当前位置:文档之家› 接触电阻计算 -

接触电阻计算 -

接触电阻计算 -
接触电阻计算 -

接触电阻计算 -

第十四章触头

电路的通断和转换是通过电器中的执行部件,主要是其触头来实现的。触头是有触点电器的执行元件,又是电器中最薄弱的环节,其工作的优劣直接影响到电器的性能。

本章就触头在不同工作状态下出现的主要问题,如接触电阻、振动等,进行一定的分析,找出减少其危害的一些实用方法并对触头的一些基本参数作一介绍。

第一节概述

一、触头的分类

触头作为电器的执行机构,是非常重要的部件,它对电器的工作性能、总体结构、尺寸有着决定性的影响。触头的工作性能和质量直接影响到电器可靠性。触头在正常工作情况下经常要受到机械撞击、电弧等的有害作用,很容易损坏,故它又是有触头电器的一个薄弱环节。

触头可按以下方法分类:

1(按触头工作情况可分为有载开闭和无载开闭两种。前者在触头开断或闭合过程中,允许触头中有电流通过,后者在触头开断或闭合过程中,不允许触头中有电流通过,而在闭合后才允许触头中通过电流,如转换开关等。无载开闭触头,由于触头开断时无载,故无电弧产生,对触头的工作十分有利。

2(按开断点数目可分为单断点式和双断点式触头。

3(接触头正常工作位置可分为常开触头和常闭触头。

4(按结构形状可分为指形触头和桥式触头等。

5(按触头的接触方式可分为面接触、线接触和点接触3种。

二、触头接触面形式

触头接触面形式分为点接触、线接触和面接触3种,如图14—1所示。

图14—1 触头的接触式

(a)点接触;(b)线接触;(c)面接触。

1(点接触

点接触触头是指两个导体只在一点或者很小的面积上发生接触的触头(如球面对球面,球面对平面)。它用于20 A以下的小电流电器,如继电器的触头,接触器和自动开关的联锁触头等。由于接触面积小,保证其工作可靠性所需的接触互压力也较小。

2(线接触

线接触是指两个导体沿着线或较窄的面积发生接触的触头(如圆柱对圆柱、圆柱对平面)。其接触面积和接触压力均适中,常用于几十安至几百安电流的中等容量的电器,如接触器、自动开关及高压开关电器的触头。

触头实现电联接,一般采用触头弹簧压紧,压力较小,并考虑到装配检修的方便和工作可靠,多采用点接触或线接触的形式。在近代高压断路器和低压自动开关中,有的采用多个线接触和点接触并联使用,以减小接触电阻,使得工作可靠,制造检修方便。

3(面接触

面接触头是指两个导体有着较广表面发生接触的触头(如平面对平面)。其接触面积和触头压力均较大,多用于大电流的电器,例如大容量的接触器和断路器的主触头。

为了保证电器可靠工作,对触头有如下要求:工作可靠;有足够的机械强度;长期通过额定电流时,温升不超过规定值;通过短路电流时,有足够的热稳定性和电动稳定性;有足够抵抗外界腐蚀(如氧化、化学气体腐蚀)的能力;寿命长。

三、触头的参数

触头的参数主要有触头的结构尺寸、开距、超程、研距、触头初压力和终压力等。

1(触头的结构尺寸

触头的结构尺寸,主要是根据触头工作时的发热条件确定,同时也要考虑到它的机械强度与工作寿命等条件。

2(触头的开距

触头处于断开位置时,动静触头之间的最小距离S称为触头的开距(或行程),如图14—2所示。触头开距必须保证触头分断电路时能可靠地灭弧,并且有足够的绝缘能力。

从减小电器的尺寸和减小触头闭合时振动的观点出发,在可靠开断电路的原则下,触头开距越小越好。触头开距的大小与开断电流大小、线路电压、线路参数以及灭弧装置等有关。

3(触头的超程

触头的超程是指触头对完全闭合后,如果将静触头移开,动触头在触头弹簧的作用下继续前移的距离厂,如图14—2所示。触头超程是用来保证在触头允许r,(0.6,0.8)t磨损的范围内仍能可靠地接触。一般在计算时选取超程,式中为t新触头的厚度。

图14—2 触头的参数

(a)断开状态;(b)刚接触时;(c)闭合状态。

4.触头的初压力

触头闭合后,其接触处有一定的互压力,称为触头压力。触头压力是由触头弹簧产生的。触头弹簧有一预压缩,使得动触头刚与静触头接触时就有一互压力,称为触头初压力,它是由调节触头弹簧预压缩量来保证的。初压力可以降F0 低触头闭合过程的振动。

