当前位置:文档之家› 金属学与热处理第四章 铁碳合金

金属学与热处理第四章 铁碳合金

金属学与热处理第四章 铁碳合金
金属学与热处理第四章 铁碳合金

第四章铁碳合金

(一)填空题

1.Cr、V在γ-Fe中将形成固溶体。C、N则形成固溶体。

2.渗碳体的晶体结构是,按其化学式铁与碳原子的个数比为

3.当一块质量一定的纯铁加热到温度时,将发生a-Fe向γ-Fe的转变,此时体积将发生。

4.共析成分的铁碳合金平衡结晶至室温时,其相组成物为,组织成物为。5.在生产中,若要将钢进行轧制或锻压时,必须加热至相区。

6.当铁碳合金冷却时发生共晶反应的反应式为,其反应产物在室温下被称为。7.在退火状态的碳素工具钢中,T8钢比T12 钢的硬度,强度。

8.当W(C)=0.77%一2.11%间的铁碳合金从高温缓冷至ES线以下时,将从奥氏体中析出,其分布特征是。

9.在铁碳合金中,含三次渗碳体最多的合金成分点为,含二次渗碳体最多的合金成分点为。

10.对某亚共析碳钢进行显微组织观察时,若估计其中铁素体约占10%,其W(C) = ,大致硬度为

11.奥氏体是在的固溶体,它的晶体结构是。

12.铁素体是在的固溶体,它的晶体结构是。

13.渗碳体是和的金属间化合物。

14.珠光体是和的机械混合物。

15.莱氏体是和的机械混合物,而变态莱氏体是和的机械混合物。16.在Fe—Fe3C相图中,有、、、、五种渗碳体,它们各自的形态特征是、、、、。

17.钢中常存杂质元素有、、、等,其中、是有害元素,它们使钢产生、。

18.纯铁在不同温度区间的同素异晶体有(写出温度区间) 、、。19.碳钢按相图分为、、;按W(C)分为(标出W(C)范围) 、、。10.在铁—渗碳体相图中,存在着四条重要的线,请说明冷却通过这些线时所发生的转变并

指出生成物。ECF水平线、;PSK水平线、;ES线、;

GS线、。

21 标出Fe—Fe3C相图(图4—3)中指定相区的相组成物:

①,②,③,④,⑤。;

22.铁碳合金的室温显微组织由和两种基本相组成。

23.若退火碳钢试样中先共析铁素体面积为41.6%,珠光体的面积为58.4%,则其W(C)

=。

24.若退火碳钢试样中二次渗碳体面积为7.3%,珠光体的面积为92.7%,则其W(C)=。

25.平衡条件下,W(C)=0.5%的铁碳合金,100%A相的最低温度为;730℃A相的百分含量为,A相的W(C)= ;这时先共析铁素体的百分含量为。

(二)判断题

1.在铁碳合金中,含二次渗碳体最多的成分点为W(C):4.3%的合金。( ) 2.在铁碳合金中,只有共析成分点的合金在结晶时才能发生共析反应,形成共析组织。

( )

3.退火碳钢的塑性与韧性均随W(C)的增高而减小。而硬度与强度则随W(C)的增高而不断增高。( )

4.在铁碳合金中,渗碳体是一个亚稳相,而石墨才是一个稳定相。( )

5.白口铸铁在高温时可以进行锻造加工。( )

6.因为磷使钢发生热脆,而硫使钢发生冷脆,故硫磷都是钢中的有害元素。( ) 7.在室温下,共析钢的平衡组织为奥氏体。( )

8.纯铁加热到912℃时,将发生a-Fe一γ—Fe的转变,体积发生膨胀。( ) 9.铁碳合金中,一次渗碳体,二次渗碳体和三次渗碳体具有相同的晶体结构。( ) 10.在Fe—Fe3C相图中,共晶反应和共析反应都是在一定浓度和恒温下进行的。( ) 11.在Fe—Fe3C相图中,凡发生共晶反应的铁碳合金叫做白口铁;凡发生共析反应的铁碳合金叫做钢。( )

12 珠光体是单相组织。( )

13.白口铁是碳以渗碳体形式存在的铁,所以其硬度很高,脆性很大。( ) 14.W(C)=1.3%的铁碳合金加热到780℃时得到的组织为奥氏体加二次渗碳体。( ) 15.a-Fe是体心立方结构,致密度为68%,所以其最大溶碳量为32%。( ) 16.γ-Fe是面心立方晶格,致密为0.74,所以其最大溶碳量为26%。( ) 17.钢材的切削加工性随w/(C)增加而变差。( )

18.碳钢进行热压力加工时都要加热到奥氏体区。( )

19.W(C)=1.0%的碳钢比W(C)=0.5%的碳钢硬度高。( )

20.在室温下,w(C)=0.8%的退火碳钢的强度比W(C)=1.2%的退火碳钢高。( ) 21.钢铆钉一般用低碳钢制成。( )

22.钳工锯T10、T12钢料时比锯10、20钢费力,且锯条容易磨钝。( )

23.钢适宜于通过压力加工成形,而铸铁适宜于通过铸造成形。( )

24.工业纯铁的W(C)<0.2%。( )

25.工业纯铁的室温平衡组织为铁素体。( )

26.汽车外壳用低碳钢板制造,而理发工具用碳素工具钢制造。( )

27.退火碳钢W(C)=0.9%左右时强度极限最高。( )

28.过共析钢由液态缓冷至室温中所析出的二次渗碳体在组织形态与晶体结构方面均与—次渗碳体不相同。( )

