当前位置:文档之家› X射线衍射实验报告

X射线衍射实验报告

X射线衍射实验报告
X射线衍射实验报告

中南大学

X射线衍射实验报告

材料科学与工程学院材料国际专业1401班级姓名蔡云伟学号:

08

同组者

实验日期2016年

05月

18

日指导教师@

黄继武

评分分评阅人评阅日期

一、实验目的

1)掌握X射线衍射仪的工作原理、操作方法;

2)》

3)掌握X射线衍射实验的样品制备方法;

4)学会X射线衍射实验方法、实验参数设置,独立完成一个衍射实验测试;

5)学会MDI Jade 6的基本操作方法;

6)学会物相定性分析的原理和利用Jade进行物相鉴定的方法;

7)学会物相定量分析的原理和利用Jade进行物相定量的方法。

本实验由衍射仪操作、物相定性分析、物相定量分析三个独立的实验组成,实验报告包含以上三个实验内容。

二、实验原理

根据布拉格定律,我们可以知道,只有在特殊的入射角度时我们才能得到衍射图像。所以,根据这一原理,我们在使用了把X射线和探测器放在环形导轨上的方法,把每个方向的结果都探测一遍,最终收集到能发生衍射的衍射峰。根据

3) 选择每个物相的主要未重叠的衍射峰进行拟合,求出衍射峰面积;

4) 选择菜单“Options|Easy Quantitative ”,按绝热法计算样品中两相的重

量百分数;

5) 按下“Save ”按钮,保存定量分析结果,定量分析数据处理完成。

计算公式:

b a b O Al a O Al a b RIR RIR K K K ==3

23

2, )(a b b a a a K I I I W +=

五 实验数据处理

?

1 物相鉴定结果

2 定量分析结果

(1)WC

USER: user

JADE: Quantitative Analysis from Profile-Fitted Peaks

DATE: Thursday, Jan 01, 2004 01:16a

FILE: [005 ]

SCAN: 1(sec), Cu(40kV,250mA), I(max)=40668, 10-28-10 13:19

[

PROC: [New Quantitative Analysis]

Phase ID (2) Chemical Formula RIR Dx

MAC LAC Wt% Wt(n)% Vol(n)% #L I%-I(r) {Area} {Height}

Tungsten Carbide WC 1 479781(21469) 30158(1046)

Tungsten carbide - $-epsilon W2C 1 72427(1893) 6967(142)

2-Theta FWHM Height Height%

Area(a1) Area% I(r) I(p) I%-I(r) ( h k l)

30158 (1046) 479781 (21469) ( 1 0 0)

2-Theta FWHM Height Height% Area(a1)

Area% I(r) I(p) I%-I(r) ( h k l)

6967 (142) 72427 (1894) (-1-1 1)

>

全息照相实验实验报告

物理与光电工程学院 光电信息技术实验报告 姓名:张皓景 学号: 班级:光信息科学与技术专业2011级2班实验名称:全息照相实验 任课教师:裴世鑫

一、实验目的 1.了解光学全息照相的基本原理及其主要特点。 2.学习全息照相的拍摄方法和实验技术。 3.了解全息照相再现物像的性质、观察方法。 二、实验仪器 三、实验装置示意图 5底片 图1 全息照相光路 四、实验原理 全息照相是一种二步成像的照相技术。第一步采用相干光照明,利用干涉原理,把物体

在感光材料(全息干版)处的光波波前纪录下来,称为全息图。第二步利用衍射原理,按一定条件用光照射全息图,原先被纪录的物体光波的波前,就会重新激活出来在全息图后继续传播,就像原物仍在原位发出的一样。需要注意的是我们看到的“物”并不是实际物体,而是与原物完全相同的一个三维像。 1.全息照相的纪录——光的干涉 由光的波动理论知道,光波是电磁波。一列单色波可表示为: 2cos(t )r x A πω?λ=+- (1) 式中,A 为振幅,ω 为圆频率,λ 为波长,φ 为波源的初相位。 一个实际物体发射或反射的光波比较复杂,但是一般可以看成是由许多不同频率的单色光波的叠加: 12cos(t )n i i i i i r x A πω?λ==+- ∑ (2) 因此,任何一定频率的光波都包含着振幅(A )和位相(ωt+φ-2πr/λ)两大信息。 全息照相的一种实验装置的光路如图(1)所示。激光器射出的激光束通过分光板分成两束,一束经透镜扩束后照射到被摄物体上,再经物体表面反射(或透射)后照射到感光底片(全息干版)上,这部分光叫物光。另一束经反射镜改变光路,再由透镜扩大后直接投射到全息干版上,这部分光称为参考光。由于激光是相干光,物光和参考光在全息底片上叠加,形成干涉条纹。因为从被摄物体上各点反射出来的物光,在振幅上和相位上都不相同,所以底片上各处的干涉条纹也不相同。强度不同使条纹明暗程度不同,相位不同使条纹的密度、形状不同。因此,被摄物体反射光中的全部信息都以不同明暗程度和不同疏密分布的干涉条纹形式记录下来,经显影、定影等处理后,就得到一张全息照片。这种全息照片和普通照片截然不同,一般在全息照片上只有通过高倍显微镜才能看到明暗程度不同、疏密程度不同的干涉条纹。由于干涉条纹密度很高,所以要求记录介质有较高的分辨率,通常达1000 条线/毫米以上,故不能用普通照相底片拍摄全息图。 2.全息照相的再现——光的衍射 由于全息照相在感光板上纪录的不是被摄物的直接形象,而是复杂的干涉条纹,因此全息照片实际上相当于一个衍射光栅,物象再现的过程实际是光的衍射现象。要看到被摄物体的像,必须用一束同参考光的波长和传播方向完全相同的光束照射全息照片,这束光叫再现光。这样在原先拍摄时放置物体的方向上就能看到与原物形象完全一样的立体虚像。如图2 所示把拍摄好的全息底片放回原光路中,用参考光波照射全息片时,经过底片衍射后有三部分光波射出。 0 级衍射光——它是入射再现光波的衰减。 +1 级衍射光——它是发散光,将形成一个虚像。如果此光波被观察者的眼睛接收,就等于接收了原被摄物发出的光波,因而能看到原物体的再现像。

