当前位置:文档之家› 雷达习题

雷达习题

雷达习题
雷达习题

第一章

1、

(a) 要获得100公里的最大不模糊距离,雷达的脉冲重复频率应是多少?

(b) 当目标处于最大不模糊距离上,则雷达信号往返的时间是多长?

(c) 如果雷达的脉冲宽度是1.5us, 则在距离坐标上脉冲能量在空间的范围是多少?

(d) 两个相等尺寸的目标如果要被1.5us的脉冲宽度完全分辨出来,则二者必须相距多远?

(e) 这部雷达的占空因子是多少?

2、装在汽车上的雷达,用来确定在其正前方行驶的车辆的距离。雷达的工作频率为10G,脉冲宽度为10ns(1ns=1000us),最大作用距离为150m.

(a) 对应于150m最大不模糊距离的脉冲重复频率是多少?

(b) 距离分辨力是多少?

(c) 如果天线波束宽度为6度,则在150m距离上,横向距离(方位)分辨力是多少?

(d) 设天线增益G=30dB,最小可检测信号为5*10^(-13)W,则能够检测150m距离上雷达横截面积为10m^2目标所需要的发射功率是多少?

第二章

(1) 某一机载脉冲雷达的峰值功率为10kw ,采用两种PRF,F1=10kHz,F2=30kHz。若要求两种PRF工作方式下的平均功率都为1500W,则脉冲宽度分别取值为多少,并计算脉冲能量。

(2) 与微波电子管发射机相比,雷达系统中应用固态发射机有何特点?

(1)机载多普勒雷达一定要选择单级振荡式发射机还是主振放大式发射机?为什么?

(2)绘制放大链式主振放大式发射机结构框图。

某一机载脉冲雷达的峰值功率为10kw ,采用两种PRF,F1=10kHz,F2=30kHz。若要求两种PRF工作方式下的平均功率都为1500W,则脉冲宽度分别取值为多少,并计算脉冲能量。

第三章

1.某接收机的带宽Bn=500KHz,增益为20dB ,噪声系数为3分贝(dB)。则接收机内部噪声在输出端呈现的额定功率△N是多少?接收机的等效噪声温度Te是什么?(k=1.38*10^(-23) J/K,T0=290K)

2.某接收机的线性部分由传输线、变频器和中频放大器三部分组成。前两部分的额定功率增益分别是G1=0.82,G2=0.2,后两部分的噪声系数分别是F2=6,F3=3。试求总噪声系数。

3. 已知接收机噪声在输出端的额定功率为0.1W,额定功率增益为1012,测试带宽为3MHz,求等效输入噪声温度和接收机噪声系数。

第五章

1、雷达带宽B=50kHz,平均虚警时间为10分钟,则该雷达的虚警概率是多少?虚警总数又是多少?

2、已知某雷达主要参数:发射功率5MW,天线增益30dB,接收机灵敏度为-90dBmW. 该雷达针对某目标的理论作用距离为200km. 如果想要将该雷达作用距离提高一倍,仅靠增加雷达发射机功率,发射机功率需为多少?如果仅采取提高接收机灵敏度,则接收机灵敏度应为多少?

第六章

1. 测定目标回波延迟时间的方法主要有哪几种?

2. 脉冲雷达的最小可测距离为多少;最大单值测距范围由什么决定?

3. 脉冲雷达存在测距模糊时,常用的解模糊方法有哪些?

4. 试述雷达自动距离跟踪系统的工作原理。

第七章

1、雷达测角的物理基础是什么?

2、测角的方法可以分为哪两种?

3、雷达天线波束扫描的方法有哪些,各有什么优缺点?