(三)选择题

1.渗碳体属于

A.间隙固溶体 B 间隙化合物 C 间隙相D.正常化合物

2..δ-Fe的晶型是

A.体心立方B.面心立方C密排六方 D 简单立方

3.铁素体的机械性能特点是

A.具有良好的硬度与强度 B 具有良好的综合机械性能

C具有良好的塑性和韧性D.具有良好的切削性和铸造性

4.W(C)=4.3%碳的铁碳合金具有。

A.良好的可锻性 B 良好的铸造性 C 良好的焊接性D.良好的热处理性

5.建筑用钢筋宜选用

A.低碳钢 B 中碳钢 C 高碳钢D.工具钢

6.装配工使用的锉刀宜选用

A.低碳钢B.中碳钢C高碳钢D.过共晶白口铁

7.纯铁在912℃以下的晶格类型是

A.密排六方晶格 B 面心立方晶格 C 体心立方晶格D.简单立方晶格8.三次渗碳体是从

A.钢液中析出的B.铁素体中析出的 C 奥氏体中析出的D.珠光体中析出的9.二次渗碳体是从

A.钢液中析出的 B 铁素体中析出的 C 奥氏体中析出的D.莱氏体中析出的10.在下述钢铁中,切削性能较好的是

A.工业纯铁 B 45 C.白口铁D.T12A

(四)改错题

1.合金元素Cr、Mn、Si在a-Fe和γ—Fe中只能形成间隙式固溶体;而C、N在α—Fe 和γ—Fe中则能形成代位式固溶体。

2.渗碳体具有复杂的晶格类型,但其Fe与C的原子个数比为6.69。

3.当一块纯铁加热到1538'C温度时,将发生α—Fe向γ-Fe转变,此时体积将收缩。4.在实际生产中,若要钢的变形抗力小,容易变形,必须加热至δ单相区。

5.在普通退火状态下的工具钢中,T8钢比T12钢的强度和硬度都更高。

6.纯铁在(1394~1538)℃之间为面心立方的a-Fe。

7.按铁碳相图,钢与铁的成分分界点一般是W(C)=4.3%。

8.铁素体和奥氏体都具有良好的综合机械性能。

9.W(C)=4.3%的铁碳合金应具有良好的压力加工性能。

10.制作一把手用锉刀,可选用W(C)=0.1%的铁碳合金。

11.在铁碳合金系中,δ-Fe的晶格类型是复杂斜方结构。

12.工业纯铁平衡结晶过程中,可能获得奥氏体;冷到常温时可能获得珠光体。(五)问答题

1..根据铁碳相图,说明产生下列现象的原因:

(1) 在1100℃,W(C)=0.4%的钢能进行锻造,而W(C)=4.0%的生铁则不能锻造;

(2) 含碳量高的白口铸铁可做耐磨零部件;

(3)绑扎物件一般采用低碳钢丝,而起重机吊重物时则采用W(C)=o.60%~0.75%的钢

丝绳;

(4)用做汽车挡板的材料与用做锉刀的材料为什么不同。

2 试述铁碳相图在理论和实践中的重要意义,并举例说明之;

3.指出Q235、45、T12A钢的类别、主要特点及用途。

4.一块低碳钢和一块白口铸铁,大小和形状都一样,如何迅速把它们区分开来?

5.纯铁的三个同素异构体各叫什么名称?晶体结构如何?试绘出温度-时间曲线,并标明转变临界点温度。

6.试述F、A和Fe3C的晶体结构和性能特点。

7.何谓Fe3CⅠ、Fe3CⅡ、Fe3CⅢ、Fe3C共析和Fe3C共晶?在显微镜下它们的形态有何特点?请指出Fe3CⅡ、Fe3CⅢ的最大百分含量的成分点。

8 根据铁碳相图,解释下列现象:

(1)T8钢比40钢的强度、硬度高、塑性、韧性差。(2)T12钢比T8钢的硬度高,但强度反而低;(3)所有碳钢均可加热至(1000~1100)℃区间热锻成型,而任何白口铸铁在该温度区间,仍然塑性、韧性差,不能热锻成型;(4)制造汽车外壳多用低碳钢, W(C)<0.2%;制造机床主轴、齿轮等多用中碳钢W(C)=0.25~0.6%;而制造车刀、丝锥、锯条等则多采用高碳钢W(C)>0 .6%,而W(C)=1.3~2.1%之间的碳钢则基本不用。

(七)计算题

1.分析w(C)=0.2%、w(C)=0.6%、w(C)=o.77%的铁碳合金从液态缓冷至室温时的结晶过程和室温组织,分别计算w(C)=0.2%的铁碳合金在室温下相的相对量和组织相对量。2.分析w(C)=3.2%、w(C)=4.3%、w(C)=4.7%的铁碳合金从液态缓冷至室温时的结晶过程和室温组织,分别计算W(C)=4.3%的铁碳合金在室温下相的相对量和组织相对量。3.计算在共析反应温度时,珠光体中铁素体与渗碳体的相对量。

4.分别计算共晶莱氏体在共晶反应温度、共析反应温度和室温时,其组成相的相对量。5.若已知珠光体的HB≈200,δ≈20%;铁素体的HB≈80,δ≈50%,试计算W(C)=0.45%钢的硬度与延伸率。

6.某工厂仓库里积压了一批退火碳钢钢材,如果取出其中的一根经制样后在金相显微镜下观察,其组织为珠光体十铁素体,若其中铁素体约占视场面积的80%时,问此钢材的W(C)大约是多少?

7.在铁碳相图中,若将ES线近似地当成直线,试求W(C)=1.2%的钢在780℃经充分保温并快冷后的二次渗碳体含量。

8.已知某铁碳合金728℃时有奥氏体75%,渗碳体25%。求此合金的w(C)和室温时的组织组成物和相组成物的百分比。

9.根据Fe—Fe3C相图。用杠杆定律求w(C)=0.45%的碳钢在略低于727℃时相组成物

和组织组成物的相对量。

10.利用杠杆定律进行下列各题的计算:

(1)w(C)=0.25%的碳钢退火组织中先共析铁素体和珠光体的相对含量各是多少?

(2)w(C)=0.5%的碳钢退火组织中先共析铁素体和珠光体的相对含量各是多少?

(3)w(C)=1.4%的碳钢退火组织中Fe3C:和P的相对含量各是多少?

(八)思考题

1.分析w(C)二2.11%(正点)的铁碳合金的平衡结晶过程,并计算其室温组织组成物的相对含量。根据上述结果判断该铁碳合金是碳钢或是白口铁?

