当前位置:文档之家› 图论第五章答案

图论第五章答案

图论第五章答案
图论第五章答案

图论张先迪李正良课后习题答案

习题一 作者---寒江独钓 1.证明:在n 阶连通图中 (1) 至少有n-1条边; (2) 如果边数大于n-1,则至少有一条闭迹; (3) 如果恰有n-1条边,则至少有一个奇度点。 证明: (1) 若G 中没有1度顶点,由握手定理: ()2()21v V G m d v n m n m n ∈= ≥?≥?>-∑ 若G 中有1度顶点u ,对G 的顶点数作数学归纳。 当n=2时,结论显然;设结论对n=k 时成立。 当n=k+1时,考虑G-u,它仍然为连通图,所以,边数≥k-1.于是G 的边数≥k. (2) 考虑G 中途径: 121:n n W v v v v -→→→→L 若W 是路,则长为n-1;但由于G 的边数大于n-1,因此,存在v i 与v j ,它们相异,但邻接。于是: 1i i j i v v v v +→→→→L 为G 中一闭途径,于是 也就存在闭迹。 (3) 若不然,G 中顶点度数至少为2,于是由握手定理: ()2()21v V G m d v n m n m n ∈= ≥?≥?>-∑ 这与G 中恰有n-1条边矛盾! 2.(1)2n ?12n 2?12n ?1 (2)2n?2?1 (3) 2n?2 。 证明 :u 1的两个邻接点与v 1的两个邻接点状况不同。所以, 两图不同构。 4.证明下面两图同构。 u 1 v 1

证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 5.指出4个顶点的非同构的所有简单图。 分析:四个顶点的简单图最少边数为0,最多边数为6,所以 可按边数进行枚举。 (a) v 2 v 3 u 4 u (b)

电大离散数学作业答案(图论部分)

离散数学作业5 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2018年12月5日前完成并上交任课教师(不收电子稿)。并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是15. 2.设给定图G (如右由图所示),则图G 的点割集是 {f}. 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点度数之和等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且等于出度. 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于n-1,则在G 中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为W(G-V1)≤∣V 1∣. 7.设完全图K n 有n 个结点(n ≥2),m 条边,当n 为奇数时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足e=v-1关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i =5. 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回

图论及其应用答案电子科大

图论及其应用答案电子科 大 This model paper was revised by the Standardization Office on December 10, 2020

习题三: 证明:e是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u,v)必含e . 证明:充分性: e是G的割边,故G ?e至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G中的u ,v不连通, 而在G中u与v连通,所以e在每一条(u ,v )路上,G中的(u ,v )必含e。 必要性:取12,u V v V ∈∈,由假设G中所有(u ,v )路均含有边e,从而在G ?e中不存在从 u与到v的路,这表明G不连通,所以e 是割边。 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G是块,任取G的一点u,一边e,在e边插入一点v,使得e成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G中的u,v 位于同一个圈上,于是G 1中u 与边e都位于同一个圈上。 (2)→(3): G无环,且任意一点和任意一条边都位于同一个圈上,任取G的点u ,边e ,若u在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u不在e上,由定理,e的两点在同一个闭路上,在e边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G连通,若G不是块,则G中存在着割点u,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u在每一条(x ,y )的路上,则与已知矛盾,G是块。 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v是单图G的割点,则G ?v有两个连通分支。现任取x ,y ∈V (G ?v ), 如果x ,y 不在G ?v的同一分支中,令u是与x ,y处于不同分支的点,那么,x ,与y在G ?v的补图中连通。若x ,y在G ?v的同一分支中,则它们在G ?v的补图中邻接。所以,若v是G 的割点,则v不是补图的割点。 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

图论第二次作业

第四章 3(1).有欧拉闭迹和H圈 (2).有欧拉闭迹但没有H圈 (3).有H圈无欧拉闭迹 (4).无欧拉闭迹且没有H圈 4:证:若G不是H图,由chvatal定理知,G度弱于某个图,故: = 这与题目已知条件相矛盾,故G是H图。 8:证:不失一般性,设G是连通图,是G的2k个奇点,连接,得到,则得到图,则是欧拉图,设C是中 的欧拉闭迹,删除C中的,即可得到k条边不重复的迹,使得 . 10(1)若G不是二连通图,那么G不连通或者有割点u,则w,故G是