地表雷达检测技术方案

地表雷达检测技术 方案 贵州道兴建设工程检测有限责任公司 贵阳市轨道交通2号线兴筑西路站-水井坡站区间

地表雷达探测技术方案 方案编制: 技术审核: 方案批准: 贵州道兴建设工程建设工程检测有限责任公司 3月15日 目录 1 工程概况 ........................................................................... 错误!未定义书签。 2 探测项目和方法................................................................ 错误!未定义书签。 3 编制依据 ........................................................................... 错误!未定义书签。 4 雷达探测的基本原理........................................................ 错误!未定义书签。

5 探测流程 ........................................................................... 错误!未定义书签。 6 检测仪器和设备................................................................ 错误!未定义书签。 7 需有关单位配合的事项.................................................... 错误!未定义书签。 7 质量和安全保证措施........................................................ 错误!未定义书签。 8 预期成果 ........................................................................... 错误!未定义书签。 9 本工程项目安排................................................................ 错误!未定义书签。

车流量检测雷达

佰誉达 车流量检测雷达 (本产品已通过国家道路交通安全产品质量监督检验中心公安部交通安全产品质量监督检测中心认证) 用户手册 佰誉达科技 深圳

目录 一、微波车流量检测雷达概述 (1) 1.1用途 (1) 1.2描述 (1) 1.3技术指标 (2) 1.3.1微波指标 (2) 1.3.2检测指标 (2) 1.3.3通信指标 (2) 1.3.4环境与可靠性指标 (2) 1.3.5电源指标 (2) 1.3.6物理指标 (3) 1.4应用领域 (3) 1.4.1路口模式(城市交通) (3) 1.4.2高速公路(城市交通、高速公路) (3) 1.5典型应用 (3) 1.5.1路口模式(城市交通) (3) 1.5.2路段模式(城市交通、高速公路) (4) 二、微波车流量检测雷达的安装 (6) 2.1设备组成 (6) 2.2设备安装 (6) 2.3工程安装 (7) 2.4雷达接口 (7) 三、微波车流量检测雷达的调试及使用 (7) 3.1软件运行环境 (7) 3.2软件安装 (8) 3.3软件使用说明 (8) 3.3.1主界面 (8) 3.3.2 设备参数 (8) 3.3.3雷达参数 (9) 3.3.4 安装参数 (9) 3.3.5 连接雷达 (10) 3.3.6按钮功能说明 (10) 3.3.7 车道计数 (11) 3.3.8 车道流量统计直方图 (11) 四、微波车流量检测雷达数据传输 (11) 4.1雷达数据传输模式 (11) 五、微波车流量检测雷达故障排除 (12) 附录1 (12)

一、微波车流量检测雷达概述 1.1用途 车流量检测雷达是拥有完全自主知识产权的新型微波车辆检测器,利用雷达线性调频技术原理,对路面发射微波,通过对回波信号进行高速实时的数字化处理分析,检测车流量、速度、车道占有率和车型等交通流基本信息的非接触式交通检测器。检测器主要应用于高速公路、城市快速路、普通公路交通流量调查站和桥梁的交通参数采集,为交通管理提供准确、可靠、实时的交通情报,为实现交通智能化提供技术支持。 1.2描述 车流量检测雷达是一种工作在微波频段的雷达探测器。雷达向路面连续发射线性调频微波波束,车辆通过微波波束时反射信号,根据反射信号检测目标是否存在并计算其交通参数。每隔一定时间(1s-1000s)将各种交通流参数信息通过数据通道传输到指挥控制中心。它能可靠的检测与区分公路上的任何车辆,包括从摩托车到多轴、高车身的车辆以及拖车等,检测路上每一车道所通过的车流量、车辆速度、车道占有率、车型分类等参数。 检测器雷达采用的是中心频率为24GHz的微波信号,因此具有高频微波的所有特性,自主开发的雷达信号分析处理算法检测精度高,检测范围宽,可以跨越道路中央隔离带的防眩板、树丛及金属护栏等障碍物检测到驶过的车辆,大大降低了隔离带对检测精度的影响。同时,由于微波对环境干扰不敏感,使得其在各种天气气候条件下都保持准确的检测。 检测器采用了创新的软件设计理念,将车道的静态划分和动态划分结合起来,在使用前静态划分车道,并在使用中根据车流的实际情况调整车道的划分,对跨车道行驶的车辆可通过模糊判断,合理的将该车划分到最近的一个车道,而不会检测为两辆车,解决了城市复杂交通情况下的应用问题。 综合来说主要有以下特点: 1)自主研发,可根据需求更改数据输出接口和协议,且支持远程软件控制; 2)安装方便,维护简单。 3)高适应性,在恶劣气候条下稳定工作,不受风、雨、雾、冰雹等影响。 4)自动车道识别功能,实现0后置距离的安装。