大学物理实验之声光效应

声光效应电子教案 一、实验目的 ①了解声光效应原理 ②了解布拉格衍射现象的实验条件和特点 ③通过对声光器件衍射效率、中心频率和带宽的测量加深对其概念的理解 ④测量声光偏转和声光调制曲线 二、实验原理简述 声光效应就是研究光通过声波扰动的介质时发生散射或衍射的现象。由于弹光效应,当超声纵波以行波形式在介质中传播时会使介质折射率产生正弦或余弦规律变化,并随超声波一起传播,当激光通过此介质时,就会发生光的衍射,即声光衍射。衍射光的强度、频率、方向等都随着超声波场而变化。其中衍射光偏转角随超声波频率的变化现象称为声光偏转;衍射光强度随超声波功率而变化的现象称为声光调制。主要用途有:制作声光调制器件,制作声光偏转器件,声光调Q开关,可调谐滤光器,在光信号处理和集成光通讯方面的应用。 声光衍射可以分为拉曼-拉斯(Ranman-Nath)衍射和布拉格(Bragg)衍射两种情况。本实验室主要研究钼酸铅晶体介质中的布拉格衍射现象。 布拉格方程:θB=sinθB=λfs/2nvs ,其中θB 为布拉格角,λ为激光波长,n为介质折射率,vs 为超声波在介质中的速率。由此知不同的频率对应不同的偏转角φ=2θB,所以可以通过改变超声波频率实现声光偏转。 布拉格一级衍射效率为:η1=I1/Ii=sin2((π/λ).(LM2Ps/2H)1/2) ,其中Ps为超声波功率,M2为声光材料的品质因素,L、H分别表示换能器的长和宽。由此知当超声功率改变时,η1也随之改变,因而可实现声光调制。 三、实验仪器的结构或原理简图及仪器简介 主要实验仪器如图1所示:有半导体激光器、声光器件及转角平台(图2)、超声波功率信号源、频率计、光强仪、示波器、光具座、支架、导线等附件。各仪器原理、具体型号及参数见声光效应实验讲义。 图1 声光效应主要实验仪器 图2 转角平台和声光器件

第二章 光的衍射 习题及答案

第二章 光的衍射 1. 单色平面光照射到一小圆孔上,将其波面分成半波带。求第к个带的半径。若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。 解: 20 22r r k k +=ρ 而 20λ k r r k += 20λk r r k = - 20202λ ρk r r k = -+ 将上式两边平方,得 42 2020 20 2 λλρk kr r r k + +=+ 略去22λk 项,则 λ ρ0kr k = 将 cm 104500cm,100,1-8 0?===λr k 带入上式,得 cm 067.0=ρ 2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样 改变大小。问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。 解:(1)根据上题结论 ρ ρ0kr k = 将 cm 105cm,400-5 0?==λr 代入,得 cm 1414.01054005k k k =??=-ρ 当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。 (2)P 点最亮时,小孔的直径为 cm 2828.02201==λρr 3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。 解:根据题意 m 1=R 500nm mm 1R mm 5.0R m 121hk hk 0====λr 有光阑时,由公式 ???? ??+=+=R r R R r r R R k h h 11)(02 002λλ

透射电镜实验报告

透射电镜实验报告 实验报告 课程名称电镜技术成绩姓名学号实验日期 2013.3.27 实验名称透射电子显微镜原理、结构、性能及成像方指导教师 式 一、实验目的与任务 1. 初步了解透射电镜操作过程 2. 初步掌握样品的制样方法(主要是装样过程) 3.拍摄多晶金晶体的低分辨率照片(<300000倍)和高分辨率照片(>300000 倍),并对相关几何参数、形态给予描述。用能谱分析仪对样品的成分进行分析。 二、实验基本原理 1.仪器原理 透射电子显微镜是以图像方式提供样品的检测结果,其成像的决定因素是样品对入射电子的散射,包括弹性散射和非弹性散射两个过程。样品成像时,未经散射的电子构成背景,而像的衬底取决于样品各部分对电子的不同散射特性。采用不同的实验条件可以得到不同的衬底像,透射电子显微镜不仅能显示样品显微组织的形貌,而且可以利用电子衍射效应同样获得样品晶体学信息。本次实验将演示透射电镜的透射成像方式和衍射成像方式。 (1)成像方式 电子束通过样品进入物镜,在其像面形成第一电子像,中间镜将该像放大,成像在自己的像面上,投影镜再将中间镜的像放大,在荧光屏上形成最终像。 (2)衍射方式

