当前位置:文档之家› 循环方阵的行列式

循环方阵的行列式

循环方阵的行列式
循环方阵的行列式

循环方阵的行列式

行列式的计算方法

专题讲座五行列式的计算方法 1.递推法 例1求行列式的值: (1) 的构造是:主对角线元全为;主对角线上方第一条次对角线的元全为,下方 第一条次对角线的元全为1,其余元全为0;即为三对角线型。又右下角的(n)表示行列式为n阶。 解把类似于,但为k阶的三对角线型行列式记为。 把(1)的行列式按第一列展开,有两项,一项是 另一项是 上面的行列式再按第一行展开,得乘一个n– 2 阶行列式,这个n– 2 阶行列式和原行列式的构造相同,于是有递推关系: (2) 移项,提取公因子β: 类似地: (递推计算) 直接计算

若;否则,除以后移项: 再一次用递推计算: ∴,当β≠α(3) 当β = α,从 从而。 由(3)式,若。 ∴ 注递推式(2)通常称为常系数齐次二阶线性差分方程. 注1仿照例1的讨论,三对角线型的n阶行列式

(3) 和三对角线型行列式 (4) 有相同的递推关系式 (5) (6) 注意 两个序列 和 的起始值相同,递推关系式(5)和(6)的构造也相同,故必有 由(4)式,的每一行都能提出一个因子a,故等于乘一个n阶行列式,这一个行列式就是例1的。前面算出,故 例2 计算n阶范德蒙行列式行列式 解:

即n阶范德蒙行列式等于这n个数的所有可能的差的乘积 2.拆元法 例3:计算行列式 解

①×(x + a) ②×(x – a)

3.加边法 例4计算行列式 分析:这个行列式的特点是除对角线外,各列元素分别相同.根据这一特点,可采用加边法. 解 4.数学归结法 例5计算行列式 解: 猜测: 证明 (1)n = 1, 2, 3 时,命题成立。假设n≤k– 1 时命题成立,考察n=k的情形:

行列式的计算方法

摘要 行列式是高等代数中重要的内容之一,在数学中有着广泛的应用.通过对行列式基本理论的介绍,针对不同类型的行列式,结合具体例题,介绍行列式的计算方法,其中包括降阶法,升阶法,数学归纳法等. 关键词:行列式;范德蒙行列式;计算

Abstract The determinant is an important content of higher algebra, which having wide application in mathematics. Through the introduction of the basic theory of the determinant, combined with concrete examples, the calculation for different types of determinant are introduced, which including the reduction method, order method, mathematical induction, and so on. Key words: determinant;vandermonde determinant;calculation

目录 摘要 ................................................................................................................................I Abstract ....................................................................................................................... II 第1章行列式的形成和性质 .. (1) 第1节行列式的发展史 (1) 第2节行列式的性质 (2) 第2章行列式的计算方法 (4) 第1节化三角形法 (4) 第2节降阶法 (8) 第3节递推法 (9) 第4节加边法 (11) 第5节拆行(列)法 (12) 第6节数学归纳法 (14) 结论 (16) 参考文献 (17) 致谢 (18)

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

线性代数行列式基本概念

目录 目录 (1) 一、行列式 (2) 见ppt。 (2) 二、矩阵特征值 (2) 三、正定矩阵 (2) 四、幺模矩阵 (3) 五、顺序主子阵 (4) 六、正定二次型 (6) 七、矩阵的秩 (6) 八、初等变换(elementary transformation) (7)

一、行列式 见ppt。 二、矩阵特征值 设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。 求矩阵特征值的方法 Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。 |mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。 如果n阶矩阵A的全部特征值为m1 m2 ... mn,则|A|=m1*m2*...*mn 如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以从解方程g(m)=0求得。 三、正定矩阵 设M是n阶实系数对称矩阵,如果对任何非零向量 X=(x_1,...x_n),都有XMX′>0(X'为X的转置矩阵 ),就称M正定(Positive Definite)。 正定矩阵在相合变换下可化为标准型,即单位矩阵。 所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵. 判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。 判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。 判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。 正定矩阵的性质: 1.正定矩阵一定是非奇异的。非奇异矩阵的定义:若n阶矩阵A的行列式不为零,即|A|≠0,则称A为非奇异矩 2.正定矩阵的任一主子矩阵也是正定矩阵。