地表雷达检测技术方案

贵州道兴建设工程检测有限责任公司 贵阳市轨道交通2号线兴筑西路站-水井坡站区间地表雷达探测技术方案 方案编制: 技术审核: 方案批准: 贵州道兴建设工程建设工程检测有限责任公司 2016年3月15日 目录

1 工程概况 (1) 2 探测项目和方法 (1) 3 编制依据 (1) 4 雷达探测的基本原理 (2) 5 探测流程 (3) 6 检测仪器和设备 (3) 7 需有关单位配合的事项 (3) 7 质量和安全保证措施 (4) 8 预期成果 (4) 9 本工程项目安排 (4)

1 工程概况 贵阳市轨道交通2号线兴筑西路站-水井坡站区间长1234.974m,其中水井坡站(长189.6m),为本一站一区间的土建工程施工。 水井坡站是贵阳市轨道交通2号线的一个中间站,位于主干道金阳南路的下方,周围交通较为繁忙。车站起止里程YDK19+978.193~YDK20+167.819,总长189.6m,为地下两层岛式车站,车站结构为明挖地下两层单柱双跨矩形结构。标准段宽19.9m,基坑深约15-21m,主体建筑面积7941.8m2,总建筑面积11936m2。顶板覆土约3.6m,轨面埋深15.35m。本站共设4个出入口、2组风亭。1、4号出入口过街段采用暗挖外其余均为明挖法施工。车站两端均为矿山法区间。 兴筑西路站-水井坡站区间,本区间线路出兴筑西路站后,穿过诚信南路东侧的一个小山包及金阳客站公交停车场(侧穿加气站),再穿过翠柳路后,进入喀斯特公园内,在公园内线路继续往东南,穿出公园东南角、石村东路后,到达金阳南路水井坡站,区间设计里程为:YDK18+741.914~YDK19+976.888,区间隧道全长1234.974m。采用矿山法施工。隧道拱顶埋深14.5~39.6m,线间距为12m~17m。 本工程项目为城市交通通道,工程地质条件复杂,为了保证施工安全,必须须对开挖段落的工程地质地质条件弄清楚,防止工安全施工大发生,故根据贵阳市城市轨道交通有限公司文件“筑轨道〔2015〕96号”“贵阳市城市轨道交通有限公司关于印发《贵阳市城市轨道交通工程地表地质雷达探测管理办法(试行)》的通知”的要求,根据本段的具体情况,对该标段的开挖站台和暗挖区间隧道地表进行了雷达探测,雷达测线布置严格按办法进行。其具体探测方案如下: 2 探测项目和方法 根据本工程的实际和相关规范要求,采用技术成熟地质雷达法,对施工站台的周围,以及暗挖区间的地表的空洞、脱空、水囊、疏松堆积体等进行探测,防止施工过程中的坍塌、涌泥、涌水等事故发生。 3 编制依据 《铁路隧道超前地质预报技术指南》(铁建设【2008】105); 《铁路隧道工程施工技术指南》(TZ 204-2008); 《铁路隧道设计施工有关标准补充规定》(铁建设【2007】88);