如果样品是晶体,它的电子衍射花样呈现在物镜后焦面上,改变中间镜电流,使其对物镜后焦面成像,该面上的电子衍射花样经中间镜和投影镜放大,在荧光屏上获得电子衍射花样的放大像。 2.仪器结构 主机主要由:照明系统、样品室、放大系统、记录系统四大部分构成。 3.透射电子显微镜的样品制备技术 4.图像观察拍照技术 透射电镜以图像提供实验结果。在观察样品之前对电子光学系统进行调查,包括电子枪及象散的消除。使仪器处于良好状态。观察过程中选合适的加速电压和电流。明场、暗场像及选区电子衍射的观察和操作方法不同,应按况选择。三、实验方法与步骤 1( 登陆计算机 2( 打开操作软件 3( 检查电镜状态 4( 装载样品 5( 插入样品杆 6( 加灯丝电流 7( 开始操作 8( 结束操作 9( 取出样品杆 10( 卸载样品 11( 刻录数据 12( 关闭操作软件 13( 退出计算机

光学平台26项实验

光学平台26项实验 一、自准法测凸透镜焦距 按图所示将磁力座靠紧平台钢尺,摆好实验装置,白炽灯源照亮小孔光栏透过小孔的光束照射到反射镜上,在小孔与反射镜之间放入待测透镜,然后沿钢尺移动透镜,在小孔板接近小孔的地方看到清晰的小孔像,此时透镜到小孔屏之间的距离即为透镜的焦距,(可从尺上直接读取)。 图 1.白炽灯 2.小孔光栏 3.凸透镜 4.二维调整架 5.反射镜 6.二维反射镜调整架 7.二维平移台 8.三维平移台 9.一维平移台 二、两次成像法测凸透镜焦距 实物经正的薄透镜成一实像,物和像之间的距离必须不小于透镜到四倍焦距。当满足此条件时,在物和屏之间透镜可两个位置,但其在位置A 处时,屏上出现放大的三孔屏的像,当透镜在B 位置时屏上将出现缩小的像。调整好光路,使物屏和黑白屏间的距离大于四倍的焦距。放入待测透镜先找到靠近物屏处的放大的实像,记下物屏到黑白屏之间的距离D 及放大像时透镜的位置。然后移动透镜直到出现清晰的缩小的实像,记下此时透镜的位置量出AB 间距离d 由公式 D d D f 422-= 即可求出透镜的焦距。

图 1.白炽灯源 2.物屏(三孔屏) 3.凸透镜 4.二维透镜夹 5.黑白屏 6.一维座 7.二维座 三、凹透镜焦距的测定 按自准法调出白炽灯平行光,即在较远处看到一灯丝的像,此时接近平行光,将凸透镜2作为辅助透镜(焦距F1位已知),与待测凹透镜3贴在一起合成组合透镜(可以认为两镜间的距离为0)这样可以把组合透镜看成一薄凸透镜,在屏上可得一实像此实像位置即为组合透镜的焦距面F2,测出组合透镜的焦距f 实际上是凹透镜3的像距,其物距为凸透镜的焦距f1(已知)。 由物像关系公式: ' 2 1'1 '11f f f =- 因此 ' 1' 1''2 'f f f f f -= 即可求出凹透镜的焦距。

4光的衍射参考答案

《大学物理(下)》作业 No.4 光的衍射 (电气、计算机、詹班) 一 选择题 1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄, 同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将 (A )变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动 [ A ] [参考解] 一级暗纹衍射条件:λ?=1sin a ,所以中央明纹宽度 a f f f x λ ??2sin 2tan 211=≈=?中。衍射角0=?的水平平行光线必汇聚于透镜主 光轴上,故中央明纹向上移动。 2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹 (A )间距变大 (B )间距变小 (C )不发生变化 (D )间距不变,但明纹的位置交替变化 [ C ] [参考解] 单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的衍射角,不会引起衍射条纹的变化。 3.波长λ=5500?的单色光垂直入射于光栅常数d=2×10- 4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为 (A )2 (B )3 (C )4 (D )5 [ B ] [参考解 ]

由光栅方程λ?k d ±=sin 及衍射角2 π ?< 可知,观察屏可能察到的光谱线 的最大级次64.310 550010210 6 =??=<--λd k m ,所以3=m k 。 4.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间距离不变,把两条缝的宽度a 略微加宽,则 (A )单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少; (B )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多; (D )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。 [ D ] [参考解] 参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。或由缺级条件分析亦可。 二 填空题 1.惠更斯——菲涅耳原理的基本内容是:波阵面上各面积元发出的子波在观察点P 的 相干叠加 ,决定了P 点合振动及光强。 2.在单缝夫琅和费衍射实验中,屏上第三级暗纹对应的单缝处波阵面可划分为 6 个半波带,若将缝宽缩小一半,原来第三级暗纹处将是 明 纹。 [参考解] 由单缝衍射条件(其中n 为半波带个数,k 为对应级次)可知。 ???? ???±?+±=?==,各级暗纹 ,次极大,主极大λλλ?δk k n a 2 )12(02sin 3.如图所示的单缝夫琅和费衍射中,波长λ的单色光垂直入 射在单缝上,若对应于会聚在P 点的衍射光线在缝宽a 处的波阵面恰好分成3个半波带,图中CD BC AB ==,那么光线1和2在P 点的相位差为 π 。