行列式的定义及性质

行列式的定义及性质 (张俊敏) ● 教学目标与要求 通过学习,使学生理解n 阶行列式的定义,熟练掌握二、三阶行列式性质,能运用性质求行列式的值。 ● 教学重点与难点 教学重点:n 阶行列式的定义及性质。 教学难点:n 阶行列式定义的理解。 ● 教学方法与建议 通过复习高中时所学过的二阶与三阶行列式,了解行列式及其应用,在此基础上引出一般意义上的n 阶行列式定义。要特别指出:行列式是一种运算,其结果是一个数;其意义在于在由数组成的形式(方阵)与数域之间建立了一种联系,使得我们可以通过数来研究形式的东西,同时可以通过形式的东西来研究与数有关的问题。 ● 教学过程设计 1.问题的提出 求解二、三元线性方程组 (二元线性方程组???=+=+22221 211 212111b x a x a b x a x a ,当021122211≠-a a a a 时,可用消元法求得解为: 22 21 1211 222121********* 122211a a a a a b a b a a a a b a a b x = --= 二阶、三阶行列式

22 212 1122 211112112221121 12112a b a a a a b a a a a a a b b a x = --= )二阶与三阶行列式 1. 二阶行列式:(回顾高中时的二阶与三阶行列式) 1112 112212212122 det()a a A a a a a a a = =-,其中A 为方程组的系数矩阵。 2. 三阶行列式: 32 3122 21133331232112333223221133 32 31 23222113 1211 a a a a a a a a a a a a a a a a a a a a a a a a +-= 注:(1)这是把三阶行列式转化为比它低一阶的二阶行列式进行的计算。三阶行列式算出来也是一个数。 (2)三阶行列式 也是方形矩阵上定义的一种运算。 2. n 阶行列式的定义: 1112122 23 221 23 22122211 12 23 1 3 1 2 21 22 2,1 111 2 ,1 (1)n n n n n n nn n n nn n n nn n n n n n n n a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a -+-= =-+ +- n 阶行列式中去掉元素ij a 所在行所在列的元素后,得到的 1n -阶行列式叫做ij a 的余子式,记作ij M ,即11 1,11,111,11,11,11,1,11,11,11,1 ,1 ,1 j j n i i j i j n n ij i i j i j i n n n j n j nn a a a a a a a a M a a a a a a a a -+----+-++-+++-+= 并称(1)i j ij ij D M +=-为ij a 的代数余子式。引入这两个记号则可将(2.4)式简记为 111111********* det (1)(1)k n n n n k k k A a M a M a M a M ++==-+ +-=-∑ (2.5)

行列式练习题1

第二章 行列式练习题(1) 一、判断题:(在括号里打“√”或“×”,每小题2分,共20分) 1.排列217986354必定经过奇数次对换变为123456789. 2.任一排列施行一次对换后,其逆序数必增加1或减少1. (×) 3.排列 121n n j j j j -与排列1 21n n j j j j -的奇偶性相反 ( ) 4. 1122 1 2 12334434 34 a b a b a a b b a b a b a a b b ++=+ ++ (×) 5.若行列式中所有元素都是整数,则行列式的值一定是整数. (√) 6.若矩阵 A 经过初等变换化为矩阵 B ,则A B =. (×) 7.把三级行列式的第一行减去第二行的2倍,同时把第一行的3倍加到第二行上去,所得的行列式与原行列式相等即:11112 12 12 222212121 3 33 3 3 3 222333a b c a a b b c c a b c a a b b c c a b c a b c ---=+++ ( ) 8.设 A 是n 级矩阵,k 是任意常数,则kA k A =或kA k A =-; (×) 9.设abcd 是一个4级排列,则abcd 与badc 的奇偶性相同; (√ ) 10.设方程个数与未知量的个数相等的非齐次线性方程组的系数行列式等于0,则该线性方程组无解; (×) 11. 设D= 11 12121 2221 2 n n n n nn a a a a a a a a a ,D 1=121 21 2 111222n n n k k k k k k nk nk nk a a a a a a a a a ,其中12n k k k 是1、2、3、……、n 的一个排列, 则 () () 12 1 1n k k k D D τ=- ( ) 二、填空题(每小题2分,共20分) 1.排列(1) 321n n -的逆序数为 (1) 2 n n -,当n 是 时为奇排列;当n 是 时为偶排列. 2.12345i i i i i 的逆序数为6,则54321i i i 的逆序数是 。 3.排列135…(2n-1)246…(2n)的逆序数为 ,排列 (2k)1(2k-1)2…(k+1)k 的逆序数为 ; 4.排列12435作三个对换 、 、 变为排列25341,这些对换并不唯一,但所作的对换的次数与逆序数τ(12435)具有相同的奇偶性。 5.五级行列式D 中的一项2113324554a a a a a 在D 中的符号为 负 . 6.① 3000003000______;003000007311194 =②0 00 _______;000 a e b f g c h d =③123 123123a a a b b b c c c ++++++=+++ ;④2 22 1 11ωωωωωω = ;