雷达原理及测试方案

雷达原理及测试方案 1 雷达组成和测量原理 雷达(Radar)是Radio Detection and Ranging的缩写,原意“无线电探测和测距”,即用无线电方法发现目标并测定它们在空间的位置。现代雷达的任务不仅是测量目标的距离、方位和仰角,而且还包括测量目标速度,以及从目标回波中获取更多有关目标的信息。 1.1 雷达组成 图1 雷达简单组成框图 图2 雷达主要组成框图 雷达主要由天线、发射机、接收机、信号处理和显示设备组成,基本组成框图如图1所示。通常雷达工作频率范围为2MHz~35GHz,其中超视距雷达工作频率为2~30MHz,工作频率为100~1000MHz范围一般为远程警戒雷达,工作频率为1~4GHz范围一般为中程雷达,工作频率在4GHz以上一般为近程雷达。 老式雷达发射波形简单,通常为脉冲宽度为τ、重复频率为Tτ的高频脉冲串。天线采

用机械天线,接收信号处理非常简单。这种雷达存在的问题是抗干扰能力非常差,无法在复杂环境下使用。 由于航空、航天技术的飞速发展,飞机、导弹、人造卫星及宇宙飞船等采用雷达作为探测和控制手段,对雷达提出了高精度、远距离、高分辨力及多目标测量要求,新一代雷达对雷达原有技术作了相当大的改进,其中频率捷变和线性相位信号、采用编码扩频的低截获概率雷达技术、动态目标显示和脉冲多普勒技术是非常重要的新技术。 1.2 雷达测量原理 1) 目标斜距的测量 图3 雷达接收时域波形 在雷达系统测试中需要测试雷达到目标的距离和目标速度,雷达到目标的距离是由电磁波从发射到接收所需的时间来确定,雷达接收波形参见图3,雷达到达目标的距离R为:R=0.5×c×t r式(2)式中c=3×108m/s,t r为来回传播时间 2) 目标角位置的测量 目标角指方位角或仰角,这两个角位置基本上是利用天线的方向性来实现。雷达天线将电磁能汇集在窄波束内,当天线对准目标时,回波信号最强。

探地雷达检测细则

一、应用范围 适用于基岩埋深探测、地下金属及非金属埋设物(如管道、电缆及其设施等)探测、道路铺设质量检测、地下水位探测、建筑物墙、柱、板内钢筋探测、其它类似工作操作细则 二、检测标准 T B 10223-2004铁路隧道衬砌质量无损检测规程 JTG F80/1-2004公路工程质量检验评定标准 JTG 042-94公路隧道施工技术规范 G B 50204-2002混凝土结构工程施工质量验收规范 三、检测设备 ZON D-12E G P R探地雷达主机及天线 四、检测操作细则 1.收集相关工程的资料 2.检测方法技术应符合下列要求: 2.1测线布置 2.1.1隧道施工过程中质量检测以纵向布线为主,横向布线为辅。纵向布线的位置应在隧道拱顶;左右拱腰、左右边墙和隧道底部各布一条;横向布线可按检测内容和要求布设线距,一般情况线距8~12m;采用点测时每断面不小于6个点。检测中发现不合格地段应加密测线和测点。 2.1.2隧道竣工验收时质量检测应纵向布线,必要时可横向布线。纵向布线的位置应在隧道拱顶、左右拱腰和左右边墙各布一条;横向布线线距8~12m,采用点测时每断面不少于5个点。需确定回填空洞规模和范围时,应加密测线和测点。 2.1.3三车道隧道应在隧道拱部增加两条测线。 2.1.4测线每5~10m应有一里程标记。 2.2介质参数标定 2.2.1检测前应对衬砌混凝土的介电常数或电磁波速做现场标定,且每座隧道应不少于一处,每处实测不少于3次,取平均值为该隧道的介电常数或电磁波速。当隧道长度大于3km、衬砌材料或含水量变化较大时,应适当增加标定点数。 2.2.2标定方法:○1在已知厚度部位或材料与隧道相同的其他预制件上测量;○2在洞口或洞内避车洞处使用双天线直达波法测量;○3钻孔实测。