非H图。 (2). 若G是具有二分类的偶图,且,若假设则,故 G是非H图。 11:设R是G中的H路,则对于每个真子集S,有w,又: w w,故w. 12:设u是G外一点,将u和G中的每个点连接得到图,则G的度序列为 ,故有题意知,不存在小于的正整数m,使得 ,故由Chvatal定理知,图是H图,则G有 H路。 15:(1)由图的闭包定义可知,构作一个图的闭包,可以通过不断在度和大于等于n的非邻接顶点加边得到。故图的闭包算法如下: 第一步:令; 第二步:在中求顶点,使得: 第三步:如果,则转到第四步;否则,停止,则可得到G 的闭包。 第四步:令,转到第二步。 复杂性分析:由其算法我们可得出其总运算量为: 故该算法能够在多项式时间内被解决,故该算法是一个好算法。 (2).设计算法如下: 第一步:在闭包构造中,将加入的边依次加入次序记为 ,在中任意取出一个H圈,令k=N;

第二步:若不在中,令;否则转到第三步。 第三步:设,令;求中两个相邻点u和v使得, u,v依序排列在上,且有:,令: 第四步:若k=1,转到第五步;否则,令k=k-1,转第二步; 第五步:停止。为G的H圈。 算法的复杂性分析:因为该算法进行了N次循环,每次循环中找到满足要求的邻接顶点u和v至多需要n-3次判断,所以总的运算量:N(n-3)。是一个好算法。 第五章 1:(1)证:k方体有2k个顶点,每个顶点可以用长度为k的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。 若划分k方体的2k个顶点,把坐标之和为偶数的顶点归入X,否则归入Y。显然,X中顶点互不邻接,Y中顶点也如此。所以k方体是偶图。又k方体的每个顶点度数为k,所以k方体是k正则偶图。所以由推论可知:k方体存在完美匹配。 (2).解K 2n 的任意一个顶点有2n-1中不同的方法被匹配。所以K 2n 的不同完美匹 配个数等于(2n-1)K 2n-2,如此推下去,可以归纳出K 2n 的不同完美匹配个数为: (2n-1)!!。同理,K n, n 的不同完美匹配个数为:(n)!。 2:若不然,设M 1与M 2 是树T的两个不同的完美匹配,那么M 1 ΔM 2 ≠Φ,且T[M 1 ΔM 2 ] 每个顶点度数为2,即它存在圈,于是推出T中有圈,矛盾。故一棵树中最多只有一个完美匹配。 7:解:设 作如下四条路: 故其四个生成圈如下:

图论 王树禾 答案

图论第一次作业 By byh

|E(G)|,2|E(G)|2G υυ??≤ ??? ?? ??? 1.1 举出两个可以化成图论模型的实际问题 略 1.2 证明其中是单图 证明:(思路)根据单图无环无重边的特点,所以 最大的情形为任意两个顶点间有一条边相连,即极 端情况为。

?1.4 画出不同构的一切四顶单图 ?0条边:1条边: ?2条边:3条边: ?4条边:5条边:?6条边:

1.10G?H当且仅当存在可逆映射θ:V G→V H,使得uv∈E G?θuθv∈E H,其中G和H是单图。(证明充分性和必要性) ?必要性 ?若G?H,由定义可得,存在可逆映射θ:V G→V Hφ:E G→E(H)当且仅当ψ G e=uv时,ψHφe=θuθ(v),所以uv∈E G? θuθv∈E H ?充分性 ?定义?:E G→E(H),使得uv∈E G和θuθv∈E(H)一一对应,于是?可逆,且ψ e=uv的充要条件是ψHφe=θuθv,得G?H G

1.12求证(a)?K m ,n =mn,(b)G是完全二分图,则?G≤1 4 v G2 ?(a)对于K m ,n ,将顶集分为X和Y,使得X∪Y=V K m,n, X∩Y= ?,X=m,Y=n,对于X中的每一顶点,都和Y中所有顶点相连,所以?K m,n =mn ?(b)设G的顶划分为X,Y,X=m,Y=v?m,则?G≤ ??K m ,v-m =v?m m≤v2 4