利用行列式分解因式

用行列式分解因式的几种方法 摘要因式分解作为初等数学中最重要的恒等变形之一,被广泛的应用于初等数学的各个方面,而我们也学习过很多种因式分解的方法,例如:提公因式法、运用公式法、十字相乘法、凑数法等,它们都符合一定特征的多项式的分解。而行列式是解决高等代数问题的重要工具之一,本文就通过各种典型例子,用高等数学工具行列式来解决初等代数中的一些因式分解问题。 关键词因式分解行列式多项式 1. 引言 因式分解(factorization),是指把一个多项式化为几个最简整式的形式,也可以称为分解因式。它是初等数学中的重点,也是一个难点,但是它也是初等数学中最重要的恒等变形之一,而被广泛引用于初等数学解高次方程、求根、作图等各个方面,是我们解决初等数学问题的有力工具之一。但因式分解方法灵活、技巧性强,常用的方法就有提公因式法、运用公式法、凑数法、十字相乘法、待定系数法等好几种方法,它们都各自适用于一些符合各自特点的多项式。 行列式在数学中,是由解线性方程组产生的一种算式,它无论在线性代数、多项式理论,还是在微积分学中(比如在换元积分法中),行列式作为基本的数学工具,都有着非常重要的作用。线性代数是高等代数的一大分支,我们知道一次方程叫做线性方程,而讨论线性方程及线性运算的代数叫做线性代数,在线性代数中最重要的内容就是行列式和矩阵。 行列式的概念最早由十七世纪日本数学家关考和提出来的,他在1683年写了一部叫做《解付题方法》的著作,意思就是“解行列式问题的方法”,书里对行列式的概念和展开已经有了清楚的叙述。而欧洲第一个提出行列式概念的是德国数学家、微积分学的奠基人之一莱布尼茨(1693年),1750年克莱姆在他的《线性代数分析导言》中发表了求解线性系统方程的重要基本公式(即克莱姆法则)。而德国数学家雅克比也于1841年总结并提出了行列式的系统理论。另一个研究行列式的是法国最伟大的数学家柯西,他大大发展了行列式理论,在行列式记号中他把元素排成方阵并首次采用双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了laplace的展开定理。它具有以下相关性质: (1) 行列式中某一行元素的公因子可以提到行列式符号的外边来。或者说可以吧这个数乘到行列式的某一行上。 (2) 把行列式某一行的元素乘以同一个数后加到另一行的对应元素上,行列式不变。 (3) 把一个行列式的某一行(列)的所有元素同乘以某一个数k,等于以数k乘这个行列式。 在新课改中,高中数学教材中已经初步涉及了行列式这个新内容,为此,初学行列式者往往会产生一种与初等数学完全隔离的感觉,好像它和我们的初等数学没什么关系,而行列式作为解决高等数学的重要工具,如果我们能用高等数学的重要工具来解决一些初等数学中的难点问题——因式分解,那么,同学们不仅又多掌握了一种因式分解的方法,而且通过学习用高等数学知识来解决初等数学问题,无疑会大大增加同学们对高等数学的学习兴趣,使高等数学在初学者眼里再不是神秘莫测、不可捉摸了。无形之中就为它们进一步学习高等数学奠定了一定的知识基础和心理基础。 下面我就从一些比较有特点的多项式来分析它们的与行列式之间的联系,通过行列式的有关性质来分解这个多项式,然后我们就可以解决这一类多项式的分解方法了。

雅可比行列式

§ .函数行列式 教学目的 掌握函数行列式. 教学要求 (1).掌握函数行列式 (2) 能用函数行列式解决一些简单的问题 一、函数行列式 由n A R ?到R 的映射(或变换)就是n 元函数,即 12(,,,,)n n x x x y f A R R R ∈????L ,或 1212(,,,),(,,,).n n y f x x x x x x A =∈L L 由n A R ?到n R 的映射(或变换)就是n 个n 元函数构成的函数组,即 1212(,,,,,,,)n n n n n x x x y y y f A R R R ∈????L L ,或 1112221212,12(,,),(,,),(,).(1)(,,). n n n n n n y f x x x y f x x x x x x A y f x x x =??=?∈? ??=?L L L L L L L 表为12(,,)n f f f L ,设它们对每个自变量都存在偏导数 ,1,2,1,2i j f i n j n x ?==?L L ,行列式1 1112222 121 2 n n n n n n f f f x x x f f f x x x f f f x x x ??????????????????L L M M M M L (2) 称为函数组12(,,)n f f f L 在点12,(,)n x x x L 的雅可比行列式,也称为函数行列式,表为 121212,12,(,,)(,,) (,) (,) n n n n f f f D f f f x x x D x x x ??L L L L 或 . 例:求下列函数组(变换)的函数行列式: 1.极坐标变换 cos , sin .x r y r ??=??=?