远程雷达监控系统

远程控制(站点电力控制和监视、雷达工况控制和监视、现场视频监视、设备状态控制及监视);数据采集位数10Bits;采集速率40M;任意监视区域设置(监视区域数>5个);同时跟踪和监视目标数>500批;能够保存图像和目标跟踪数据,并能够回放在线历史态势;具备雷达组网和数据综合能力,能够覆盖大面积海域;多部雷达目标数据能够同时显示在电子海图平台,便于进一步构建大范围实时态势辅助决策系统。 特色产品—雷达成像专用采集卡 产品背景:在电子海图叠加的信息中要有雷达一次视频(雷达图像)和雷达二次视频(目标信息,通常采取0138格式)。雷达二次视频的叠加相对容易解决,通过串行口解码后,即可直接叠加;而解决雷达一次视频的叠加问题则相对较难。 产品功能: 1.雷达数据采集; 2.实时雷达成像,具备外部可控的偏心显示功能、缩放功能、成像模式功能、色系切换功能; 3.提供与ECDIS相连的透明控制功能; 4.实现其他基本的雷达信号处理功能; 采集卡型号:根据其插口形式的不同可分为:PCI接口板、PCLE接口板;PCL104+接口板、网络型和USB型

特色产品—油田监控 具备光电联动功能的安防监控系统 由于系统具有全天候、广范围、定点精确等特点,本系统也广泛用于安防领域,目前大庆、胜利油田已安装全套设备,构建一套具有雷达监控,视频联动高精度监控功能的强大 安防平台。

特色产品—水产养殖 系统对养殖区内所有来往船只及作业船舶进行昼夜监视,提供监视船舶位置、速度及航迹数据;具有激光夜视全向数字云台和海域视频监视子系统,能够接收雷达目标指示,实现同步提供目标的图像信息;能够对锚泊和航行船舶安全提供预警信息;同时提供船舶的安全等数据。设备的使用改变了水产养殖传统的管理方式和手段,对水产养殖的自动化、网络 化等方面将起到积极的推动作用。

雷达信号检测和估计

信号检测与估计理论在 雷达系统方面的应用摘要:随着互联网应用的普及及发展,信号的检测与估计技术的应用也越来越受到人们的 关注。雷达中的信号检测是一个综合性问题,涉及多个学科,多领域知识,所以它是科学领域最为关注的问题。近年来已经开展了大量雷达系统信号实现方法相关的研究课题,其中回波信号的检测和估计是最为重要的方面。本论文就是针对雷达信号检测和估计的精确性问题加以展开的。 关键词:雷达系统,信号估计,信号检测 第一章雷达系统 1.1起源和发展 早期雷达用接收机、显示器并靠人眼观察来完成信号检测和信息提取的工作。接收机对目标的回波信号进行放大、变频和检波等,使之变成能显示的视频信号,送到显示器。人们在显示器的荧光屏上寻找类似于发射波形的信号,以确定有无目标存在和目标的位置。随着雷达探测距离的延伸,回波变弱,放大倍数需要增加。于是,接收机前端产生的噪声和机外各种干扰也随着信号一起被放大,而成为影响检测和估计性能的重要因素。这时,除了降低噪声强度之外,还要研究接收系统频带宽度对发现回波和测量距离精度的影响。这是对雷达检测理论的初期研究。后来,人们开始在各种干扰背景中对各种信号进行检测和估计的理论研究,其中有些结论,如匹配滤波理论,关于滤波、积累、相关之间等效的理论,测量精度极限的理论,雷达模糊理论等,已在实际工作中得到应用.