电子衍射实验报告

电子衍射实验 本实验采用与当年汤姆生的电子衍射实验相似的方法,用电子束透过金属薄膜,在荧光屏上观察电子衍射图样,并通过衍射图测量电子波的波长。 一、 实验目的: 测量运动电子的波长,验证德布罗意公式。理解真空中高速电子穿过晶体薄膜时的衍射现象,进一步理解电子的波动性。掌握晶体对电子的衍射理论及对立方晶系的指标化方法;掌握测量立方晶系的晶格常数方法。 二、实验原理 在物理学的发展史上,关于光的“粒子性”和“波动性”的争论曾延续了很长一段时期。人们最终接受了光既具有粒子性又具有波动性,即光具有波粒二象性。受此启发,在1924年,德布罗意(deBeroglie )提出了一切微观粒子都具有波粒二象性的大胆假设。当时,人们已经掌握了X 射线的晶体衍射知识,这为从实验上证实德布罗意假设提供了有利因素。 1927年戴维逊和革末发表了他们用低速电子轰击镍单晶产生电子衍射的实验结果。两个月后(1928年),英国的汤姆逊和雷德发表了他们用高速电子穿透物质薄片直接获得的电子衍射花纹,他们从实验测得的电子波的波长,与按德布罗意公式计算出的波长相吻合,从而成为第一批证实德布罗意假设的实验。 薛定谔(Schrodinger )等人在此基础上创立了描述微观粒子运动的基本理论——量子力学,德布罗意、戴维逊和革末也因此而获得诺贝尔尔物理学奖。现在,电子衍射技术已成为分析各种固体薄膜和表面层晶体结构的先进方法。 1924 年德布罗意提出实物粒子也具有波粒二象性的假设,他认为粒子的特征波长λ与动量 p 的关系与光子相同,即 h p λ'= 式中h 为普朗克常数,p 为动量。 设电子初速度为零,在电位差为V 的电场中作加速运动。在电位差不太大时,即非相对论情况下,电子速度 c ν=(光在真空中的速度),故2 002m=m 1m c ν-≈其中0m 为电子的静止质量。 它所达到的速度v 可 由电场力所作的功来决定:2 21p eV=m 22m ν=(2) 将式(2)代入(1)中,得:2em V λ'=(3) 式中 e 为电子的电荷, m 为电子质量。将34h 6.62610 JS -=?、310m 9.1110kg -=?、-19e=1.60210C ?,各值代入式(3),可得:A V λ'&(4) 其中加速电压V 的单位为伏特(V ),λ的单位为1010-米。由式(4)可计算与电子德布罗意平面单色波的波 长。而我们知道,当单色 X 射线在多晶体薄膜上产生衍射时,可根据晶格的结构参数和衍射环纹大小来计算 图 1的波长。所以,类比单色 X 射线,也可由电子在多晶体薄膜上产生衍射时测出电子的波长λ 。如λ'与λ在误差范围内相符,则说明德布罗意假设成立。下面简述测量λ的原理。 根据晶体学知识,晶体中的粒子是呈规则排列的,具有点阵结构, 因此可以把晶体看作三维光栅。这种光栅的光栅常数要比普通人工刻 制的光栅小好几个量级。当高速电子束穿过晶体薄膜时所发生的衍射 现象与X 射线穿过多晶体进所发生的衍射现象相类似。它们衍射的方 向均满足布拉格公式。 1晶体是由原子(或离子)有规则地排列而组成的,

光栅位置检测系统及原理

光栅位置检测系统及原理 2009年10月22日 光栅是利用光的反射、透射和干涉现象制成的一种光电检测装置,有物理光栅和计量光栅。物理光栅刻线比较细密,两刻线之间距离(称为栅距)在0.002~0.005mm之间,它通常用于光谱分析和光波波长的测定。计量光栅刻线较粗,栅距在o.004~0.025mm之间,在数字检测系统中,通常用于高精度位移的检测,是数控系统中应用较多的一种检测装置尤其是在闭环伺服系统中。 光栅位置检测装置由光源、长光栅(标尺光栅、短光栅(指示光栅)和光电元件等组成(见图3—23)。 按照不同的分类方法,计量光栅可分为直线光栅和圆形光栅;透射光栅和反射光栅;增量式光栅和绝对式光栅等。本节仅介绍直线光栅。 根据光栅的工作原理分直线式透射光栅和莫尔条纹式光栅两类。 一。直线式透射光栅 在玻璃表面刻上透明和不透明的间隔相等的线纹(即黑白相问的线纹),称为透射光栅。其制造工艺为在玻璃表面加感光材料或金属镀膜上刻成光栅线纹,也可采用刻蜡、腐蚀或涂黑工艺。透射光栅的特点是:光源可以采用垂直入射光,光电接收元件可以直接接收信号,信号幅值比较大,信嗓比高,光电转换元件结构简单。同时,透射光栅单位长度上所刻的条纹数比较多,一般可以达到每毫米100条线纹,达到0.01mm的分辨率,使检测电子线路大大简化。但其长度不能做得太长,目前可达到2m左右。