2.有一块厚度为10mm的T8钢试样,置于强烈的脱碳性气氛中于930℃长时间(如4~6h)加热,然后缓冷至室温。请绘出该试样从表面至心部的显微组织示意图,并解释之。3.有一块厚度为10mm的10钢试样,置于渗碳气氛中于930℃长时间(如4—6h)保温,然后缓冷至室温。请绘出该试样从表面至心部的显微组织示意图,并解释之。

机械工程材料第四章铁碳合金相图

第四章铁碳合金相图 教学目的及其要求 通过本章学习,使学生们掌握铁碳合金的基本知识,学懂铁碳相图的特征点、线及其意义,了解铁碳相图的应用。 主要内容 1.铁碳合金的相组成 2.铁碳合金相图及其应用 3.碳钢的分类、编号及应用 学时安排 讲课4学时 教学重点 1.铁碳合金相图及应用 2.典型合金的结晶过程分析 教学难点 铁碳合金相图的分析和应用。 教学过程 纯铁、铁碳合金中的相 一、铁碳合金的组元 铁:熔点1538℃,塑性好,强度硬度极低,在结晶过程中存在着同素异晶转变。不同结构的铁与碳可以形成不同的固溶体。 由于纯铁具有同素异构转变,在生产上可以通过热处理对钢和铸铁改变其组织和性能。碳:在Fe-Fe3C相图中,碳有两种存在形式:一是以化合物Fe3C形式存在;二是以间隙固溶体形式存在。 二、铁碳合金中的基本相 相:指系统中具有同一聚集状态、同一化学成分、同一结构并以界面隔开的均匀组成部分。铁碳合金系统中,铁和碳相互作用形成的相有两种:固溶体和金属化合物。固溶体是铁素体和奥氏体;金属化合物是渗碳体。这也是碳在合金中的两种存在形式。 1.铁素体 碳溶于 Fe中形成的间隙固溶体称为铁素体,用 或者F表示,为体心立方晶格结构。塑性好,强度硬度低。 2.奥氏体 碳溶于 Fe中形成的间隙固溶体称为奥氏体,用 或者A表示,为面心立方晶格结构。塑性好,强度硬度略高于铁素体,无磁性。 3.渗碳体Fe3C:晶体结构复杂,含碳量6.69%,熔点高,硬而脆,几乎没有塑性。 渗碳体对合金性能的影响: (1)渗碳体的存在能提高合金的硬度、耐磨性,使合金的塑性和韧性降低。 (2)对强度的影响与渗碳体的形态和分布有关: 以层片状或粒状均匀分布在组织中,能提高合金的强度; 以连续网状、粗大的片状或作为基体出现时,急剧降低合金的强度、塑性韧性。 二、两相机械混合物 珠光体:铁素体与渗碳体的两相混合物,强度、硬度及塑性适中。 莱氏体:奥氏体与渗碳体的混合物;室温下为珠光体与渗碳体的混合物,又硬又脆。

铁碳合金相图分析及应用

第五章铁碳合金相图及应用 [重点掌握] 1、铁碳合金的基本组织;铁素体、奥氏体、渗碳体、珠光体、菜氏体的结构和性能特点及显微组织形貌; 2、根据相图,分析各种典型成份的铁碳合金的结晶过程; 3、铁碳合金的成份、组织与性能之间的关系。 铁碳相图是研究钢和铸铁的基础,对于钢铁材料的应用以及热加工和热处理工艺的制订也具有重要的指导意义。 铁和碳可以形成一系列化合物,如Fe3C、Fe2C、FeC等, 有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为 Fe-Fe3C相图,相图中的组元只有Fe和Fe3C。 第一节铁碳合金基本相 一、铁素体 1.δ相高温铁素体:C固溶到δ-Fe中,形成δ相。 2.α相铁素体(用F表示):C固溶到α-Fe中,形成α相。 F强度、硬度低、塑性好(室温:C%=0.0008%,727度:C%=0.0218%)二、奥氏体 γ相奥氏体(用A表示):C固溶到γ-Fe中形成γ相)强度低,易塑性变形 三、渗碳体

Fe3C相(用Cem表示),是Fe与C的一种具有复杂结构的间隙化合物, 渗碳体的熔点高,机械性能特点是硬而脆,塑性、韧性几乎为零。 渗碳体根据生成条件不同有条状、网状、片状、粒状等形态, 对铁碳合金的机械性能有很大影响。 第二节 Fe-Fe3C相图分析 一、相图中的点、线、面 1.三条水平线和三个重要点 (1)包晶转变线HJB,J为包晶点。1495摄氏度,C%=0.09-0.53% L+δ→A (2)共晶转变线ECF, C点为共晶点。冷却到1148℃时, C点成分的L发生共晶反应:L→A(2.11%C)+Fe3C(6.69%C,共晶渗碳体)共晶反应在恒温下进行, 反应过程中L、A、Fe3C三相共存。 共晶反应的产物是奥氏体与渗碳体的共晶混和物, 称莱氏体, 以符号 Le表示。 (3)共析转变线PSK,S点为共析点。合金(在平衡结晶过程中冷)却到727℃时, S点成分的A发生共析反应:

铁碳合金(复习题)

第四章铁碳合金 (一)填空题 1、渗碳体的晶体结构是,按其化学式铁与碳原子的个数比为 2、共析成分的铁碳合金平衡结晶至室温时,其相组成物为,组织成物为。 3、在生产中,若要将钢进行轧制或锻压时,必须加热至相区。 4、当铁碳合金冷却时发生共晶反应的反应式为,其反应产物在室温下被称为。 5、当W(C)=0.77%一2.11%间的铁碳合金从高温缓冷至ES线以下时,将从奥氏体中析出,其分布特征是。 6、奥氏体是在的固溶体,它的晶体结构是。 7、铁素体是在的固溶体,它的晶体结构是。 8、渗碳体是和的金属间化合物。 9、珠光体是和的机械混合物。 10、莱氏体是和的机械混合物,而变态莱氏体是和的机械混合物。 11、在Fe—Fe3C相图中,有、、、、五种渗碳体,它们各自 的形态特征是、、、、。(120页) 12.钢中常存杂质元素有、、、等,其中是有害元素,它们使钢产生、。 13.纯铁在不同温度区间的同素异晶体有(写出温度区间) 、、。14.碳钢按相图分为;按W(C)分为。 15. 标出Fe—Fe3C相图(图4—3)中指定相区的相组成物: ①,②,③,④,⑤。; 16.铁碳合金的室温显微组织由和两种基本相组成。 17.钢锭根据含氧量和凝固时放出一氧化碳的程度,可分为、、。 (二)判断题(复习题) 1.在铁碳合金中,只有共析成分点的合金在结晶时才能发生共析反应,形成共析组织。 ( X ) 2.因为磷使钢发生热脆,而硫使钢发生冷脆,故硫磷都是钢中的有害元素。( X ) 3.在室温下,共析钢的平衡组织为奥氏体。( X ) 4.纯铁加热到912℃时,将发生a-Fe一γ—Fe的转变。( X ) 5.铁碳合金中,一次渗碳体,二次渗碳体和三次渗碳体具有相同的晶体结构。( √) 6.在Fe—Fe3C相图中,共晶反应和共析反应都是在一定浓度和恒温下进行的。( √) 7.在Fe—Fe3C相图中,凡发生共晶反应的铁碳合金叫做白口铁;凡发生共析反应的铁碳合金叫做钢。( √) 8 珠光体是单相组织。( X )