行列式的计算方法文献综述

行列式的计算方法 摘要:本文叙述了行列式的发展历程,现状和研究方法分析。概述了一些计算方法,最后提出一些行列式的计算方法值得进一步探讨的问题。 关键词 :行列式;方程组;计算方法;加边法 1. 引言 行列式是人们为了研究二、三元的线性方程组而创建的,它是大学数学学习的一个重要内容,是求解线性方程组,求逆矩阵及求矩阵特征值的基础。而它的应用并不止局限于代数的范围,它也是许多其他学科研究的重要工具,如行列式经常被用于涉及到的电子工程、控制论、数学物理方程的研究等。而行列式的计算具有一定的规律性和技巧性,综合性较强,在行列式计算中需要我们多观察总结,才能更熟练地计算出行列式的值。在行列式的计算过程中,不同特征的行列式适用不同的方法,每一种方法都有它们各自的优点及其独特之处,因此具有非常重要的研究价值。本论文主要从2000 年到2012 年发表的若干期刊中,总结出行列式的计算的发展历程、现状以及研究的方向。 2. 正文 2.1行列式的历史: 行列式的概念最初是因方程组的求解而发展起来的,它的提出是在十七世纪,由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,那时已经使用行列式来确定线性方程组解的个数以及形式。 十八世纪开始,行列式开始作为独立的数学概念被研究。1750 年,瑞士数学家克莱姆在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。后来,数学家贝祖将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。 1772 年,拉普拉斯在一篇论文中证明了范德蒙提出的一些规则,推广了他的展开行列式的方法。 十九世纪以后,行列式理论进一步得到发展和完善。1815 年,柯西在一篇论文中给出了行列式的第一个系统的处理,其中主要结果之一是行列式的乘法定理。1841年,雅可比发表了一篇关于函数行列式的论文,讨论函数的线性相关性与雅可比行列式的关系。十九世纪五十年代,凯莱和詹姆斯·约瑟夫·西尔维斯特将矩阵的概念引入数学研究中。行列式和矩阵之间的密切关系使得矩阵论发展的同时也带来了许多关于行列式的新结果,例如阿达马不等式、正交行列式、对称行列式等等。与此同时,行列式也被应用于各种领域中。 2.2行列式的现状: 行列式的计算一直是代数研究的一个重要课题,国内外学者专家已经总结了很多常用的技巧及方法,研究成果颇为丰硕。文献[1]-[23]黄娟霞、胡乔林、陈黎钦、李辉、毋光先等学者对行列式的一些计算方法做出的归纳,其中有几种是目前较常用的方法,主要有三角化法、拆项法、加边法、递推法、分离线性因子法、数学归纳法等,而几种尚未被广泛使用的方法主要有超范德蒙行列式法、微积分法、软件法、按拉普拉斯定理展开等。这

63、矩阵、行列式的运算及性质

第62课矩阵、行列式的运算及性质 【教学目标】 1. 理解矩阵的概念,掌握矩阵的算法,会利用矩阵解线性方程组。 2. 理解行列式的概念,掌握行列式的算法,会利用行列式判断二元(三元)一次方程组解的情况,了解三阶行列式的性质并能运用于计算。 【教学难点】 1. 会利用矩阵解线性方程组 2. 利用行列式判断二元(三元)一次方程组解的情况。 【教学重点】 1.用矩阵表示实际问题中的相关量,运用矩阵的运算解决实际问题。 2.二阶(三阶)行列式的算法, 利用行列式判断二元(三元)一次方程组解的情 况。 【知识整理】 1.矩阵是一个数表,可以用来表示块状数据; 2.矩阵的运算,如:加法、减法、数乘、乘法等; 3.矩阵的基本变换。 4.行列式是表示特定算式的记号,其结果是一个数; 5.对于给定的方程组,能正确找出D 、x D 、y D ,并根据它们的值判断方程组解的情况,或写出方程组的解。 【例题解析】 【属性】高三,矩阵,矩阵,解答题,中,运算 【题目】已知矩阵2 793 1 5A ??= ?--?? ,3 14 026B -?? ?= ? ?-? ?,641 1103C -?? ? = ? ?-? ? ,计算: (1)()A B C +; (2)()B C A +; (3)B A C A +; (4)从上述计算结果中你能得到什么结论? 【解答】(1)11 110()24 13A B C ?? += ?-?? ;(2)15 1842()23 46101311 33B C A ---?? ?+=-- ? ?---? ? ;(3)15 184223 46101311 33BA CA ---?? ?+=-- ? ?---? ? ; (4)矩阵运算不满足交换率,但满足分配率。 【属性】高三,矩阵,矩阵,解答题,中,运算 【题目】一家水果店出售5种水果,它们的单价和利润如表1所示。该家水果店的经理要在计算 每笔生意营业额的同时,计算该笔生意的利润额。假设现有3位顾客购买水果,他们的购买量如表2所示。试计算每笔生意的营业额和利润额。 表1: 表2:

行列式测试题(有答案)

第九讲 行列式单元测试题点评 一、填空题(每小题2分,满分20分) 1.全体3阶排列一共有6 个,它们是123,132,213,231,312,321; 2. 奇排列经过奇数次对换变为偶排列,奇排列经过偶数次 对换变为奇排列; 3. 行列式D和它的转置行列式D'有关系式D D' =; 4. 交换一个行列式的两行(或两列),行列式的值改变符号; 5. 如果一个行列式有两行(或两列)的对应元素成比例,则这 个行列式等于零; 6. 一个行列式中某一行(列)所有元素的公因子可以提到 行列式符号的外边; … 7. 把行列式的某一行(列)的元素乘以同一数后加到另一行(列) 的对应元素上,行列式的值不变; 8. 行列式的某一行(列)的元素与另一行(列)的对应元素的 代数余子式的乘积之和等于零; 9. 11121 222 1122 ; 00 n n nn nn a a a a a a a a a =

10.当 k=22 ±时,542k k k =。 二、判断题(每小题3分,满分24分) 1.1)(,)(31221±==k i i i i k i i i n n ππ则若 (∨) 的符号 的一般项则设n n j i j i j i nn n n n n a a a a a a a a a a a a D 2211D ,.221 2222111211 = .) 1() (21n j j j π-是 (×) 3. 若n(n>2)阶行列式D=0,则D 有两行(列)元素相同. (×) 4.若n 阶行列式D 恰有n 个元素非0,则D ≠0. (×) 5.对于线性方程组,只要方程个数等于未知数个数,就可以直接使用克莱姆法则求解。 (×) . 6.若行列式D 的相同元素多于2n n -个,则D=0. (×) 7. 11 121313233321222312 222331 32 33 11 21 31 a a a a a a a a a a a a a a a a a a = (×) 阶行列式主对角线上元素乘积项带正号,副对角线上元素乘积项带负号。 (×) 三、单项选择题(每小题4分,满分20分) 1.位于n 级排列12111k k n i i i i i -+中的数1与其余数形成的 反序个数为( A )

雅可比行列式

§11.2 .函数行列式 教学目的 掌握函数行列式. 教学要求 (1).掌握函数行列式 的映射(或变换)就是12,,,,,,)n n x y y y f A ∈?,)n f ,设它们对每个自变量都存在偏导数121 212n n n n n n f x f x x x f f f x x x ???????????? 称为函数组12(,,)n f f f 在点12,(,)n x x x 的雅可比行列式,也称为函数行列式,表为 121212,12,(,, )(,, ) (,)(,) n n n n f f f D f f f x x x D x x x ??或.

例:求下列函数组(变换)的函数行列式: 1.极坐标变换 2.柱面坐标变换 . (,)(,)(,) ??? s t x y s t 证明:由复合函数的微分法则,有 由行列式的乘法,有

(,)(,)(,)(,)u u x x x y u v x y s t v v y y x y s t x y s t ??????????==??????????. 若一元函数()y f x =在点0x 某邻域具有连续的导数()f x ',且0()0f x '≠.由连续函数的保号性,在点0x 某邻域0,()()f x f x ''?与保持同一符号,因而在?函数()y f x =严格单调,它 .三、函数行列式的几何性质

一元函数()y f x =是1R 到1R 的映射.取定一点0x ,它的象是00()y f x =.当自变量x 在点0x 有改变量x ?,相应y 在0y 有改变量y ?.线段y ?的长y ?与线段x ?的长x ?之比y x 称 为映射f 在0x 到0x x +的平均伸缩系数,若当0x →时平均伸缩系数y x 存在极限,即 0000()()lim lim '(x x y f x x f x f x x →→+-==是映射 f 在点0x 的伸缩系数. )G ∈,(