如图3—24所示,它是用光电元件把两块光栅移动时产生的明暗变化转变为电 流变化的方式。长光栅装在机床移动部件上,称之为标尺光栅;短光栅装在机床固定部件上,称之为指示光栅。标尺光栅和指示光栅均由窄矩形不透明的线纹和与其等宽的透明间隔组成。当标尺光栅相对线纹垂直移动时,光源通过标尺光栅和指示光栅再由物镜聚焦射到光电元件上。若指示光栅的线纹与标尺光栅透明间隔完全重合,光电元件接收到的光通量最小。若指示光栅的线纹与标尺光栅的线纹完全重合,光电元件接收到的光通量最大。因此,标尺光栅移动过程中,光电元件接收到 的光通量忽大忽小,产生了近似正弦波的电流。再用电子线路转变为数字以显示位移量。为了辨别运动方向,指示光栅的线纹错开1/4栅距,并通过鉴向线路进行判别。 由于这种光栅只能透过单个透明间隔,所以光强度较弱,脉冲信号不强,往往在光栅线较粗的场合使用。二奠尔条纹式光栅 如果使两片光栅靠近并稍有倾斜时,在和光栅垂直方向上可以看到非常粗大的条纹,这就叫做莫尔条纹。莫尔条纹式光栅实质上是一种增量式编码器,它是通过形成莫尔条纹、光电转换、辨向和细化等环节实现数字计量的。 1.莫尔条纹的形成

光的衍射参考答案

光的衍射参考解答 一 选择题 1.在如图所示的夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚 透镜L 沿y 轴正方向作微小位移,则屏幕C 上的中央衍射条纹将 (A )变宽,同时向上移动 (B )变宽,不移动 (C )变窄,同时向上移动 (D )变窄,不移动 [ A ] [参考解] 一级暗纹衍射条件:λ?=1sin a ,所以中央明纹宽度a f f f x λ ??2sin 2tan 211=≈=?中。衍射角0 =?的水平平行光线必汇聚于透镜主光轴上,故中央明纹向上移动。 2.在单缝的夫琅和费衍射实验中,若将单缝沿透镜主光轴方向向透镜平移,则屏幕上的衍射条纹 (A )间距变大 (B )间距变小 (C )不发生变化 (D )间距不变,但明纹的位置交替变化 [ C ] [参考解] 单缝沿透镜主光轴方向或沿垂直透镜主光轴的方向移动并不会改变入射到透镜的平行光线的衍射角,不会引起衍射条纹的变化。 3.波长λ=5500?的单色光垂直入射于光栅常数d=2×10-4 cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为 (A )2 (B )3 (C )4 (D )5 [ B ] [参考解] 由光栅方程λ?k d ±=sin 及衍射角2 π ?< 可知,观察屏可能察到的光谱线的最大级次 64.310 550010210 6 =??=<--λd k m ,所以3=m k 。 4.在双缝衍射实验中,若保持双缝S 1和S 2的中心之间距离不变,把两条缝的宽度a 略微加宽,则 (A )单缝衍射的中央主极大变宽,其中包含的干涉条纹的数目变少; (B )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目不变; (C )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变多; (D )单缝衍射的中央主极大变窄,其中包含的干涉条纹的数目变少。 [ D ] [参考解] 参考第一题解答可知单缝衍射的中央主极大变窄,而光栅常数不变,则由光栅方程可知干涉条纹间距不变,故其中包含的干涉条纹的数目变少。或由缺级条件分析亦可。 二 填空题 1.惠更斯——菲涅耳原理的基本内容是:波阵面上各面积元发出的子波在观察点P 的 相干叠加 ,决定了P 点合振动及光强。 2.在单缝夫琅和费衍射实验中,屏上第三级暗纹对应的单缝处波阵面可划分为 6 个半波带,若将缝宽缩小

X射线衍射实验报告

X射线衍射实验报告 摘要: 本实验通过了解到X射线的产生、特点和应用;理解X射线管产生连续X 射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。 关键字:布拉格公式晶体结构,X射线衍射仪,物相分析 引言: X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。 实验目的:1. 了解X射线衍射仪的结构及工作原理 2. 熟悉X射线衍射仪的操作 3. 掌握运用X射线衍射分析软件进行物相分析的方法 实验原理: (1)X射线的产生和X射线的光谱 实验中通常使用X光管来产生X射线。在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。 对于特征X光谱分为 (1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ…

基于Matlab的光学衍射仿真

基于Matlab的光学衍射实验仿真 摘要 光学试验中衍射实验是非常重要的实验. 光的衍射是指光在传播过程中遇到障碍物时能够绕过障碍物的边缘前进的现象, 光的衍射现象为光的波动说提供了有力的证据. 衍射系统一般有光源、衍射屏和接受屏组成, 按照它们相互距离的大小可将衍射分为两大类, 一类是衍射屏与光源和接受屏的距离都是无穷远时的衍射, 称为夫琅禾费衍射, 一类是衍射屏与光源或接受屏的距离为有限远时的衍射称为菲涅尔衍射。 本文用Matlab软件对典型的衍射现象建立了数学模型,对衍射光强分布进行了编程运算,对衍射实验进行了仿真。最后创建了交互式GUI界面,用户可以通过改变输入参数模拟不同条件下的衍射条纹。 本文对于衍射概念、区别、原理及光强分布编程做了详细全面的介绍 关键字:Matlab;衍射;仿真;GUI界面;光学实验

Matlab-based Simulation of Optical Diffraction Experiment Abstract Optical diffraction experiment is a very important experiment. is the diffraction of light propagation of light in the obstacles encountered in the process to bypass the obstacles when the forward edge of the phenomenon of light diffraction phenomenon of the wave theory of light provides a strong Evidence. diffraction systems generally have light, diffraction screen and accept the screen composition, size according to their distance from each other diffraction can be divided into two categories, one is the diffraction screen and the light source and the receiving screen is infinity when the distance between the diffraction Known as Fraunhofer diffraction, one is diffraction screen and the light source or accept a limited away from the screen when the diffraction is called Fresnel diffraction. In this paper, Matlab software on a typical phenomenon of a mathematical model of diffraction, the diffraction intensity distribution of the programming operation, the diffraction experiment is simulated. Finally, create an interactive GUI interface, users can change the input parameters to simulate different conditions of the diffraction pattern. This concept of the diffraction, difference, intensity distribution of programming principles and a detailed comprehensive description Key word: matlab;diffraction; simulation; gui interface; optical experiment