工程材料04(铁碳合金相图)

钢铁是现代工业中应用最为广泛的的金属材料,其基本组元是铁和碳元素,因此称为铁碳合金。为了掌握钢铁材料的成分、组织和性能之间的关系,为以后的生产应用做好准备,就必须学习和研究铁碳合金相图。 铁和碳元素可以形成固溶体以及一系列化合物(Fe3C、Fe3C、FeC 等),但由于含碳量较大的铁碳合金脆性很大,无实际应用价值,所以在铁碳合金相图中,只需研究Fe-Fe3C部分(含碳量≦6.69%)。

第一节铁碳合金的基本相 在铁碳合金中,铁和碳元素的相互作用方式有两种:(1)碳原子溶解到纯铁的晶格中,形成固溶体,如铁素体和奥氏体;(2)铁和碳原子相互作用形成金属化合物,如渗碳体。 一、铁素体:α 、F 碳溶于α-Fe中形成的间隙固溶体称为铁素体,它仍保持α-Fe的体心立方结构。由于铁素体的含碳量较低(室温下w =0.0008%),其性能与纯铁相近。 c 铁素体的强度、硬度较低,但具有良好的塑性和韧性。 抗拉强度σb:180~280MPa 屈服强度σs:100~170MPa 硬度HB:50~80HBW 伸长率δ:30~50% 冲击韧性A k:160~200J

二、奥氏体:γ、A 碳溶于γ-Fe中形成的间隙固溶体称为奥氏体,它仍保持γ-Fe的面心立方结构。奥氏体溶解碳原子的能力与温度有关,1148℃时w c=2.11%,727℃时w c=0.77%。一般奥氏体的硬度约为170~220HBW,伸长率δ约为30~50%。因此,奥氏体的硬度较低而塑性较好,易于锻压成型。 三、渗碳体:Fe C 3 渗碳体是一种具有复杂晶格结构的金属间化合物,其性能特点是硬度很高(约1000HV),且脆性很大(δ,αk≈0)。 渗碳体在碳钢中不能作为基体相,而是作为强化相存在,它的存在形态(网、片、条、粒状等),对碳钢的性能有很大的影响。例如,渗碳体以细小的颗粒状形态,均匀分布在固溶体基体相上,则碳钢的力学性能较好;但是,渗碳体呈较粗大形态或网状分布时,则碳钢的脆性会增大。

第四章-铁碳合金(金属学与热处理崔忠圻课后答案)备课讲稿

第四章-铁碳合金(金属学与热处理崔忠圻 课后答案)

金属学与热处理第二版(崔忠圻)答案 第四章铁碳合金 4-1 分析Wc=0.2%,Wc=0.6%,Wc=1.2%,的铁碳合金从液态平衡冷却至室温的转变过程,用冷却曲线和组织示意图说明各阶段的组织,并分别计算室温下的相组成物及组织组成物的含量。 答: Wc=0.2%的转变过程及相组成物和组织组成物含量计算 转变过程: 1)液态合金冷却至液相线处,从液态合金中按匀晶转变析出δ铁素体,L?δ,组织

为液相+δ铁素体 2)液态合金冷却至包晶温点(1495℃),液相合金和δ铁素体发生包晶转变,形成奥氏体γ,L+δ?γ,由于Wc=0.2%高于包晶点0.17%,因此组织为奥氏体加部分液相。 3)继续冷却,部分液相发生匀晶转变析出奥氏体γ,直至消耗完所有液相,全部转变为奥氏体组织。 4)当合金冷却至与铁素体先共析线相交时,从奥氏体中析出先共析铁素体α,组织为奥氏体+先共析铁素体 5)当合金冷却至共析温度时,奥氏体碳含量沿铁素体先共析线变化至共析点碳含 +珠光体 6)继续冷却,先共析铁素体和珠光体中的铁素体都将析出三次渗碳体,但数量很少,可忽略不计。所以室温下的组织为:先共析铁素体+珠光体。 组织含量计算: 组织含量计算:Wα(先)=(0.77-0.2)/(0.77-0.0218)×100%≈76.2%,Wp=1- Wα(先)≈23.8% 相含量计算:Wα=(6.69-0.2)/(6.69-0.0218)×100%≈97.3%, W Fe3C= 1- Wα≈2.7% Wc=0.6%的转变过程及相组成物和组织组成物含量计算: 转变过程: 1)液态合金冷却至液相线处,从液态合金处按匀晶转变析出奥氏体,L?γ,组织为液相+奥氏体。 2)继续冷却,直至消耗完所有液相,全部转变为奥氏体组织。 3)当合金冷却至与铁素体先共析线相交时,从奥氏体中析出先共析铁素体α,组织为奥氏体+先共析铁素体 4)当合金冷却至共析温度(727℃)时,奥氏体碳含量沿铁素体先共析线变化至共析点,发生共析转变γ?α+Fe3C,此时组织为先共析铁素体+珠光体 5)珠光体中的铁素体都将析出三次渗碳体,但数量很少,可忽略不计。所以室温下的组织为:先共析二次渗碳体+珠光体 组织含量计算: 组织含量计算:Wα(先))=(0.77-0.6)/(0.77-0.0218)×100%≈22.7%,Wp=1- Wα(先)≈77.3% 相含量计算:Wα=(6.69-0.6)/(6.69-0.0218)×100%≈91.3%, W Fe3C= 1- Wα≈8.7%

铁碳相图以及铁碳合金

铁碳相图以及铁碳合金 Post By:2009-12-6 16:33:51 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe -石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。

铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下: 由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1 394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体

铁碳相图以及铁碳合金

铁碳相图以及铁碳合金Post By:2009-12-6 16:33:51 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, 3 Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1 394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥

铁碳合金相图全面分析

铁碳平衡图 (The Iron-Carbon Diagrams) 连聪贤 本章阐述了铁碳合金的基本组织,铁碳合金状态图,碳钢的分类、编号和用途。要求牢固掌握铁碳合金的基本组织(铁素体、奥氏体、渗碳体、珠光体、莱氏体)的定义、结构、形成条件和性能特点。牢固掌握简化的铁碳合金状态图;熟练分析不同成分的铁碳合金的结晶过程;掌握铁碳合金状态图各相区的组织及性能,以及铁碳合金状态图的实际应用。掌握碳钢中常存元素对碳钢性能的影响;基本掌握碳钢的分类、编号、性能和用途。 铁碳合金基本组织铁素体、奥氏体、渗碳体、珠光体和莱氏体的定义、表示符号、晶体结构、显微组织特征、形成条件及性能特点。铁碳合金状态图的构成、状态图中特性点、线的含义。典型合金的结晶过程分析及其组织,室温下不同区域的组织组成相。碳含量对铁碳合金组织和性能的影响。铁碳合金状态图的实际应用。锰、硅、硫、磷等常存杂质元素对钢性能的影响。碳铁的分类、编号、性能和用途。 铁碳合金状态图是金属热处理的基础。必须配合铁碳合金平衡组织的金相观察实验,结合课堂授课,作重点分析铁碳合金的基本组织及其室温下不同成分铁碳合金的组织特征。练习绘制铁碳合金状态 四、课程纲要 (一)铁碳合金的构成元素及基本相

1. 合金的构成元素与名词解释 (1)金属特性:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特 性的物质。金属内部原子具有规律性排列的固体(即晶 体)。 (2)合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 (3)相:合金中成份、结构、性能相同的组成部分,物理上均质且可区分的部分。 (4)固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态 金属晶体,固溶体分间隙固溶体和置换固溶体两种。(5)固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 (6)化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 (7)机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。

铁碳相图以及铁碳合金

铁碳相图以及铁碳合金 发布日期:[08-03-10 14:26:26] 浏览人次:[5779 ] https://www.doczj.com/doc/bb13428199.html, 马棚网 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe 和C 能够形成Fe 3C, Fe 2C 和FeC 等多种稳定化合物。所以,Fe-C 相图可以划分成Fe-Fe 3C, Fe 3C-Fe 2C, Fe 2C-FeC 和FeC-C 四个部分。由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe 3C 部分。,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过 化合物Fe 3C 称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe 和C ,C 原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe 3C 和Fe-石墨双重相图(图1)。Fe-Fe 3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe 3C 相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe 3C 。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe 是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。奥氏体的显微组织见图3,图4表示碳原子存在于面心立方晶格中正八面体的中心。

铁碳合金相图与热处理

1 铁碳合金的基本组织 1.1. 铁素体:碳与α-F e 中形成的间隙固溶体称为铁素体,用F 表示。强度和硬度低,塑性和韧性好。纯铁由液态结晶为固态后,继续冷却到1394℃及912℃时,先后发生两次晶格类型的转变。金属在固态下发生的晶格类型的转变称为同素异晶转变。同素异构转变伴有热效应产生,因此在 纯铁的冷却曲线上,在1394℃及912℃处出现 平台。铁的同素异晶转变如下:温度低于912 ℃的铁为体心立方晶格,称为α-F e ;温度在912~1394℃间的铁为面心立方晶格,称为γ-F e ;温度在1394~1538℃间的铁为体心立方晶格,称为δ-F e 。 1.2. 奥氏体:碳与γ-Fe 中形成的间隙固溶体称为铁素体,用A表示或γ表示,其最大溶解度为2.11wt%C ,发生于1148℃,碳多存在于面心立方γ结构的八面体空隙。奥氏体与γ-Fe 均具有顺磁性,高温组织,在大于727℃时存在。塑性好,强度和硬度高于F,在锻造、轧制时常要加热到A ,提高塑性,易于加工。碳的原子半径较小,在α-Fe 和γ-Fe 中均可进入Fe 原子间的空隙而形成间隙固溶体。碳在α-Fe 中形成的间隙固溶体称为铁素体(ferri te ),常用符号F 或α表示,其最大溶解度为0.0218wt %C,发生于727℃,碳多存在于体心立方α结构的八面体空隙。铁素体与α-F e 在居里点770℃以下均具有铁磁性。 2 铁碳合金状态图 1.3. 渗碳体:铁与碳形成的金属化合物,硬度高,脆性大。用Fe 3C 表示 A1

1.4. 珠光体:F与F e3C混合物。强度,硬度,塑性,韧性介于两者之间。 1.5. 莱氏体:A与F e3C混合物硬度高,塑性差。 在HJ B 水平线(1495℃)发生包晶转变:转变产物是γ。此转变仅发生在含碳0.09~0.53%的铁碳合金中。 ECF 水平线(1148℃)发生共晶转变:转变产物是γ和Fe3C 的机械混合物,称为莱氏体(le deb uri te),用符号L d或L e表示。含碳2.11~6.69%的铁碳合金都发生此转变。 在PSK 水平线(727℃)发生共析转变:转变产物是α和F e3C 的机械混合物,称为珠光体(pea rli te),用符号P表示。所有含碳量超过0.0218%的铁碳合金都发生这个转变。共析转变温度通常称为A1温度(727℃)。 ABCD线:液相线,液相冷却至此开始析出,固相加热至此全部转化为液体。 AHJEC F线:固相线,液态合金至此线全部结晶为固相,固相至此开始转化。 GS 线:γ中开始析出α或α全部溶入γ的转变线,常称此温度为A3(727℃~912℃)温度。A开始析出F的转变线,加热时F全部溶入A。 ES 线:碳在γ中的溶解度线。常称此温度为A c m(727℃~1148℃)温度。低于此温度时,γ中将析出F e3C,称为二次渗碳体F e3C II,以区别于从液体中经C D 线结晶出的一次渗碳体F e3C I。 PQ 线:碳在α中的溶解度线。α从727℃冷却下来时,也将析出F e3C,称为三次渗碳体F e3C I I。 ECF线:共晶线,含C量 2.11-6.69%至此发生共晶反应,结晶出A与Fe3C 混合物,莱氏体。 2.1 状态图主要点线、主要点 2.2 铁碳合金分类 2.2.1 钢含C量0.0218~2.11%:共析钢含C量0.77%;亚共析钢0.0218-0.77%;

铁碳相图和铁碳合金

铁碳相图和铁碳合金(一) 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。 化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组 织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2)碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。奥氏体的显微组织见图3,图4表示碳原子存在于面心立方晶格中正八面体的中心。