矩阵基本性质

矩阵的基本性质 矩阵的第?第列的元素为。我们?或()表?的单位矩阵。 1.矩阵的加减法 (1),对应元素相加减 (2)矩阵加减法满足的运算法则 a.交换律: b.结合律: c. d. 2.矩阵的数乘 (1),各元素均乘以常数 (2)矩阵数乘满足的运算法则 a.数对矩阵的分配律: b.矩阵对数的分配律: c.结合律: d. 3.矩阵的乘法 (1),左行右列对应元素相乘后求和为C的第行第列的元素(2)矩阵乘法满足的运算法则 a.对于一般矩阵不满足交换律,只有两个方正满足且有 b.分配律: c.结合律: d.数乘结合律: 4.矩阵的转置, (1)矩阵的幂:,,…,

(2)矩阵乘法满足的运算法则 a. b. c. d. 5.对称矩阵:即;反对称矩阵:即 (1)设为(反)对称矩阵,则仍是(反)对称矩阵。 (2)设为对称矩阵,则或仍是对称矩阵的充要条件=。 (3)设为(反)对称矩阵,则,也是(反)对称矩阵。 (4)对任意矩阵,则分别是对称矩阵和反对称矩阵且. (5) 6. Hermite矩阵:即;反Hermite矩阵,即 a. b. c. d. e. f.(当矩阵可逆时) 7.正交矩阵:若,则是正交矩阵 (1) (2)

8.酉矩阵:若,则是酉矩阵 (1) (2) (3), (4) 9.正规矩阵:若,则是正规矩阵;若,则是实正规矩阵 10.矩阵的迹和行列式 (1)为矩阵的迹;或为行列式 (2);注:矩阵乘法不满足交换律 (3) (4),为酉矩阵,则 (5) (6) (7) (8) (9) (10) (11) (12),,则其中为奇异分解值的特征值 11.矩阵的伴随矩阵 (1)设由行列式的代数余子式所构成的矩阵

循环矩阵在密码学中的应用

题目循环矩阵在密码学中的应用 学生姓名韩媛媛学号 1109014156 所在院(系) 数学与计算机科学学院 专业班级数学与应用数学1102 指导教师潘平 2015 年 5 月 10 日

循环矩阵在密码学中的应用 韩媛媛 (陕西理工学院数学与计算机科学学院数学与应用数学专业1102班级,陕西 汉中 723000) 指导教师:潘平 [摘要]矩阵是线性代数的重要构成部分,而循环矩阵就是一类有特殊结构的矩阵,在许多实际问题中有广泛的 应用,有关循环矩阵的问题仍是矩阵论研究中的热点。在当今社会,随着科学技术水平的迅速发展,我们需要更深入的研究数学工具在现实中的实际应用。密码学是研究编译密码和破解密码的尖端技术科学,与数学、信息学、计算机科学有着广泛而密切的联系,由于循环矩阵是现代科技工程中具有广泛应用的一类特殊矩阵,具有良好的性质和结构,因而关于循环矩阵的研究非常活跃,本文中简单介绍了ElGamal 密码体制,以及循环矩阵在ElGamal 中加密解密过程的描述。利用循环矩阵在密码学中的研究,探索循环矩阵在几类典型密码中加密和破译的研究有着重要的现实意义。 [关键字]循环矩阵;密码学;有限域 1. 循环矩阵的概念 定义 1.1 ] 1[设),(n n n n R C A ??∈如果矩阵A 的最小多项式等于特征多项式,则称A 为循环矩 阵. 定义1.2 设A 是n 维向量空间V 上的一个线性变换,若存在向量V ∈α,使得,α αα1A ,,A -n 线性无关.则称α为A 的一个循环向量. 定义1.3 已知n 阶基本循环矩阵 ? ????????? ????? ???? ?=00 110000000001000010 D , 并令 ),,2,1(n i D I i i ==, 称121,,,-n I I I I 为循环矩阵基本列(其中n n I D I ==为单位矩阵). 2. 循环矩阵的性质 2.1 循环矩阵基本性质 性质2.1.1 ]3[循环矩阵基本列121,,,-n I I I I 是线性无关的. 性质2.1.2 ] 3[任意的n 阶循环矩阵A 都可以用循环矩阵基本列线性表出,即 11110--+++=n n I a I a I a A . 性质2.1.3 同阶循环矩阵的和矩阵为循环矩阵.