实验四选区电子衍射及晶体取向分析

实验四选区电子衍射与晶体取向分析 一、实验内容及实验目的 1.通过选区电子衍射的实际操作演示,加深对选区电子衍射原理的了解。 2.选择合适的薄晶体样品,利用双倾台进行样品取向的调整,使学生掌握利用电子衍射花样测定晶体取向的基本方法。 二、选区电子衍射的原理和操作 1.选区电子衍射的原理 简单地说,选区电子衍射借助设置在物镜像平面的选区光栏,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。选区电子衍射的基本原理见图4-1。选区光栏用于挡住光栏孔以外的电子束,只允许光栏孔以内视场所对应的样品微区的成像电子束通过。使得在荧光屏上观察到的电子衍射花样,它仅来自于选区范围内晶体的贡献。实际上,选区形貌观察和电子衍射花样不能完全对应,也就是说选区衍射存在一定误差,所选区域以外样品晶体对衍射花样也有贡献。选区范围不宜太小,否则将带来太大的误差。对于100kV的透射电镜,最小的选区衍射范围约0.5μm;加速电压为1000kV时,最小的选区范围可达0.1μm。 图-1 选区电子衍射原理示意图 1-物镜2-背焦面3-选区光栏4-中间镜5-中间镜像平面6-物镜像平面 2.选区衍射电子的操作 为了确保得到的衍射花样来自所选的区域,应当遵循如下操作步骤: (1) 在成像的操作方式下,使物镜精确聚焦,获得清晰的形貌像。 (2) 插人并选用尺寸合适的选区光栏围住被选择的视场。 (3) 减小中间镜电流,使其物平面与物镜背焦面重合,转入衍射操作方式。近代的电镜此步操作可按“衍射”按钮自动完成。 (4) 移出物镜光栏,在荧光屏显示电子衍射花样可供观察。 (5) 需要拍照记录时,可适当减小第二聚光镜电流,获得更趋近平行的电子束,使衍射斑点尺寸变小。 三、选区电子衍射的应用 单晶电子衍射花样可以直观地反映晶体二维倒易平面上阵点的排列,而且选区衍射和形貌观察在微区上具有对应性,因此选区电子衍射一般有以下几个方面的应用。 (1) 根据电子衍射花样斑点分布的几何特征,可以确定衍射物质的晶体结构;再利用电子衍射基本公式Rd=Lλ,可以进行物相鉴定。 (2) 确定晶体相对于入射束的取向。

物理实验——平行光管的使用思考题

最小分辨角: 最小分辨角是指能够分辨最小细节的能力,分辨出的最小角距。人们能与不能分辨之间不存在明显界限。两个中央亮斑的中心对光学系统L的张角q0,称为光学系统的最小分辨角。 几何光学的知识我们知道,一个物点发出的光通过光学系统后,能够得到一个对应的像点。但是光的衍射现象告诉我们,光学系统对物点所成的像,不可能是几何点,而是具有一定大小的光斑,并且在其周围有亮暗交替的环状衍射条纹。如果两个物点的距离很小,对应的光斑互相重叠,即使光学系统的放大率很高,所成的像对眼睛的张角很大,但仍然不能分辨它们。所以说,光的衍射现象限制了光学系统的分辨能力,并且这是光学系统普遍存在的问题。既然如此,我们可以借助于光衍射的规律分析光学系统的分辨本领。 如果A1和A2相距不太近,它们所成像的中央亮斑相距较远,两个中央亮斑的中心对光学系统L的张角q也较大,人眼可以毫不困难地分辨这两个物点所成的像。如果A1和 A2相距很近,它们所成像的中央亮斑大部分相重叠,亮斑中心对光学系统L的张角q很小,人眼无法分辨这到底是一个物点所成的像还是两个物点所成的像。 人们能与不能分辨之间不存在明显界限。两个中央亮斑的中心对光学系统L的张角q0,称为光学系统的最小分辨角。最小分辨角可由下式表示,最小分辨角q0的倒数,称为光学系统的分辨本领。显然,最小分辨角q0就是艾里斑的半角宽度j0。对于任何光学系统,如果它所观察的物体上最远两点对它的张角小于最小分辨角q0,那么这个系统对该物体实际上是无法分辨的。要提高光学系统的分辨本领,必须增大光学系统的孔径D,使用波长短的光。显微镜的最大分辨本领取决于物镜的最大分辨本领,要提高物镜的分辨本领,就应增大物镜的孔径,并使用波长短的光观察。增大物镜孔径的余地是有限的,而使用短波光却是提高显微镜分辨本领的有效途径。紫外光显微镜所使用的紫外光波长在200nm到250nm,这样可使显微镜的分辨本领比使用可见光提高一倍左右。近代物理学表明,一切微观粒子都具有波动性,其波长与其动量成反比。所以,以一定速率运动的电子束,就是一束波,当加速电压为100V时,波长是0.123nm,当加速电压为10000V时,波长可达0.0122nm。可见电子波的波长是很短的,这正是电子显微镜具有高分辨本领的原因。 测透镜焦距的方法 方法一:用凸透镜正对太阳光(注:一定是正对,否则不给分)在凸透镜的另一侧放一张白纸,改变透镜到纸的距离,直到纸上的光斑最亮最小,测量这个最亮最小的光斑到凸透镜的距离,即为焦距 方法二:(自制平行光源法测焦距)将小灯泡放在凸透镜的主光轴上前后移动,直到在凸透镜的另一侧得到平行光,用刻度尺测量凸透镜到小灯泡的距离,即为焦距方法三:(等大法)将蜡烛、凸透镜、光屏依次放在光具座上调整三者的位置,使它们在同一高度,前后移动蜡烛,直到在光屏上成一个倒立等大的实像,测量物像间的距离再除以四(2f+2f=4f),即为焦距 方法四:用放大镜(相当于凸透镜)看台面上的字,让放大镜一点点远离台面,直到台面上的字模糊掉,测量放大镜到台面的距离,即为焦距 方法五:将蜡烛凸透镜光屏依次放在光具座上,调整位置,使三者在同一高度。前后移动蜡烛和光屏的位置(使凸透镜到光屏的距离增大)直到在光屏上接收不到蜡烛的像为止,停止光屏移动。在光屏方向看凸透镜,看在蜡烛一侧有没有一个正立放大的虚像,若有,则调节蜡烛到凸透镜的距离,直到光屏和蜡烛两侧都不成像,测量蜡烛到凸透镜的距离,即