?证明: ?(a)第一个序列考虑度数7,第二个序列考虑6,6,1 ?(b)将顶点v分成两部分v’和v’’ ?v’ = {v|v= v i, 1≤ i≤ k}, ?v’’ = {v|v= v i, k< i≤ n} ?以v’点为顶的原图的导出子图度数之和小于 ?然后考虑剩下的点贡献给这k个点的度数之和最大可能为

图论习题参考答案

二、应用题 题0:(1996年全国数学联赛) 有n (n ≥6)个人聚会,已知每个人至少认识其中的[n /2]个人,而对任意的[n /2]个人,或者其中有两个人相互认识,或者余下的n -[n /2]个人中有两个人相互认识。证明这n 个人中必有3个人互相认识。 注:[n /2]表示不超过n /2的最大整数。 证明 将n 个人用n 个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G 。由条件可知,G 是具有n 个顶点的简单图,并且有 (1)对每个顶点x , )(x N G ≥[n /2]; (2)对V 的任一个子集S ,只要S =[n /2],S 中有两个顶点相邻或V-S 中有 两个顶点相邻。 需要证明G 中有三个顶点两两相邻。 反证,若G 中不存在三个两两相邻的顶点。在G 中取两个相邻的顶点x 1和y 1,记N G (x 1)={y 1,y 2,……,y t }和N G (y 1)={x 1,x 2,……,x k },则N G (x 1)和N G (y 1)不相交,并且N G (x 1)(N G (y 1))中没有相邻的顶点对。 情况一;n=2r :此时[n /2]=r ,由(1)和上述假设,t=k=r 且N G (y 1)=V-N G (x 1),但N G (x 1)中没有相邻的顶点对,由(2),N G (y 1)中有相邻的顶点对,矛盾。 情况二;n=2r+1: 此时[n /2]=r ,由于N G (x 1)和N G (y 1)不相交,t ≥r,k ≥r,所以r+1≥t,r+1≥k 。若t=r+1,则k=r ,即N G (y 1)=r ,N G (x 1)=V-N G (y 1),由(2),N G (x 1)或N G (y 1)中有相邻的顶点对,矛盾。故k ≠r+1,同理t ≠r+1。所以t=r,k=r 。记w ∈V- N G (x 1) ∪N G (y 1),由(2),w 分别与N G (x 1)和N G (y 1)中一个顶点相邻,设wx i0∈E, wy j0∈E 。若x i0y j0∈E ,则w ,x i0, y j0两两相邻,矛盾。若x i0y j0?E ,则与x i0相邻的顶点只能是(N G (x 1)-{y j0})∪{w},与y j0相邻的顶点只能是(N G (y 1)-{x j0})∪{w}。但与w 相邻的点至少是3,故N G (x 1)∪N G (y 1)中存在一个不同于x i0和y j0顶点z 与w 相邻,不妨设z ∈N G (x 1),则z ,w ,x i0两两相邻,矛盾。 题1:已知图的结点集V ={a ,b ,c ,d }以及图G 和图D 的边集合分别为: E (G )={(a ,a ), (a ,b ), (b ,c ), (a ,c )} E (D)={, , , , } 试作图G 和图D ,写出各结点的度数,回答图G 、图D 是简单图还是多重图? 解: a d a d b c b c 图G 图D 例2图

电子科大图论答案

图论第三次作业 一、第六章 2.证明: 根据欧拉公式的推论,有m ≦l*(n-2)/(l-2), (1)若deg(f)≧4,则m ≦4*(n-2)/2=2n-4; (2)若deg(f)≧5,则m ≦5*(n-2)/3,即:3m ≦5n-10; (3)若deg(f)≧6,则m ≦6*(n-2)/4,即:2m ≦3n-6. 3.证明: ∵G 是简单连通图,∴根据欧拉公式推论,m ≦3n-6; 又,根据欧拉公式:n-m+φ=2,∴φ=2-n+m ≦2-n+3n-6=2n-4. 4.证明: (1)∵G 是极大平面图,∴每个面的次数为3, 由次数公式:2m==3φ, 由欧拉公式:φ=2-n+m, ∴m=2-n+m,即:m=3n-6. (2)又∵m=n+φ-2,∴φ=2n-4. (3)对于3n >的极大可平面图的的每个顶点v ,有()3d v ≥,即对任一一点或者