矩阵行列式求导

矩阵函数求导 首先要区分两个概念:矩阵函数和函数矩阵 (1) 函数矩阵,简单地说就是多个一般函数的阵列,包括单变量和多变量函数。 函数矩阵的求导和积分是作用在各个矩阵元素上,没有更多的规则。 单变量函数矩阵的微分与积分 考虑实变量t 的实函数矩阵 ()()()ij m n X t x t ×=,所有分量函数()ij x t 定义域相同。 定义函数矩阵的微分与积分 0()(),()().t t ij ij t t d d X t x t X d x d dx dx ττττ?????????==????????????∫∫ 函数矩阵的微分有以下性质: (1) ()()()()()d d d X t Y t X t t dt dt dt +=+; (2) ()()()()()()()d dX t dY t X t Y t t X t dt dt dt =+; 特殊情形 (a ) 若K 是常数矩阵,则()()()d d KX t K X t dt dt =; (b ) 若()X t 是方阵,则2()()()()()d dX t dX t X t X t X t dt dt dt =+; (3) () 111()()()()d dX t X t X t X t dt dt =----; (4) 对任意的方阵A 和时变量t ,恒有At At At d e Ae e A dt ==; (5) 若AB BA =,则A B B A A B e e e e e +==。如果,A B 可交换,则许多三角不等 式可以推广到矩阵上。如sin(),sin(2)A b A +等。 参考文献:余鄂西,矩阵论,高等教育出版社。

2.4 矩阵运算的转置、方阵行列式性质

§2.4 矩阵的转置性质和行列式性质 回顾 乘法:记作.C AB = 11221 s ij i j i j is sj ik kj k c a b a b a b a b ==+++=∑ ()1,2,;1,2,,,i m j n == 不是所有矩阵都可以相乘的,必须左边矩阵的列数=右边矩阵的行数。m l l n m n A B C ???=,它们的积为:左边矩阵的各行与右边矩阵的 各列对应元素积的和。 注:①一般地,.AB BA ≠ ②两个非零矩阵的积可能是零矩阵。(实数中不可能有的) (3)若AB=AC ,不一定有B=C 。 说明矩阵相乘,两个矩阵的顺序非常重要。 (4) 乘方()m A m N +∈,A 是n 阶方阵。 0A E =,,m k m k A A A +=().k m mk A A =().k k k AB A B ≠ 新授:矩阵的乘法运算 一、转置运算及性质 1)();T T A A =();T T T A B A B +=+();T T A A λλ=().T T T AB B A = 例6:已知171201,423,132201A B -??-?? ?== ? ??? ??? ().T AB 求 解法一:171201423132201AB -??-?? ?= ? ??? ??? 0143,171310-??= ??? ()0171413.310T AB ?? ?∴= ? ?-?? 解法二:() T T T AB B A =142217*********???? ???= ??? ???--????0171413.310?? ?= ? ?-?? 练习:

几类特殊N阶行列式的计算

目录 1 引言 (2) 2 文献综述 (2) 2.1 国内研究现状 (2) 2.2 国内研究现状评价 (3) 2.3 提出问题 (3) 3 预备知识 (3) 3.1 N阶行列式的定义 (3) 3.2 行列式的性质 (4) 3.3 行列式的行(列)展开和拉普拉斯定理 (4) 3.3.1 行列式按一行(列)展开 (4) 3.3.2 拉普拉斯定理 (5) 4 几类特殊N阶行列式的计算 (5) 4.1 三角形行列式的计算 (6) 4.2 两条线型行列式的计算 (7) 4.3 箭形行列式的计算 (8) 4.4 三对角行列式的计算 (8) 4.5 Hessenberg型行列式的计算 (10) 4.6 行(列)和相等的行列式的计算 (11) 4.7 相邻行(列)元素差1的行列式的计算 (12) 4.8 范德蒙型行列式的计算 (13) 5 结论 (15) 5.1 主要发现 (15) 5.2 启示 (15) 5.3 局限性 (15) 5.4 努力方向 (15) 参考文献 (16)