《光的衍射》答案

第7章光的衍射 一、选择题 1(D),2(B),3(D),4(B),5(D),6(B),7(D),8(B),9(D),10(B) 二、填空题 (1).1.2mm ,3.6mm (2).2,4 (3).N 2, N (4).0,±1,±3,......... (5).5 (6).更窄更亮 (7).0.025 (8).照射光波长,圆孔的直径 (9).2.24×10- 4 (10).13.9 三、计算题 1.在某个单缝衍射实验中,光源发出的光含有两种波长?1和?2,垂直入射于单缝上.假如?1的第一级衍射极小与?2的第二级衍射极小相重合,试问 (1)这两种波长之间有何关系? (2)在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合? 解:(1)由单缝衍射暗纹公式得 由题意可知21θθ=,21sin sin θθ= 代入上式可得212λλ= (2)211112sin λλθk k a ==(k 1=1,2,……) 222sin λθk a =(k 2=1,2,……) 若k 2=2k 1,则?1=?2,即?1的任一k 1级极小都有?2的2k 1级极小与之重合. 2.波长为600nm(1nm=10-9m)的单色光垂直入射到宽度为a =0.10mm 的单缝上,观察夫琅禾费衍射图样,透镜焦 距f =1.0m ,屏在透镜的焦平面处.求: (1)中央衍射明条纹的宽度?x 0; (2)第二级暗纹离透镜焦点的距离x 2 解:(1)对于第一级暗纹, 有a sin ?1≈? 因?1很小,故tg ??1≈sin ?1=?/a 故中央明纹宽度?x 0=2f tg ??1=2f ?/a =1.2cm (2)对于第二级暗纹, 有a sin ?2≈2? x 2=f tg ??2≈f sin ??2=2f ?/a=1.2cm 3.如图所示,设波长为?的平面波沿与单缝平面法线成?角的方向入射,单缝AB 的宽度为a ,观察夫琅禾费衍射.试求出各极小值(即各暗条纹)的衍射角?. 解:1、2两光线的光程差,在如图情况下为 由单缝衍射极小值条件 a (sin ?-sin ?)=?k ?k =1,2,…… 得?=sin —1(?k ?/a+sin ?)k =1,2,……(k ?0) 4.(1)在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,?1=400nm ,??=760nm (1nm=10-9m).已知单缝宽度a =1.0×10-2cm ,透镜焦距f =50cm .求两种光第一级衍射明纹中心之间的距离.

光栅衍射实验报告

光栅衍射实验 系别 精仪系 班号 制33 姓名 李加华 学号 2003010541 做实验日期 2005年05月18日 教师评定____________ 一、0i =时,测定光栅常数和光波波长 光栅编号:___2____;?=仪___1’___;入射光方位10?=__7°6′__;20?=__187°2′__。 由衍射公式,入射角0i =时,有sin m d m ?λ=。 代入光谱级次m=2、绿光波长λ=546.1及测得的衍射角m ?=19°2′,求得光栅常数 ()2546.13349sin sin 192/60m m nm d nm λ??= ==+? cot cot 2m m m d d ?????==?=? ()4cot 192/601/60 5.962101802180ππ-????=+??=? ? ????? 445.96210 5.962103349 1.997d d nm nm --?=??=??= ()33492d nm =± 代入其它谱线对应的光波的衍射角,得 ()3349sin 2013/60sin 578.72 m nm d nm m ?λ?+?===黄1

()3349sin 209/60576.82 nm nm λ?+? = =黄2 ()3349sin 155/60435.72 nm nm λ?+?==紫 λ λ?== 578.70.4752nm nm λ?==黄1 576.80.4720nm nm λ?= =黄2 435.70.4220nm nm λ?==紫()578.70.5nm λ=±黄1,()576.80.5nm λ=±黄2,()435.70.4nm λ=±紫 由测量值推算出来的结果与相应波长的精确值十分接近,但均有不同程度的偏小。由于实验中只有各个角度是测量值(给定的绿光波长与级数为准确值),而分光计刻度盘读数存在的误差为随机误差,观察时已将观察显微镜中心竖直刻线置于谱线中心——所以猜测系统误差来自于分光镜调节的过程。 二、150'i =?,测量波长较短的黄线的波长 光栅编号:___2____;光栅平面法线方位1n ?=__352°7′__;2n ?=__172°1′__。