对金属材料与热处理中“铁碳合金相图”的教学见解

对《金属材料与热处理》中“铁碳合金相图”的教学见解- 建筑论文 对《金属材料与热处理》中“铁碳合金相图”的教学见解 林颖 (江苏省徐州技师学院建筑工程系,江苏徐州221151) 【摘要】“铁碳合金相图”表明了金属(铁碳合金)的组织和性能随成分、温度变化的规律。而且在铁碳合金相图可以帮助学生根据金属材料的成分推断其组织,根据组织定性分析其力学性能,另外在选材、铸造、锻造、焊接以及热处理等方面有广泛的应用。铁碳合金相图是学生全面认识碳钢、合金钢和铸铁的必要的工具,因此学生对铁碳合金相图掌握的好坏直接影响对本课程的学教学效果。 关键词同素异晶转变;铁碳合金的基本相;铁碳合金相图 《金属材料与热处理》是一门专业性较强、理论抽象概念较多的专业技术基础课。它在基础理论课与专业技术课之间起到承上启下的作用。该课程内容庞杂、理论性强、涉及知识面广,是一门综合性很强的课程。它要求学生通过系统的学习之后,能够掌握金属材料的成分、组织、热处理与金属材料性能之间的关系和变化规律并能够合理运用。全书的教学内容可分为两大方面,一是学习《金属材料与热处理》理论基础及基本原理,另一方面是理论知识的灵活运用。“铁碳合金相图”表明了金属(铁碳合金)的组织和性能随成分、温度变化的规律。而且在铁碳合金相图可以帮助学生根据金属材料的成分推断其组织,根据组织定性分析其力学性能,另外在选材、铸造、锻造、焊接以及热处理等方面有广泛的应用。铁碳合金相图是学生全面认识碳钢、合金钢和铸铁的必要的工具,因此学生对铁

碳合金相图掌握的好坏直接影响对本课程的学习。我认为铁碳合金相图是全书的重点内容。 学生对知识的学习过程,是一个循序渐进的过程,需要学生在掌握基础知识的前提下对所学知识思考、理解、内化并能够在实践中灵活运用的从而使自己认识问题和解决问题的能力不断提高。职业学校的学生学习基础普遍较差,学习能力还有待培养。大部分学生的认知特点是形象思维长于逻辑思维对于理论知识更是感到枯燥无味而铁碳合金相图是一个理论性较强的知识,学生学起来更是难以理解,《金属材料与热处理》这门学科与生产实践紧密联系。由于受学校教学设备的和实验室的限制学生在学习过程中不能对实验数据进行处理和分析从实验中亲自绘出相图!并且相图包含内容较多,乍一看来——较多的点和线,学生学习起来往往感到千头万绪,不知从何入手,抓不住重点,对其理解起来较难。所以铁碳合金相图也是全书的难点。如何使学生够彻底地掌握铁碳状态图并应用到生产实践中我从教学中总结出如下几方面: 授课时要由浅入深、由表及里、层层阐述、前面所讲的为后面所学的知识的基础,后面所讲的知识又是前面知识的必然发展和结论。所以时刻注意知识的连贯性,循序渐进。在分析铁碳合金相图时要注意对纯铁的同素异晶转变、铁碳合金的基本相等基础知识的复习,由于内容较散、概念抽象为了便于学生理解和记忆,笔者进行归纳和总结并通过公式将分散的知识有机的联系起来,使内容直观易懂,减轻了学生的理解和记忆负担。例如:在复习铁碳合金的基本相时设计了如下公式;

铁碳相图习题参考答案

第五章铁碳相图 习题参考答案 一、解释下列名词 答:1、铁素体:碳溶入α-Fe中形成的间隙固溶体。 奥氏体:碳溶入γ-Fe中形成的间隙固溶体。 渗碳体:铁与碳形成的具有复杂晶体结构的金属化合物。 珠光体:铁素体和渗碳体组成的机械混合物。 莱氏体:由奥氏体和渗碳体组成的机械混合物。 2、Fe3CⅠ:由液相中直接析出来的渗碳体称为一次渗碳体。 Fe3CⅡ:从A中析出的Fe3C称为二次渗碳体。 Fe3CⅢ:从铁素体中析出的Fe3C称为三次渗碳体。 共析Fe3C :经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳体。 共晶Fe3C:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体。 3、钢:含碳量大于%,小于%的铁碳合金。 白口铸铁:含碳量大于%的铁碳合金。 二、填空题 1、常温平衡状态下,铁碳合金基本相有铁素体(F)、渗碳体(Fe3C)等两个。 2、Fe-Fe3C相图有4个单相区,各相区的相分别是液相(L)、δ相、铁素体(F)、奥氏体(A)。 3、Fe-Fe3C 相图有三条水平线,即HJB、ECF和PSK线,它们代表的反应分别是包晶反应、共晶反应和共析反应。 4、工业纯铁的含碳量为≤%,室温平衡组织为F+ Fe3CⅢ。 5、共晶白口铁的含碳量为%,室温平衡组织P占%,Fe3C共晶占%,Fe3CⅡ占%。 6、一钢试样,在室温平衡组织中,珠光体占60%,铁素体占40%,该钢的含碳量为。 7、钢的组织特点是高温组织为奥氏体(A),具有良好的塑、韧性,因而适于热加工成形。 8、白口铸铁的特点是液态结晶都有共晶转变,室温平衡组织中都有莱氏体,因而适于通过铸造成形。 三、简答题 1、为什么γ-Fe 和α- Fe 的比容不同?一块质量一定的铁发生(γ-Fe →α-Fe )转变时,其体积如何变化? 答:因为γ-Fe和α- Fe原子排列的紧密程度不同,γ-Fe的致密度为74%,α- Fe的致密度为68%,因此一块质量一定的铁发生(γ-Fe →α-Fe )转变时体积将发生膨胀。

复习思考题(铁碳合金相图)