子图,至少有三个邻点与之相连,要使这个点或子图与图G 不连通,必须把与之相连的点去掉,所以至少需要去掉三个点才能使()(H)w G w G <-,由点连通度的定义知()3G κ≥。 5.证明: 假设图G 不是极大可平面图,那么G 不然至少还有两点之间可以添加一条边e ,使G+e 仍为可平面图,由于图G 满足36m n =-,那么对图G+e 有36m n '=-,而平面图的必要条件为36m n '≤-,两者矛盾,所以图G 是极大可平面图。 6.证明: (1)由()4G δ=知5n ≥当n=5时,图G 为5K ,而5K 为不可平面图,所以6n ≥,(由()4G δ=和握手定理有24m n ≥,再由极大可平面图的性质36m n =-,即可得6n ≥)对于可平面图有()5G δ≤,而6n ≥,所以至少有6个点的度数不超过5. (2)由()5G δ=和握手定理有25m n ≥,再由极大可平面图的性质36m n =-,即可得12n ≥,对于可平面图有()5G δ≤,而12n ≥,所以至少有12个点的度数不超过5. 二、第七章 2.证明: 设n=2k+1,∵G 是Δ正则单图,且Δ>0, ∴m(G)==>k Δ,由定理5可知χˊ(G)=Δ(G)+1.

图论第二次作业

图论第二次作业 一、第四章 4.3(1)画一个有Euler闭迹和Hamilton圈的图; (2)画一个有Euler闭迹但没有Hamilton圈的图; (3)画一个有Hamilton圈但没有Euler闭迹的图; (4)画一个既没有Euler闭迹也没有Hamilton圈的图;解:(1)一个有Euler闭迹和Hamilton圈的图形如下: (2)一个有Euler闭迹但没有Hamilton圈的图形如下: (3)一个有Hamilton圈但没有Euler闭迹的图形如下: (4)一个既没有Euler闭迹也没有Hamilton圈的图形如下:

4.7 证明:若G 没有奇点,则存在边不重的圈C 1,C 1,···,C m ,使得 )()()()(21m C E C E C E G E ???=。 证明:将G 中孤立点除去后的图记为1G ,则1G 也没有奇点,且2)(1≥G δ,则1G 含圈1C ,在去掉)(11C E G -的孤立点后,得图2G ,显然2G 仍无奇度点,且2)(2≥G δ,从而2G 含圈2C ,如此重复下去,直到圈m C ,且)(m m C E G -全为孤立点为止,于是得到)()()()(21m C E C E C E G E ???=。 4.10 证明:若 (1)G 不是二连通图,或者 (2)G 是具有二分类),(Y X 的偶图,这里Y X ≠, 则G 是非Hamilton 图。 证明:(1)因为G 不是二连通图,则G 不连通或者存在割点v ,有2)(≥-v G w ,由相关定理得:若G 是Hamilton 图,则对于v(G)的任意非空顶点集S ,有:S S G w ≤-)(,则该定理得逆否命题也成立,所以可得:若G 不是二连通图,则G 是非Hamilton 图。 (2)因为G 是具有二分类),(Y X 的偶图,又因为Y X ≠,在这里假设Y X ≤,则有X Y X G w >=-)(,也就是说:对于v(G)的非空顶点集S ,有:S S G w >-)(成立,则可以得出G 是非Hamilton 图。 4.12 设G 是有度序列),,,(21n d d d ???的非平凡简单图,这里n d d d ≤???≤≤21,证明:若不存在小于 2 )1(+n 的正整数m ,使得m d m <且m n d m n -<+-1,则G 有Hamliton 路。 证明:在G 之外加上一个新点v ,把它和G 的其余各点连接,得图G 1: G 1的度序列为:),1,,1,1(21n d d d n +???++,由已知:不存在小于2 )1(+n 的正整数