1.2雷达的概述 雷达的英文名字是radar,是“无线电探测与定位”的英文缩写。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。 雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。 为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。根据电磁波的传播速度,可以确定目标的距离为:S=CT/2 其中S:目标距离;T:电磁波从雷达到目标的往返传播时间;C:光速 1.3雷达的工作原理 雷达是利用目标对电磁波的反射(或称为二次散射)现象来发现目标并测定其位置的空间任一目标所在位置可用下列三个坐标来确定:1>目标的斜距R;2> 方位角a;3>仰角B。同时也就是说根据雷达接收到的信号检查是否含有目标反射回波,并从反射回波中测出有关目标状态的数据。 第二章雷达中的信号检测 雷达的基本任务是发现目标并测定其坐标通常目标的回波信号中总是混杂着噪声和各类干扰而噪声和各种干扰信号均具有随机持性在这种条件下发现目标的问题属于信号检测的范畴信号检测理论就是要解决判断信号是否存在的方法及其最佳处理方式。 2.1.雷达信号的最佳检测及基本概念 检测系统的任务是对输入信号进行必要的处理和运算然后根据系统的输出来判断输入是否有信号存在它可用门限检测来描述。 检测过程中,由于门限取值的不同产生的错把噪声检测成了目标,这类错误称之为虚警,出现的概率称为虚警概率;反之,错把信号当成了噪声,称为漏检或漏警,相应出现概率为漏检概率。 门限的确定与选择的最佳准则有关。在信号检测中常采用的最佳准则有贝叶斯准则最小错误概率准则最大后验概率准则极大极小化准则以及纽曼—皮尔逊准则等。

雷达原理.doc

一、绪论 雷达:无线电探测与测距。利用电磁波对目标检测、定位、跟踪、成像和识别。 雷达利用目标对电磁波的反射或散射现象来发现目标并测定其位置的。定时器发射机收发开关天线 显示器接收机天控系统 组成框图 雷达测量原理 雷达发射信号: 雷达接收信号: 雷达利用收发信号之间的相关性获取目标信息 雷达组成: 天线:向确定的方向发射和接收特定频段的电磁波 收发开关: 发射状态将发射机输出功率接到天线,保护接收机输入端 接收状态将天线接收信号接到接收机,防止发射机旁路信号

发射机:在特定的时间、以特定的频率和相位产生大功率电磁波 接收机:放大微弱的回波信号,解调目标信息 雷达的工作频率: 工作频率范围:22mhz--35ghz 扩展范围: 2mhz--94ghz 绝大部分雷达工作在:200mhz--10000ghz 雷达的威力范围:最大作用距离、最小作用距离、最大仰角、最小仰角、方位角范围 分辨力:区分点目标在位置上靠近的能力 距离分辨力:同一方向上两个目标之间最小可区别的距离 角度分辨力:在同一距离上的两个不同方向的点目标之间最小能区别的角度 数据率:雷达对整个威力范围内完成一次搜索所需要的时间倒数,也就是单位时间内雷达所能提供对一 个目标数据的次数。 跟踪速度:自动跟踪雷达连续跟踪运动目标的最大可能速度 发射功率的和调制波形: 发射功率的大小直接影响雷达的作用距离 发射信号的调制波形: 早期简单脉冲波形,近代采用复杂波形 脉冲宽度:脉冲雷达发射信号所占的时间。影响探测能力和距离分辨力 重复频率:发射机每秒发射的脉冲个数,其倒数是重复周期。决定单值测距的范围,影响不模糊速区域大小 天线波束形状天线:一般用水平面和垂直面内的波束宽度来表示 天线的扫描方式:搜索和跟踪目标时,天线的主瓣按照一定规律在空间所作的反复运动。机械性扫描和电扫描 接收机的灵敏度:通常规定在保证 50%、90%的发现概率条件下,接收机输入端回波信号的功率作为接收 机的最小可检测信号功率。这个功率越小接收机的灵敏度越高,雷达的作用距离越远。 显示器的形式和数量:雷达显示器是向操纵人员提供雷达信息的一种终端设备,是人际联系的一个环节。