第三章复习思考题(铁碳合金相图) 一.名词解释 铁素体、奥氏体、珠光体、莱氏体、高温莱氏体、低温莱氏体、一次渗碳体、二次渗碳体、三次渗碳体、A3线、A cm线、PQ线、渗碳体 二.填空题 1.碳在奥氏体中的溶解度随温度而变化,在1148℃时溶碳量可达,在727℃时为。 2.铁碳合金相图是表示在情况下,随温度变化的图形。 3.含碳量小于的铁碳合金称为钢,根据室温组织的不同,钢可以分为三类:钢,其组织是;钢,其组织是;钢,其组织是。 4.共析钢当加热后冷却到S点时会发生转变,从奥氏体中同时析出和组成的混合物,称为。 5.分别填出下列组织的符号:奥氏体,铁素体,渗碳体,珠光体,高温莱氏体,低温莱氏体。 6.奥氏体和渗碳体组成的共晶产物称为,其含碳量为,当温度低于727℃时,转变为珠光体和渗碳体,又称为。 7.亚共晶白口铸铁的含碳量为,其室温组织为。 8.铁素体是碳溶入中的固溶体,奥氏体是碳溶入中的固溶体,渗碳体是。 9.工业纯铁、亚共析钢、共析钢、过共析钢、亚共晶白口铁、共晶白口铁、过共晶白口铁在室温下的平衡组织分别是,,,,,,。 10.在Fe-Fe3C相图中,HJB线、ECF线、PSK线分别称为,,。 11.根据含碳量和组织特点,可将铁碳合金分为三大类,分别是,,。 12.渗碳体的塑性,脆性,但高。 13.Fe-Fe3C相图中有个单相区,分别是;有个双相区,分别是。 14.纯铁有三种同素异晶状态,分别是,,。 三.选择题 1.铁素体的晶格类型为() A.面心立方B.体心立方C.密排六方D.复杂的八面体 2.奥氏体的晶格类型为() A.面心立方B.体心立方C.密排六方D.复杂的八面体 3.渗碳体的晶格类型为() A.面心立方B.体心立方C.密排六方D.复杂的八面体 4.含碳量1.3%的铁碳合金,在950℃时的组织为(),在650℃时的组织为() A.珠光体B.奥氏体C.铁素体+珠光体D.珠光体+渗碳体 5.铁碳合金相图中ES线,其代号用()表示,PSK线用代号()表示。 A.A1B.A3C.A0D.A cm 6.铁碳合金相图中的共析线是(),共晶线是() A.ES B.PSK C.ECF D.HJB 7.从奥氏体中析出的渗碳体是(),从液相中结晶出的渗碳体为() A.一次渗碳体B.二次渗碳体C.三次渗碳体D.共晶渗碳体 8.奥氏体是() A.碳在γ- Fe 中的间隙固溶体B.碳在α- Fe 中的间隙固溶体 C.碳在α- Fe 中的置换固溶体D.碳在δ- Fe 中的间隙固溶体 9.珠光体是一种() A.单相固溶体B.两相混合物C.Fe 与C 的化合物D.两相固溶体 四.判断题

铁碳相图复习题

铁碳相图复习题 解释下列名词 答:1、铁素体:碳溶入α-Fe中形成的间隙固溶体。 奥氏体:碳溶入γ-Fe中形成的间隙固溶体。 渗碳体:铁与碳形成的具有复杂晶体结构的金属化合物。 珠光体:铁素体和渗碳体组成的机械混合物。 莱氏体:由奥氏体和渗碳体组成的机械混合物。 2、Fe3CⅠ:由液相中直接析出来的渗碳体称为一次渗碳体。 Fe3CⅡ:从A中析出的Fe3C称为二次渗碳体。 Fe3CⅢ:从铁素体中析出的Fe3C称为三次渗碳体。 共析Fe3C :经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳体。 共晶Fe3C:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体。 3、钢:含碳量大于0.00218%,小于2.11%的铁碳合金。 白口铸铁:含碳量大于2.11%的铁碳合金。 二、填空题 1、常温平衡状态下,铁碳合金基本相有铁素体(F)、渗碳体(Fe3C)等两个。 2、Fe-Fe3C相图有4个单相区,各相区的相分别是液相(L)、δ相、铁素体(F)、奥氏体(A)。 3、Fe-Fe3C 相图有三条水平线,即HJB、ECF和PSK线,它们代表的反应分别是包晶反应、共晶反应和共析反应。 4、工业纯铁的含碳量为≤0.0218%,室温平衡组织为F+ Fe3CⅢ。 5、共晶白口铁的含碳量为4.3%,室温平衡组织P占40.37%,Fe3C共晶占47.82%,Fe3CⅡ占11.81%。 6、一钢试样,在室温平衡组织中,珠光体占60%,铁素体占40%,该钢的含碳量为0.4707。 7、钢的组织特点是高温组织为奥氏体(A),具有良好的塑、韧性,因而适于热加工成形。 8、白口铸铁的特点是液态结晶都有共晶转变,室温平衡组织中都有莱氏体,因而适于通过铸造成形。 三、简答题 1、为什么γ-Fe 和α- Fe 的比容不同?一块质量一定的铁发生(γ-Fe →α-Fe )转变时,其体积如何变化? 答:因为γ-Fe和α- Fe原子排列的紧密程度不同,γ-Fe的致密度为74%,α- Fe的致密度为68%,因此一块质量一定的铁发生(γ-Fe →α-Fe )转变时体积将发生膨胀。 2、铁素体(F),奥氏体(A),渗碳体(Fe3C),珠光体(P),莱氏体(Ld)的结构、组织形态、