2004图论复习题答案

图论复习题答案 一、 判断题,对打√,错打 1.无向完全图是正则图。( √ ) 2.零图是平凡图。( ) 3.连通图的补图是连通图. ( ) 4.非连通图的补图是非连通图。( ) 5.若连通无向简单图G中无圈,则每条边都是割边。( √ ) 6.若无向简单图G是(n,m)图,并且m=n-1,则G是树。( ) 7.任何树都至少有2片树叶。( ) 8.任何无向图G都至少有一个生成树。( ) 9.非平凡树是二分图。( √ ) 10.所有树叶的级均相同的二元树是完全二元树。( ) 11.任何一个位置二元树的树叶都对应唯一一个前缀码。( √ ) 12.3,3 K是欧拉图也是哈密顿图。( ) 13.二分图的对偶图是欧拉图。( ) 14.平面图的对偶图是连通图。( √ ) 15.设G*是平面图G的对偶图,则G*的面数等于G的顶点数。( )二、填空题 1.无向完全图K6有 15 条边。 2.有三个顶点的所有互不同构的简单无向图有 4 个。 3.设树T中有2个3度顶点和3个4度顶点,其余的顶点都是树叶,则T中有 10 片树叶。 4.若连通无向图G是(n,m)图,T是G的生成树,则基本割集 有 n-1 个,基本圈有 m-n+1 个。 5.设连通无向图G有k个奇顶点,要使G变成欧拉图,在G中至少要 加k / 2 条边。 6.连通无向图G是(n,m)图,若G是平面图,则G有m-n+2 个面。 三、解答题 1.有向图D如图1所示,利用D的邻接矩阵及其幂运算 求解下列问题: (1)D中长度等于3的通路和回路各有多少条。(2)求D的可达性矩阵。 (3)求D的强分图。 a b e 图1

解: (1) M=????????????????00010 1000000001 010******* M 2 =?? ?? ??? ? ??? ?????010******* 00010 1000001000 M 3=????????????????1000001000010000001010000 M 4=??????? ?????????0001001000100000100000010 由M 3可知,D 中长度等于3的通路有5条,长度等于3的回路有3条。 (2) I+M+M 2+M 3+M 4 =????????????? ???100000100000100 0001000001 +??????????? ?? ???000101000000001 010******* +??? ???? ? ??? ?? ???010000001000010 1000001000 + ????????????????1000001000010000001010000 +??? ?? ???????????0001001000100000100000010 = ??? ???? ? ????????21020 13010111110202011021 D 的可达性矩阵为 R=B (I+M+M 2+M 3+M 4 )=??? ???? ? ????? ???110101********* 1101011011 (3)R T =????????????????11111 1111100100 1111100101 R×R T =??? ???? ? ??? ?????11010 11010 001001101000001 由矩阵R×R T 可知,该有向图的强分图有:{a},{ b ,d ,e}, { c} a b e 图1

图论及其应用第三章答案电子科大

习题三: ● 证明:e 是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u ,v )必含e . 证明:充分性: e 是G 的割边,故G ?e 至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G 中的u,v 不连通,而 在G 中u 与v 连通,所以e 在每一条(u,v)路上,G 中的(u,v)必含e 。 必要性:取12,u V v V ∈∈,由假设G 中所有(u,v)路均含有边e ,从而在G ?e 中不存在从u 与到v 的路,这表明G 不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G 是块,任取G 的一点u ,一边e ,在e 边插入一点v ,使得e 成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G 中的u,v 位于同一个圈上,于是G 1中u 与边e 都位于同一个圈上。 (2)→(3): G 无环,且任意一点和任意一条边都位于同一个圈上,任取G 的点u ,边e ,若u 在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u 不在e 上,由定理,e 的两点在同一个闭路上,在e 边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G 连通,若G 不是块,则G 中存在着割点u ,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u 在每一条(x,y)的路上,则与已知矛盾,G 是块。 ● 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v 是单图G 的割点,则G ?v 有两个连通分支。现任取x,y ∈V(G ?v), 如果x,y 不在G ?v 的同一分支中,令u 是与x,y 处于不同分支的点,那么,x,与y 在G ?v 的补图中连通。若x,y 在G ?v 的同一分支中,则它们在G ?v 的补图中邻接。所以,若v 是G 的割点,则v 不是补图的割点。 ● 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