1 引言 行列式是代数学中的一个重要内容,在数学理论上有十分重要的地位.早在17世纪和18世纪初,行列式就在解线性方程组中出现.1772年法国数学家范德蒙(1735-1796)首先把行列式作为专门理论独立于线性方程之外研究.到了19世纪,是行列式理论形成和发展的重要时期,19世纪中叶出现了行列式的大量定理.因此,到19世纪末行列式基本面貌已经勾画清楚. 行列式的计算是高等代数的重要内容之一,也是理工科线性代数的重要内容之一,同时也是学习中的一个难点.在数学和现实中有着广泛的应用,懂得如何计算行列式尤为重要.对于阶数较低的行列式,一般可直接利用行列式的定义和性质计算出结果.对于一般的N阶行列式,特别是当N较大时,直接用定义计算行列式往往是困难和繁琐的,因此研究行列式的计算方法则显得十分必要.通常需灵活运用一些计算技巧和方法,使计算大大简化,从而得出结果.本文归纳了几类特殊N阶行列式的计算方法,从这几类特殊的N阶行列式的计算中,可以总结出归纳出一些行列式的计算方法,只要将这些方法与传统方法结合起来,就可以基本上解决n阶行列式的计算问题. 本文先阐述行列式的定义及其基本性质,然后介绍了几类特殊行列式的计算方法,并结合了相关例题讨论了行列式的求解方法. 2 文献综述 2.1 国内研究现状 现查阅到的文献资料中,大部分只是简单的介绍了行列式的定义、行列式的性质、行列式按行(列)展开、克拉默法则等.其中[1]、[3]介绍了行列式的定义、性质、行列式按行(列)展开,[2]、[4]介绍了利用行列式的性质计算行列式,[4]、[8]直接介绍行列式的计算,主要讲解了行列式的计算在Matlab上的实现,[7]、[9]、[10]介绍了行列式的简单计算和行列式的常用计算方法,[11]、[12]、[13]同样也是介绍了行列式的性质、定义和克拉默法则,[14]在行列式的定义、性质、按行(列)展开克拉默法则等方面介绍得比较完整,[15]-[18]系统介绍了行列式计算中和各种方法,如定义法、降阶法、升降法、拆开法、目标行列式法、乘积法、化三角开法、消去法、加边法、归纳法、递推法、特征值法等行列式的计算方法.

行列式的的解法技巧本科

行列式的的解法技巧本科

行列式的的解法技巧 目录 1行列式的基本理论 (3) 1.1行列式定义 (3) 1.2行列式的性质 (3) 1.3基本理论 (5) 1.4几种特殊行列式的结果 (5) 2行列式的计算技 (6) 2.1定义法 (6) 2.2化成三角形行列式法 (7) 2.3两条线型行列式的计算 (8) 2.4箭型行列式的计算 (9) 2.5三对角行列式的计算 (10) 2.6利用范德蒙行列式 (11) 2.7H ESSENBERG 型行列式的计算 (12) 2.8降阶法 (13) 2.9加边法(升阶法) (14) 2.10计算行(列)和相等的行列式 (15) 2.11相邻行(列)元素差1的行列式计算 (16) 2.12线性因子法 (16) 2.13辅助行列式法 (18) 2.14n阶循环行列式算法 (18) 2.15有关矩阵的行列式计算 (20) 2.16用构造法解行列式 (21) 2.17利用拉普拉斯展开 (22) 3 用多种方法解题 (22) 参考文献: (26)

【内容摘要】行列式是高等代数课程里基本而重要的内容之一,在数学中有着广泛的应用,懂得如何计算行列式显得尤为重要。本文先阐述行列式的基本理论,然后介绍各种具体的方法,最后由行列式与其它知识的联系介绍其它几种方法。通过这一系列的方法进一步提高我们对行列式的认识,对我们以后的学习带来十分有益的帮助。 【关键词】行列式;矩阵;范德蒙行列式;递推法 Abstract: Determinant is an basic and important subject in advanced algebra ,it is very useful in mathematic. It is very important to know how to calculate determinant. The paper first introduced the basic nature of determinant,then introduced some methods, Finally,with the other determinant of knowledge on the links in several other ways.,through this series of methods will futher enhance our understanding of the determinant,on our learning will bring very useful help. Keywords: Determinant;matrix;Vandermonde Determinant; recurrence method

线性代数性质公式整理

线性代数 第一章行列式 一、相关概念 1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积 的代数和,这里是1,2,···n的一个排列。当是偶排列时,该项的前面带正号;当是奇排列时,该项的前面带负号,即 这里表示对所有n阶排列求和。式称为n阶行列式的完全展开式。 2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。一个排列的逆序总是称为这个排列的逆序数。用表示排列的逆序数。 3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。 阶与3阶行列式的展开——, 5.余子式与代数余子式——在n阶行列式中划去所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式 称为的余子式,记为;称为的代

数余子式,记为,即。 6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如, 称为A的伴随矩阵,记作。 二、行列式的性质 1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。 2.两行互换位置,行列式的值变号。特别地,两行相同(或两行成比例),行列式的值为0. 3.某行如有公因子k,则可把k提出行列式记号外。 4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和: 5.把某行的k倍加到另一行,行列式的值不变: 6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0 三、行列式展开公式 n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即 |A|按i行展开的展开式 |A|按j列展开的展开式 四、行列式的公式 1.上(下)三角形行列式的值等于主对角线元素的乘积; 2.关于副对角线的n阶行列式的值 3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则

相关主题
文本预览
相关文档 最新文档