金属学与热处理课后习题答案第四章

第四章铁碳合金 4-1 分析Wc=0.2%,Wc=0.6%,Wc=1.2%,的铁碳合金从液态平衡冷却至室温的转变过程,用冷却曲线和组织示意图说明各阶段的组织,并分别计算室温下的相组成物及组织组成物的含量。 答: 1、Wc=0.2%的转变过程及相组成物和组织组成物含量计算 转变过程: 1)液态合金冷却至液相线处,从液态合金中按匀晶转变析出δ铁素体,L≒δ,组织为液相+δ铁素体 2)液态合金冷却至包晶温点(1495℃),液相合金和δ铁素体发生包晶转变,形成奥氏体γ,L+δ≒γ,由于Wc=0.2%高于包晶点0.17%,因此组织为奥氏体加部分液相。 3)继续冷却,部分液相发生匀晶转变析出奥氏体γ,直至消耗完所有液相,全部转变为奥氏体组织。 4)当合金冷却至与铁素体先共析线相交时,从奥氏体中析出先共析铁素体α,组织为奥氏体+先共析铁素体 5)当合金冷却至共析温度时,奥氏体碳含量沿铁素体先共析线变化至共析点碳含量,发生共析转变γ≒α+Fe3C,此时组织为先共析铁素体+珠光体 6)继续冷却,先共析铁素体和珠光体中的铁素体都将析出三次渗碳体,但数量很少,可忽略不计。所以室温下的组织为:先共析铁素体+珠光体。 组织含量计算: 组织含量计算:W =(0.77-0.2)/(0.77-0.0218)×100%≈76.2%, α(先) Wp=1- Wα(先)≈23.8% 相含量计算:W =(6.69-0.2)/(6.69-0.0218)×100%≈97.3%, α W Fe3C= 1- Wα≈2.7% 2、Wc=0.6%的转变过程及相组成物和组织组成物含量计算 转变过程: 1)液态合金冷却至液相线处,从液态合金处按匀晶转变析出奥氏体,L≒γ,组织为液相+奥氏体。 2)继续冷却,直至消耗完所有液相,全部转变为奥氏体组织。 4)当合金冷却至与铁素体先共析线相交时,从奥氏体中析出先共析铁素体α,组织为奥氏体+先共析铁素体 5)当合金冷却至共析温度(727℃)时,奥氏体碳含量沿铁素体先共析线变化至共析点,发生共析转变γ≒α+Fe3C,此时组织为先共析铁素体+珠光体 6)珠光体中的铁素体都将析出三次渗碳体,但数量很少,可忽略不计。所以室温下的组织为:先共析二次渗碳体+珠光体 组织含量计算: =(0.77-0.6)/(0.77-0.0218)×100%≈22.7%, 组织含量计算:W α(先)) Wp=1- Wα(先)≈77.3% 相含量计算:W =(6.69-0.6)/(6.69-0.0218)×100%≈91.3%, α W Fe3C= 1- Wα≈8.7%

第四章 金属学与热处理答案

第4章 习题 4-1 分析w C =0.2%、w C =0.6%、w C =1.2%的铁碳合金从液态平衡冷却至室温的转变过程,用冷却曲线和组织示意图说明各阶段的组织,并分别计算室温下的相组成物和组织组成物的含量。 解:在室温下,铁碳合金的平衡相是α-Fe(碳的质量分数是0.008%)和Fe 3C(碳的质量分数是 6.69%),故 (1) w C =0.2%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为 3 6.690.2%100%97.13%6.690.008 %197.13% 2.87% Fe C α-=?=-=-= w C =0.2%的合金在室温下平衡态下的组织是α-Fe 和P ,其组织可近似看做和共析转变完时一样,在共析温度下α-Fe 碳的成分是0.0218%,P 的碳的成分为0.77%,故w C =0.2%的合金在室温时组织中P 和α的相对量分别为 0.20.0218%100%23.82%0.770.0218 %123.82%76.18%P α-= ?=-=-= (2) w C =0.6%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为 3 6.690.6%100%91.14%6.690.008 %191.14%8.86% Fe C α-=?=-=-= w C =0.6%的合金在室温下平衡态下的组织是α-Fe 和P ,在室温时组织中P 和α的相对量为 0.60.0218%100%77.28%0.770.0218 %177.28%22.72%P α-= ?=-=-= (3) w C =1.2%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为 3 6.69 1.2%100%82.16%6.690.008 %182.16%17.84% Fe C α-=?=-=-= w C =1.2%的合金在室温下平衡态下的组织是P 和Fe 3C ,在室温时组织中P 的相对量为 3 6.69 1.2%100%92.74%6.690.77 %192.74%7.3%P Fe C -= ?=-=-= 4-2 分析w C =3.5%、w C =4.7%的铁碳合金从液态平衡冷却至室温的平衡结晶过程,画出冷却曲线和组织变化示意图,并计算室温下的组织组成物和相组成物的含量。

第四章 钢铁材料教案

第四章钢铁材料教案

使共晶体溶化,变脆开裂,这种现象称为热脆。所以钢中的硫必须严格控制。钢中加锰,可消除硫的有害作用,因Mn与S能形成MnS,熔点达1620℃,高温下塑性好的MnS呈点状分布,避免热脆的影响。 4)磷的影响 磷也是一种有害杂质,它部分溶于铁素体中,部分形成脆性很大的化合物Fe3P,使室温下钢的塑性、韧性急剧下降,脆性转变温度升高,使钢变脆,这种现象称为冷脆性。磷也使钢的焊接性能变坏。虽然磷在改善切削性及抗腐蚀性方面对钢有好处,但相对于明显的不利方面,一般钢中都需严格控制磷的含量。 另外,氧、氢等对钢的性能带来不利影响,是有害杂质。 二、合金元素在钢中的主要作用 一)对钢基本相的影响 1、强化铁素体 2、形成合金化合物 二)对相图的影响 三)对钢热处理的影响 2. 碳素钢的分类及牌号 碳素钢的种类很多,常按以下方法分类。 (1)按钢的化学成分分类 碳素钢:低碳钢(0.0218%<wC≤0.25%); 中碳钢(0.25%<wC≤0.60%); 高碳钢(0.60%<wC≤2.11%〉。 合金钢:低合金钢 中合金钢 高合金钢 (2)按钢的主要质量等级分类 普通质量碳素钢(wS≤0.050%,wP≤0.045%); 优质碳素钢(wS≤0.035%,wP≤0.035%) 高级优质钢; 特殊质量碳素钢(wS≤0.020%,wP≤0.020%) (3) 按钢的用途分类 碳素结构钢:主要用于制作机械零件和工程构件,一般属于低、中碳钢; 碳素工具钢:主要用于制作量具、刃具和模具,一般属于高碳钢。 特殊性能钢:工程中常用的特殊性能钢有耐磨钢、耐热钢、不锈钢等。 此外,钢按冶炼方法不同,可分为转炉钢和电炉钢;按冶炼时脱氧程度的不同,可分为沸腾钢、镇静钢、半镇静和特殊镇静钢等。 一、碳素钢: 含碳量大于0.0218%小于2.11%,且不含特意加入合金元素的铁碳合金,称为碳素钢或非合金钢,简称碳钢。碳素钢具有良好的力学性能和工艺性能,且冶炼方便,价格便宜,故在机械制造、建筑、交通运输等许多工业部门中得到广泛的应用 1.碳素结构钢 碳素结构钢的杂质和非金属夹杂物较多,但冶炼容易,工艺性好,价格便宜,产量大,在性能上能满足一般工程结构及普通零件的要求,因而应用普遍。碳素结构钢

相关主题
文本预览
相关文档 最新文档