5.触头终压力

动、静触头闭合终了时,触头间的接触压力称为终压力。它是由触头弹Fz 簧最终压缩量来决定的。它使触头闭合时的实际接触面积增加,使闭合状态时的接触电阻小而稳定。

6(触头的研距

一般线接触触头的动、静触头开始接触时,其接触线在a点处(见图14—3),在触头闭合过程中,接触线逐渐移动,最后停在b点处接触,以导通工作电流。由于在动触头上的ab和静触头上的a’b’长度不一样,因此,在两者接触过程中,

不仅有相对滚动,而且有相对滑动存在,整个接触过程称为触头的研磨过程。触头的滚动量与滑动量之和称为研距。触头表面有滑动,可以擦除触头表面的氧化层及脏物,减小接触电阻。触头表面有滚动可以使正常工作接触线(最终接触线)和开始接触线(最后分开线)错开,以免电弧烧损正常工作的接触线,保证触头接触良好。

图14—3 触头的研磨过程及研距

触头的开距、超程、初压力和终压力都是必须进行检测的重要参数。在电器的使用和维修中常用这些参数来反映触头的工作情况及检验电器的工作状态。

触头有4种工作情况:

1(触头处于闭合状态

触头处于闭合状态时的主要任务是保证能过规定的电流,且触头温升不超过允许值,主要问题是触头的发热及热和电动稳定性,触头的发热是由接触电阻引起的,故应设法减小接触电阻。

2(触头闭合过程

触头在闭合过程中会因碰撞而产生机械振动,这个过程的主要问题是减小机械振动,从而减小触头的磨损,避免触头熔焊。

3(触头处于断开状态

触头处于断开状态时,必须有足够的开距,以保证可靠地熄灭电弧和开断电路。

4(触头的开断过程

触头开断过程是触头最繁重的工作过程。当触头开断电路时,一般会在触头间产生电弧,

这个过程的主要问题是熄灭电弧,减小由电弧而产生的触头电磨损。

第二节触头的接触电阻

一、接触电阻的产生

—4(a)所示为一段完整的导体,通以电流,用电压表测量出其AB长图14I 度上的电压降为,则AB段导体的电阻力 U

U R,I

图14—4 接触电阻

如果将此导体截断,仍通以原来的电流,测得AB两点之间的电压降为 Uc见图3,4(b),比U大得多,AB两点之间的电阻为 Uc

UcR , cI

R除含有该段导体材料的电阻R外,还有附加电阻,即 Rjc

R,R,R (14—1) cj

称附加电阻R。为接触电阻。动静触头接触时同样也存在接触电阻。

接触电阻包括收缩电阻和表面膜电阻。

1(收缩电阻

接触处的表面无论经过多么细致的加工处理,从微观角度分析,其表面总是凹凸不平的,它们不是整个面积接触,而是只有若干小的突起部分相接触,如图14—5所示,实际接触面积比视在接触面积小得多。当电流通过实际接触面积时,电流只从接触点上通过,在这些接触点附近,迫使电流线发生收缩。由于有效

接触面积(即实际接触面积川。于视在接触面积,由此产生的附加电阻称为收缩电阻。

图14—5 电流线收缩

2、表面膜电阻

由于种种原因,在触头的接触表面上覆盖着一层导电性很差的薄膜,例如金属的氧化物、硫化物等,其导电性很差,也可能是落在接触表面上的灰尘、污物或夹在接触面间的油膜、水膜等,由此而形成的附加电阻,称为表面膜电阻。

表面膜电阻的大小除和膜的种类有关外,还与薄膜的厚度有关,膜越图3,5 电流线收缩厚,电阻越大。

接触电阻与触头材料、触头压力、接触面形式、表面和清洁状况等有关。由于膜电阻难于计算,故接触电阻可用经验公式计算,即

K R, (14—2) jmF

,式中R—触头接触电阻(); j

F—触头压力(N);

—与触头接触形式有关的常数,对于点接触,0.5,0.7,面接触m,1; mm

K—与接触材料、接触表面加工方法、接触面状况有关的常数,见表14—1。

表14—1 当接触表面没有氧化层及污物时,各种触头材料的K值

必须指出,式(14—2)的局限性很大,不能概括各种因素对接触电阻的影响。尤其是触头表面的氧化对K值的影响很大,在表14—1内只给出了触头表面未被氧化时的K值,至于氧化了的材料,其K值远远超过表14—1中给出的数值,它的接触电阻在很大范围内变化。所以,接触电阻的计算实际上是一个很复杂的问题,根据式(14—2)计算出的值只能作参考。在实际应用中,常采用测量接触压降的方法来实测接触电阻值。接触压降是指通过一定电流时,触头电接触处的电压降,即