信号检测在雷达系统方面应用

信号检测与估计理论在雷达系统方面的应用 摘要:随着互联网应用的普及及发展,信号的检测与估计技术的应用也越来越受到人们的 关注。雷达中的信号检测是一个综合性问题,涉及多个学科,多领域知识,所以它是科学领域最为关注的问题。近年来已经开展了大量雷达系统信号实现方法相关的研究课题,其中回波信号的检测和估计是最为重要的方面。本论文就是针对雷达信号检测和估计的精确性问题加以展开的。 关键词:雷达系统,信号估计,信号检测 第一章雷达系统 1.1起源和发展 早期雷达用接收机、显示器并靠人眼观察来完成信号检测和信息提取的工作。接收机对目标的回波信号进行放大、变频和检波等,使之变成能显示的视频信号,送到显示器。人们在显示器的荧光屏上寻找类似于发射波形的信号,以确定有无目标存在和目标的位置。随着雷达探测距离的延伸,回波变弱,放大倍数需要增加。于是,接收机前端产生的噪声和机外各种干扰也随着信号一起被放大,而成为影响检测和估计性能的重要因素。这时,除了降低噪声强度之外,还要研究接收系统频带宽度对发现回波和测量距离精度的影响。这是对雷达检测理论的初期研究。后来,人们开始在各种干扰背景中对各种信号进行检测和估计的理论研究,其中有些结论,如匹配滤波理论,关于滤波、积累、相关之间等效的理论,测量精度极限的理论,雷达模糊理论等,已在实际工作中得到应用. 1.2雷达的概述 雷达的英文名字是radar,是“无线电探测与定位”的英文缩写。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。 雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。 为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。根据电磁波的传播速度,可以确定目标的距离为:S=CT/2 其中S:目标距离;T:电磁波从雷达到目标的往返传播时间;C:光速

边坡监测雷达技术对比2015-5-27

边坡变形监测雷达技术对比 前言: 目前国际上使用的边坡变形监测雷达按工作原理划分主要有两种,一种是合成孔径雷达,另一种是真实孔径雷达。这两种雷达在技术原理、工作范围、参数校正、预测预警等方面有较大差别,本文主要从两种技术的原理出发,讨论不同雷达技术在边坡监测方面的异同。 1.边坡监测雷达技术简介 目前边坡变形监测雷达技术已经在全世界范围内获得广泛的应用,这项新的技术与传统边坡变形监测方法(例如安装测量棱镜或传感器的常规边坡监测方法)相比,使用雷达进行边坡稳定性监测有以下优点: 1.监测精度高,雷达能以毫米以下级精度获取边坡变形数据; 2.测量可覆盖整个边坡; 3.系统可自动获得或读取已有的DTM(数字地形图)数据,兼容多种GIS数据,在三 维环境下显示监测结果; 4.空间分辨率高,能监测到被测区域表面很小的区域变形,采样间隔短,方便确定目 标监测区内最大位移发生的位置,便于风险管理,可避免常规监测中常发生的采样 周期间隔较长和数据不连续或丢失等问题; 5.监测位置选择灵活,能够在较远的距离对存在隐患的边坡进行监测; 6.无需在被测边坡上布设固定监测设备,即使发生边坡失稳事故,也不会造成监测设 备的损失; 7.可以对边坡事故进行全过程的连续监测,并能在后期对事故区域继续监测、评估。 虽然使用雷达进行边坡监测具有以上一些优点,但是对于不同的雷达技术,其在各方面的表现能力和实际应用能力则各有差异,本文将针对合成孔径雷达和真实孔径雷达进行详细的技术和应用对比。

2.边坡监测雷达代表产品 2.1合成孔径雷达 以意大利IDS公司的IBIS系列产品为代表(见图1),该公司提供基于合成孔径雷达技术的边坡监测雷达。 图1 意大利IDS公司的IBIS‐M边坡监测雷达 合成孔径雷达技术衍生于航空航天地球测绘技术,其具有扫描距离远,范围大的特点,但是其扫描所得图像为二维图像,在边坡监测领域应用时需有相关DTM数据的支持才能转换为三维图像,进而对边坡位移进行监测,DTM数据本身带有一定的误差,从而影响了该技术测量边坡三维变形精度。 2.2真实孔径雷达 以南非Reutech公司的MSR系列产品为代表(见图2),该公司提供基于真实孔径雷达技术的边坡监测雷达。 图2 南非Reutech公司的MSR300边坡监测雷达