基于MATLAB的物理光学实验仿真平台构建

毕业设计(论文)开题报告题目:基于Matlab的物理光学实验仿真平台构建 院(系)光电工程学院 专业光信息科学与技术 班级120110 姓名闫武娟 学号120110127 导师刘王云 年月日

开题报告填写要求 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成。2.开题报告内容必须按教务处统一设计的电子文档标准格式(可从教务处网页上下载)填写并打印(禁止打印在其它纸上后剪贴),完成后应及时交给指导教师审阅。3.开题报告字数应在1500字以上,参考文献应不少于15篇(不包括辞典、手册,其中外文文献至少3篇),文中引用参考文献处应标出文献序号,“参考文献”应按附件中《参考文献“注释格式”》的要求书写。 4.年、月、日的日期一律用阿拉伯数字书写,例:“2005年11月26日”。

这些仿真平台的使用不仅方便了教学,而且也使学生更容易理解物理光实验的基本原理,加深对理论知识的理解与记忆。 2.课题研究的主要内容和拟采用的研究方案、研究方法 2.1课题研究的主要内容 (1). 在光的干涉基本理论基础上,实现两束平面波、球面波的干涉实验,杨氏双缝和杨氏双孔干涉实验,平行平板的等倾干涉实验,楔形平板的等厚干涉实验,牛顿环干涉实验,迈克尔逊干涉实验以及平行平板的多光束干涉实验。 (2). 在菲涅尔衍射及夫琅和费衍射基本理论基础上,实现矩孔、单缝、圆孔、双缝、多缝、平面光栅及闪耀光栅的衍射实验。 2.2 研究方法及方案 物理光学实验可分为两大类:干涉与衍射。光的干涉有光源、干涉装置和干涉图形三个基本要素;衍射分为菲涅尔衍射和夫琅禾费衍射。光学领域的大部分图像及曲线分布都可以用MATLAB 软件加以计算和实现[16], 以杨氏双缝干涉为例,简述实验方案 杨氏双缝干涉模型是典型的分波面干涉,其干涉装置图如图所示,用一个单缝与一个双缝,从同一波面上分出两个同相位的单色光,进而获得相干光源并观察分析干涉图样。 图1.1杨氏双缝干涉实验装置图 2.2.1数学建模 根据干涉的基本原理,点光源S 发出的光波经双缝分解为次波源S 1、S 2,这两个次波源发出的光波在空间相干叠加,继而在其后的接收屏形成一系列明暗相间的干涉条纹。 设入射光波波长为λ,两个次波源的强度相同,且间距为d (1)位相差的计算: 221)2 (y d x r ++ =222)2 - (y d x r +=(2.1) )(*12r r n -=?(2.2)

《大学物理AII》作业 No 光的衍射 参考答案

《大学物理AII 》作业 No.06 光的衍射 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ ------------------------------------------------------------------------------------------------------- ****************************本章教学要求**************************** 1、理解惠更斯-菲涅耳原理以及如何用该原理解释光的衍射现象。 2、理解夫琅禾费衍射和菲涅耳衍射的区别,掌握用半波带法分析夫琅禾费单缝衍射条纹的产生,能计算明暗纹位置、能大致画出单缝衍射条纹的光强分布曲线;能分析衍射条纹角宽度的影响因素。 3、理解用振幅矢量叠加法求单缝衍射光强分布的原理。 4、掌握圆孔夫琅禾费衍射光强分布特征,理解瑞利判据以及光的衍射对光学仪器分辨率的影响。 5、理解光栅衍射形成明纹的条件,掌握用光栅方程计算主极大位置;理解光栅衍射条纹缺级条件,了解光栅光谱的形成以及光栅分辨本领的影响因素。 6、理解X 射线衍射的原理以及布拉格公式的意义,会用它计算晶体的晶格常数或X 射线的波长。 ------------------------------------------------------------------------------------------------------- 一、填空题 1、当光通过尺寸可与(波长)相比拟的碍障物(缝或孔)时,其传播方向偏离直线进入障碍物阴影区,并且光强在空间呈现(非均匀分布)的现象称为衍射。形成衍射的原因可用惠更斯-菲涅耳原理解释,即波阵面上各点都可以看成是(子波的波源),其后波场中各点波的强度由各子波在该点的(相干叠加)决定。 2、光源和接收屏距离障碍物有限远的衍射称为(菲涅尔衍射或近场衍射);光源和接收屏距离障碍物无限远的衍射称为(夫琅禾费衍射)或者远场衍射。在实际操作中,远场衍射是通过(平行光)衍射来实现的,即将光源放置在一透镜的焦点上产生平行光照射障碍物,通过障碍物的衍射光再经一透镜会聚到接收屏上观察来实现。 3、讨论单缝衍射光强分布时,可采用(半波带法)和(振幅矢量叠加法)两种方法,这两种方法得到的单缝衍射暗纹中心位置都是一样的,暗纹中心位置= x (a kf λ ±)。两相邻暗纹中心之间的距离定义为(明纹)宽度,单缝衍射中央明

相关主题
文本预览
相关文档 最新文档