图论及其应用 答案电子科大

习题三: ● 证明:是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意及, G 中的路必含. 证明:充分性: 是的割边,故至少含有两个连通分支,设是其中一个连通分支的顶点集,是其余分支的顶点集,对12,u V v V ?∈?∈,因为中的不连通,而在中与连通,所以在每一条路上,中的必含。 必要性:取12,u V v V ∈∈,由假设中所有路均含有边,从而在中不存在从与到的路,这表明不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 : 是块,任取的一点,一边,在边插入一点,使得成为两条边,由此得到新图,显然的是阶数大于3的块,由定理,中的u,v 位于同一个圈上,于是 中u 与边都位于同一个 圈上。 : 无环,且任意一点和任意一条边都位于同一个圈上,任取的点u ,边e ,若在上,则三个不同点位于同一个闭路,即位于同一条路,如不在上,由定理,的两点在同一个闭路上,在边插入一个点v ,由此得到新图,显然的是阶数大于3的块,则两条边的三个不同点在同一条路上。 : 连通,若不是块,则中存在着割点,划分为不同的子集块,,,无环,12,x v y v ∈∈,点在每一条的路上,则与已知矛盾,是块。 ● 7.证明:若v 是简单图G 的一个割点,则v 不是补图的割点。 证明:是单图的割点,则有两个连通分支。现任取, 如果不在的

同一分支中,令是与 处于不同分支的点,那么,与在的补图中连通。若在的同一分支中,则它们在的补图中邻接。所以,若是的割点,则不是补图的割点。 ● 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给 出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)} ()25G κ= 最小点割{6,7,8,9,10} 2()5G λ= 最小边割{(2,7)…(1,6)} ● 13.设H 是连通图G 的子图,举例说明:有可能k(H)> k(G). 解: 通常. 整个图为,割点左边的图为的的子图, ,则. e H

离散数学图论部分形成性考核书面作业4答案

离散数学作业4 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 2.设给定图G (如右由图所示),则图G 的点割集是 {f} . 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且 等于出度 . 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 n-1 ,则在G 中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W(G-V1) ≤∣V 1∣ . 7.设完全图K n 有n 个结点(n ≥2),m 条边,当 n 为奇数 时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足 e=v-1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 5 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路.. (1) 不正确,缺了一个条件,图G 应该是连通图,可以找出一个反例,比如图G 是一个有孤立结点的图。

电子科技大学研究生试题图论及其应用参考答案

电子科技大学研究生试题 《图论及其应用》(参考答案) 考试时间:120分钟 一.填空题(每题3分,共18分) 1.4个顶点的不同构的简单图共有__11___个; 2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。则G 中顶点数至少有__9___个; 3.设n 阶无向图是由k(k ≥2)棵树构成的森林,则图G 的边数m= _n-k____; 4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_. 5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。 图G 二.单项选择(每题3分,共21分) 1.下面给出的序列中,是某简单图的度序列的是( A ) (A) (11123); (B) (233445); (C) (23445); (D) (1333). 2.已知图G 如图所示,则它的同构图是( D ) 3. 下列图中,是欧拉图的是( D ) 4. 下列图中,不是哈密尔顿图的是(B ) 5. 下列图中,是可平面图的图的是(B ) A C D A B C D

6.下列图中,不是偶图的是( B ) 7.下列图中,存在完美匹配的图是(B ) 三.作图(6分) 1.画出一个有欧拉闭迹和哈密尔顿圈的图; 2.画出一个有欧拉闭迹但没有哈密尔顿圈的图; 3.画出一个没有欧拉闭迹但有哈密尔顿圈的图; 解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。 解:由克鲁斯克尔算法的其一最小生成树如下图: 权和为:20. 五.(8 分)求下图G 的色多项式P k (G). 解:用公式 (G P k -G 的色多项式: )3)(3)()(45-++=k k k G P k 。 六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。 解:设该树有n 1个1度顶点,树的边数为m. 一方面:2m=n 1+2n 2+…+kn k 另一方面:m= n 1+n 2+…+n k -1 由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k 七.证明:(8分) 设G 是具有二分类(X,Y)的偶图,证明(1)G 不含奇圈;(2)若|X | v v 1 3 图G