雷达探测监控系统方案

基于雷达探测的区域监控系统

目录 1概述 (1) 2安全防护系统的目前面临的问题 (2) 3区域监控系统总体方案 (3) 3.1方案概述 (3) 3.2系统特点 (3) 3.2.1基于雷达探测,实现全局可靠监视 (3) 3.2.2采用虚拟围界,实现警戒区的灵活配置 (3) 3.2.3利用跟踪探测,实现突发情况后期处置 (3) 3.2.4无视环境影响,实现全天时全天候工作 (3) 3.2.5长焦距探测器,确保对远距离目标的识别 (4) 3.2.6光雷配合联动,实现发现即看到 (4) 3.2.7目标跟踪处理,实现对目标的持续观测 (4) 3.2.8智能分析处理,实现无人值守 (4) 3.2.9架设方便简单,实现最小工程量安装 (4) 3.2.10质量性能可靠,基本实现免维护使用 (4) 3.3单点监控系统概述 (5) 3.3.1单点监控系统组成 (5) 3.3.2单点监控系统工作流程概述 (6) 3.3.3主要功能 (6) 3.3.4单点监控系统主要设备介绍 (7) 3.4组网监控系统概述 (11) 3.4.1组网监控系统组成 (12) 3.4.2组网监控系统工作流程概述 (12) 3.4.3组网监控系统主要设备介绍 (13) 3.4.4监控中心及分中心主要功能 (15) 4附件 (17) 4.1各型号地面监视雷达主要技术指标 (17) 4.2各型号光电探测系统主要技术指标 (21) 注:公司配有多种可见光探测器和红外热像仪,可根据用户需要进行配备。 (22)

基于雷达探测的区域监控系统 1 概述 随着社会发展,安防工作已成为国家和社会的重要工作,传统的安防设备一般以视频监控为主,特别是边防监控、要害地域外围监控基本上还是以人工巡逻、望远镜等传统方式。在天气良好的情况下,视频监控可以很好的解读监控问题,但是当出现雨、雪、雾以及黑夜时,视频很难很好的工作,特别是当需要监控的距离较远,例如1Km以上时,视频监控设备需要很多部,并且野外工作组网困难,也存在也易受到破坏,供电、通信线缆铺设施工量大,使用维护成本较高等问题。 本方案中地面监测雷达,即多普勒雷达,其利用多普勒效应进行定位,测速,测距等工作。其工作原理可表述如下: 当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差,称为多普勒频率。根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。同时用频率过滤方法检测目标的多普勒频率谱线,滤除干扰杂波的谱线,可使雷达从强杂波中分辨出目标信号。所以脉冲多普勒雷达比普通雷达的抗杂波干扰能力强,能探测出隐蔽在背景中的活动目标。 脉冲多普勒雷达采用可编程序信号处理机,以增大雷达信号的处理容量、速度和灵活性,提高设备的复用性,从而使雷达能在跟踪的同时进行搜索并能改变或增加雷达的工作状态,使雷达具有对付各种干扰的能力和超视距的识别目标的能力; 现代基于雷达探测的区域监控系统可以完美解决视频监控设备的问题,雷达可以全天候24小时工作,并且不受雨、雪、雾以及黑夜的影响,雷达可以监控很远的距离,可以监控大角度、甚至360度监控。雷达是一种电磁传感器,用来对反射性物体检测和定位,雷达通过天线辐射电磁能量,目标反射回的电磁波被雷达截获后,经过处理检测出目标的距离、速度和方位等信息。雷达通过测量动目标的位置,可以得到目标轨迹,从而可以判定目标的运动方向,可以对未来位置做出预测。 但是雷达很难完全分辨出目标的类别,难以分辨目标的种类,比如目标是人还是动物。光电探测系统(可见光+红外)可以对图像信息进行采集,正好可以克服这个缺点,因此雷达和光电探测系统协同工作可实现对大区域范围的监视及识别。

相关主题
文本预览
相关文档 最新文档