初始的类的中心点是随机产生的。如上图的红色点所示,是本文随机产生的初始点。注意观察那两个离得比较近的类,它们几乎要混合在一起,看看算法是如何将它们分开的。 类的初始中心点是随机产生的。算法会不断迭代来矫正这些中心点,并最终得到比较靠5个中心点的距离,选出一个距离最小的(例如该点与第2个中心点的距离是5个距离中最小的),那么该点就归属于该类.上图是点的归类结果示意图. 经过步骤3后,每一个中心center(i)点都有它的”管辖范围”,由于这个中心点不一定是这个管辖范围的真正中心点,所以要重新计算中心点,计算的方法有很多种,最简单的一种是,直接计算该管辖范围内所有点的均值,做为心的中心点new_center(i). 如果重新计算的中心点new_center(i)与原来的中心点center(i)的距离大于一定的阈值(该阈值可以设定),那么认为算法尚未收敛,使用new_center(i)代替center(i)(如图,中心点从红色点

Floyd算法_计算最短距离矩阵和路由矩阵_查询最短距离和路由_matlab实验报告

一、实验目的 利用MATLAB实现Floyd算法,可对输入的邻接距离矩阵计算图中任意两点间的最短距离矩阵和路由矩阵,且能查询任意两点间的最短距离和路由。 二、实验原理 Floyd 算法适用于求解网络中的任意两点间的最短路径:通过图的权值矩阵求出任意两点间的最短距离矩阵和路由矩阵。优点是容易理解,可以算出任意两个 节点之间最短距离的算法,且程序容易实现,缺点是复杂度达到,不适合计算大量数据。 Floyd 算法可描述如下: 给定图G及其边(i , j ) 的权w, j (1 < i < n ,1 n,终止。?? 三、实验内容 1、用MATLAB仿真工具实现Floyd算法:给定图G及其边(i , j ) 的权 w, j (1 < i < n ,1 < j < n),求出其各个端点之间的最小距离以及路由。 (1)尽可能用 M 函数分别实现算法的关键部分,用 M 脚本来进行算法结果验证; (2)分别用以下两个初始距离矩阵表示的图进行算法验证: 分别求出WT和R7)。 2、根据最短路由矩阵查询任意两点间的最短距离和路由 (1)最短距离可以从最短距离矩阵的3 (i,j)中直接得出; (2)相应的路由则可以通过在路由矩阵中查找得出。由于该程序中使用的是前向矩阵,因此在查找的过程中,路由矩阵中r(i,j) 对应的值为Vi到Vj路由上的下一个端点,这样再代入r(r(i,j),j) ,可得到下下个端点,由此不断循环下去,即可找到最终的路由。 (3)对图1,分别以端点对V4 和V6, V3 和V4 为例,求其最短距离和路由;对图2,分别以端点对V1和V7, V3和V5, V1和V6为例,求其最短距离和路由。 3、输入一邻接权值矩阵,求解最短距离和路由矩阵,及某些点间的最短路径。

聚类分析matlab程序设计代码

function varargout = lljuleifenxi(varargin) % LLJULEIFENXI MATLAB code for lljuleifenxi.fig % LLJULEIFENXI, by itself, creates a new LLJULEIFENXI or raises the existing % singleton*. % % H = LLJULEIFENXI returns the handle to a new LLJULEIFENXI or the handle to % the existing singleton*. % % LLJULEIFENXI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in LLJULEIFENXI.M with the given input arguments. % % LLJULEIFENXI('Property','Value',...) creates a new LLJULEIFENXI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before lljuleifenxi_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to lljuleifenxi_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help lljuleifenxi % Last Modified by GUIDE v2.5 07-Jan-2015 18:18:25 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @lljuleifenxi_OpeningFcn, ... 'gui_OutputFcn', @lljuleifenxi_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before lljuleifenxi is made visible. function lljuleifenxi_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB

图论算法及其MATLAB程序代码

图论算法及其MATLAB程序代码 求赋权图G = (V, E , F )中任意两点间的最短路的Warshall-Floyd算法: 设A = (a ij )n×n为赋权图G = (V, E , F )的矩阵, 当v i v j∈E时a ij= F (v i v j), 否则取a ii=0, a ij = +∞(i≠j ), d ij表示从v i到v j点的距离, r ij表示从v i到v j点的最短路中一个点的编号. ①赋初值. 对所有i, j, d ij = a ij, r ij = j. k = 1. 转向② ②更新d ij, r ij . 对所有i, j, 若d ik + d k j<d ij, 则令d ij = d ik + d k j, r ij = k, 转向③. ③终止判断. 若d ii<0, 则存在一条含有顶点v i的负回路, 终止; 或者k = n终止; 否则令k = k + 1, 转向②. 最短路线可由r ij得到. 例1求图6-4中任意两点间的最短路. 图6-4 解:用Warshall-Floyd算法, MA TLAB程序代码如下: n=8;A=[0 2 8 1 Inf Inf Inf Inf 2 0 6 Inf 1 Inf Inf Inf 8 6 0 7 5 1 2 Inf 1 Inf 7 0 Inf Inf 9 Inf Inf 1 5 Inf 0 3 Inf 8 Inf Inf 1 Inf 3 0 4 6 Inf Inf 2 9 Inf 4 0 3 Inf Inf Inf Inf 8 6 3 0]; % MATLAB中, Inf表示∞ D=A; %赋初值 for(i=1:n)for(j=1:n)R(i,j)=j;end;end%赋路径初值 for(k=1:n)for(i=1:n)for(j=1:n)if(D(i,k)+D(k,j)

基于蚁群算法的MATLAB实现

基于蚁群算法的机器人路径规划MATLAB源代码 基本思路是,使用离散化网格对带有障碍物的地图环境建模,将地图环境转化为邻接矩阵,最后使用蚁群算法寻找最短路径。 function [ROUTES,PL,Tau]=ACASPS(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% --------------------------------------------------------------- % ACASP.m % 基于蚁群算法的机器人路径规划 % GreenSim团队——专业级算法设计&代写程序 % 欢迎访问GreenSim团队主页→https://www.doczj.com/doc/bb3236413.html,/greensim %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N

相关主题
文本预览
相关文档 最新文档