离散数学及其使用图论部分课后习题答案

作业答案:图论部分 P165:习题九 1、给定下面4个图(前两个为无向图,后两个为有向图)的集合表示,画出它们的图形 表示。 (1),, 111,G V E =<>112345{,,,,}V v v v v v =11223343345{(,),(,),(,),(,),(,)} E v v v v v v v v v v =(2),,222,G V E =<>21V V =11223344551{(,),(,),(,),(,),(,)} E v v v v v v v v v v =(3)13331,,,D V E V V =<>=31223324551{,,,,,,,,,} E v v v v v v v v v v =<><><><><>(4)24441,,,D V E V V =<>=31225523443{,,,,,,,,,} E v v v v v v v v v v =<><><><><>解答:(1 ) (2 ) 10、是否存在具有下列顶点度数的5阶图?若有,则画出一个这样的图。 (1)5,5,3,2,2;(2)3,3,3,3,2;(3)1,2,3,4,5;(4)4,4,4,4,4 解答:(1)(3)不存在,因为有奇数个奇度顶点

。 14、设G 是阶无向简单图,是它的补图,已知,求 (2)n n ≥G 12(),()G k G k δ?==, 。 ()G ?()G δ解答:;。 2()1G n k ?=--1()1G n k δ=--15、图9.19中各对图是否同构?若同构,则给出它们顶点之间的双射函数。 解答: (c )不是同构,从点度既可以看出,一个点度序列为4,3,3,3,3而另外一个为4,4,3,3,1 (d )同构,同构函数为 12()3 45 x a x b f x x c x d x e =??=??==??=?=??16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。 解答: (1)三条边一共提供6度;所以点度序列可能是 ①3,3,0,0,0,0;②3,2,1,0,0,0;③3,1,1,1,0,0;④2,2,2,0,0, 0;⑤2,2,1,1,0,0;⑥2,1,1,1,1,0;⑦1,1,1,1,1,1; 由于是简单图,①②两种情形不可能 图形如下:

图论及其应用答案电子科大

图论及其应用答案电子 科大 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

习题三: 证明:e是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u,v)必含e . 证明:充分性: e是G的割边,故G ?e至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G中的u ,v不连通,而在G 中u与v连通,所以e在每一条(u ,v )路上,G中的(u ,v )必含e。 必要性:取12,u V v V ∈∈,由假设G中所有(u ,v )路均含有边e,从而在G ?e中不存在从u与到v的路,这表明G不连通,所以e 是割边。 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G是块,任取G的一点u,一边e,在e边插入一点v,使得e成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G中的u,v 位于同一个圈上,于是G 1中u 与边e都位于同一个圈上。 (2)→(3): G无环,且任意一点和任意一条边都位于同一个圈上,任取G的点u ,边e ,若u在e上,则三个不同点位于同一个闭路,即位于同一条路,如u不在e上,由定理,e的两点在同一个闭路上,在e边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1):

张清华 图论课后题答案

第1章 图论预备知识 1.1 解:(1) p={φ,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}} (2) p={,{a},{{b,c}},{a,{b,c}}} (3) p={,{}} (4) p={,{},{{}},{,{}}} (5)p={,{{a,b}},{{a,a,b}},{{a,b,a,b}},{{a,b},{a,a,b}},{{a,b},{a,b,a,b}},{{a,b},{a,a,b},{a,b,a,b}}} 1.2 解:(1) 真 (2) 假 (3)假 (4)假 1.3 解:(1) 不成立,A={1} B={1,2} C={2} (2) 不成立,A={1} B={1,2} C={1,3} 1.4 证明:设(x,y)∈(A ∩B)X(C ∩D) 说明x ∈A ∩B,y ∈C ∩D 由于 x ∈A,y ∈C 所以 (x,y) ∈A X C 由于x ∈B,y ∈D 所以 (x,y) ∈B X D 所以 (x,y) ∈(A X C )∩(B X D ) 反过来,如果(x,y )∈(A X C) ∩(B X D ) 由于 (x,y) ∈(A X C )所以 x ∈A,y ∈C 由于 (x,y) ∈(B X D )所以x ∈B,y ∈D 所以x ∈(A ∩B) y ∈(C ∩D) 所以 (x,y) ∈(A ∩B)X(C ∩D) 所以(A ∩B)X(C ∩D)= (A X C) ∩(B X D ) 1.5 解:Hasse 图 φφφφφφφφφ

极大元{9,24,10,7} 极小元{3,2,5,7} 最大元{24} 最小元{2} 1.6 解 (2)关系图为: (3)不存在最大元,最小元为{2} 1.7 解:(1)R={<1,1>,<2,2>,<3,3>,<4,4>,<1,2>,<2,1>,<2,3>,<3,2>} (2)略 (3)I A ?R 故R 是自反的。 <1,2>∈R <2,3>R 但是<1,3> ?R 故不满足传递性 1.8 解:(1) 不成立 A={1} B={2} C={3} D={4} 则左式={<1,3>,<1,4>,<2,3>,<2,4>} 右式={<1,3>,<2,4>} (2) 不成立 A={1,3} B={1} C={2,4} D={2} 则左式={<3,4>} 右式={<1,4>,<3,2>,<3,4>} (3) 不成立 A={1} B={2} C={3} D={4} 则左式={<1,3>,<1,4>,<2,3>,<2,4>} 右式={<1,3>,<2,4>} (4) 成立 证明:设 ∈(A-B)X C ?x (A-B)∧ y C ?x A ∧x B ∧ y C A X C ∧ B X C (A X C)-(B XC) 故得 (A-B )X C=(A X C )-(B X C ) ∈∈∈∈∈∈?∈∈?∈

图论习题及答案

作业解答 练习题2 利用matlab编程FFD算法完成下题: 设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。 解答一: function [num,s] = BinPackingFFD(w,capacity) %一维装箱问题的FFD(降序首次适应)算法求解:先将物体按长度从大到小排序, %然后按FF算法对物体装箱 %输入参数w为物品体积,capacity为箱子容量 %输出参数num为所用箱子个数,s为元胞数组,表示装箱方案,s{i}为第i个箱子所装 %物品体积数组 %例w = [60,45,35,20,20,20]; capacity = 100; % num=3,s={[1,3],[2,4,5],6}; w = sort(w,'descend'); n = length(w); s = cell(1,n); bin = capacity * ones(1,n); num = 1; for i = 1:n for j = 1:num + 1 if w(i) < bin(j) bin(j) = bin(j) - w(i); s{j} = [s{j},i]; if j == num + 1 num = num + 1; end break; end end end s = s(1:num); 解答二: clear; clc; V=100; v=[60 45 35 20 20 20]; n=length(v); v=fliplr(sort(v)); box_count=1; x=zeros(n,n);

V_Left=100; for i=1:n if v(i)>=max(V_Left) box_count=box_count+1; x(i,box_count)=1; V_Left=[V_Left V-v(i)]; else j=1; while(v(i)>V_Left(j)) j=j+1; end x(i,j)=1; V_Left(j)=V_Left(j)-v(i); end temp=find(x(i,:)==1); fprintf('第%d个物品放在第%d个容器\n',i,temp) end output: 第1个物品放在第1个容器 第2个物品放在第2个容器 第3个物品放在第1个容器 第4个物品放在第2个容器 第5个物品放在第2个容器 第6个物品放在第3个容器 解答三: function box_count=FFD(x) %降序首次适应算法 v=100; x=fliplr(sort(x)); %v=input('请输入箱子的容积:'); n=length(x); I=ones(n); E=zeros(1,n); box=v*I; box_count=0; for i=1:n j=1; while(j<=box_count) if x(i)>box(j) j=j+1; continue; else

离散数学图论部分形成性考核书面作业4答案

离散数学作业4 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 一、填空题 1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15 . 2.设给定图G(如右由图所示),则图G的点割集是 {f} . 3.设G是一个图,结点集合为V,边集合为E,则 G的结点度数之和等于边数的两倍. 4.无向图G存在欧拉回路,当且仅当G连通且等于出 度. 5.设G=是具有n个结点的简单图,若在G中每一对结点度数之和大于等于n-1 ,则在G中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为W(G-V1) ≤∣V1∣. 7.设完全图K n 有n个结点(n≥2),m条边,当n为奇数时,K n 中存在欧拉回路.姓名:学号:得分:

8.结点数v与边数e满足e=v-1 关系的无向连通图就是树. 9.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去 4 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 5 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路.. (1) 不正确,缺了一个条件,图G应该是连通图,可以找出一个反例,比如图G是一个有孤立结点的图。 2.如下图所示的图G存在一条欧拉回路. (2) 不正确,图中有奇数度结点,所以不存在是欧拉回路。 3.如下图所示的图G不是欧拉图而是汉密尔顿图. 解:正确 因为图中结点a,b,d,f的度数都为奇数,所以不是欧拉图。

相关主题
文本预览
相关文档 最新文档