(14—3) U,IRjj

式中——接触电压降(V); Uj

——通过触头电接触处的电流(A); I

, ——接触电阻()。 Rj

二、影响接触电阻的因素

影响接触电阻的因素有接触压力、触头材料、触头表面情况、接触形式及化学腐蚀等。

1(接触压力的影响

接触压力对接触电阻的影响最大,当接触压力很小时,接触压力微小的变化都会使接触电阻值产生很大的波动。由式(14—2)可知,触头接触电阻与接触压力近似双曲线关系,即接触电阻值在一定的压力范围内是随外施压力F的增大而减小的,如图14—6所示,这是因为在压力作用下,两表面接触处产生弹性变形,压力增大,变形增加,有效接触面也增加收缩电阻减小。而当压力达到一定值后,收缩电阻几乎不变,这是因为材料的弹性变形是有一定限度的,因而接触面积的增加也是有限的,故接触电阻不可能完全消除。

图14—6 接触电阻与接触压力的关系

增大接触压力,可将氧化膜压碎,使膜电阻减小,但压力增大到一定程度后,膜电阻稳定在一个较小的数值。

2(触头材料的影响

触头材料的性质直接影响接触电阻的大小。这些材料的性质包括电阻系数、材料的机械强度和硬度、材料的化学性能等。

材料的电阻系数越近,接触电阻就越小。表14—2给出了电器中常用材料的电阻系数与铜的比较值(铜的电阻系数为1)。

表14—2 常用材料电阻的系数与铜的比较

银的电阻系数小于钢,但银比铜价格贵,所以常采用铜镀银或镶银的办法,以减小接触电阻。

材料的抗压强度越小,在同样接触压力下得到的实际接触面积就越大,接触电阻就越小。采用抗压强度小的材料可以使接触电阻降低,但由于触头本身需要一定的机械强度,因此常在接触连接处,用较软的金属覆盖在硬金属上,以获得较好的性能,例如铜触头搪锡等。

材料越易氧化,就越容易在表面形成氧化膜,如不设法清除,接触电阻就会显著增大。

3(触头温度的影响

触头的接触电阻与它本身的金属电阻一样,也受温度的影响,随着触头温度的升高,接触电阻增加。由试验得知,接触电阻与温度之间的关系式为2,,1RR,,,, (14—4) ,,jj003,,

,R式中——触头在0?时的接触电阻(); j0

——触头材料的电阻温度系数(1/?); ,0

,——触头的温度(?)。

2a触头金属材料的电阻温度系数为,接触电阻的电阻温度系数为,后者a003 1a比前者小,这是由于接触处温度升高后,材料硬度有所降低,使有效接触面03

积增大,以致在温度增加时,接触电阻的增加比金属材料电阻的增加要小一些,这种差别就用它们电阻系数的不同来表示。

应该指出,式(14—4)只对清洁的接触面才正确。实际上,因为温度升高会加剧氧化,所以,温度对接触电阻的影响还要大些。

图14—7 接触电阻与温度的关系

图14,7表示在接触压力不变的情况下,接触电阻与触头温度的关系曲R,j 线。曲线上的接触压力比曲线2的接触压力小,故接触电阻大。

在 B点以前足与d的关系由式(3,4)决定,接触电阻随温度的升高而增加。当温度达到B点时,为250,400?,材料软化,实际接触面积增大,接, 触电阻有迅速减小的现象。这时,触头材料的机械强度突减,触头遭到破坏,这是不允许的,这种情况可能发生在触头通过较长时间短路电流的故障状态。

当材料的强度稳定下来后,接触电阻又随温度的增高而增大。当温度达到C点时,材料熔化,接触处就会熔焊在一起,触头难以分离,电器不能正常工作。因此,触头的温升不

允许超过允许值。

4(触头表面情况的影响

(1)触头表面加工方法的影响

表面粗糙度对接触电阻有一定的影响。接触表面可以粗加工,也可以精加工。至于采用哪种方式加工更好,要根据负荷大小、接触形式和用途而定。

对于大、中电流的触头表面,不要求精加工,最好用挫刀加工,接触面达

即可,重要的是平整。两个平整而较粗糙的平面接触在一起,接触R,6.3~1.6a 点数目较多且稳定,并能有效地清除氧化膜。相反,精加工的表面,当装配稍有歪斜时,接触点的数目显著减小。

对于某些小功率电器,触头电流小到毫安以下,为了保证小而稳定,要Rj求

触头表面粗糙度越低越好。粗糙度低的触头不易受污染,也不易生成膜电阻。为了达到这样低的粗糙度,往往采用机械、电工化学抛光等工艺。

(2)触头表面氧化膜的影响

暴露在空气中的接触面(除铂和金外)都将产生氧化作用。空气中的铜触头在室温下(20,30? )即开始氧化,但其氧化膜很薄,在触头彼此压紧的过程中就被破坏,故对接触电阻影响不大。当温度高于70?时,铜触头氧化加剧,氧化铜的导电

性能很差,使膜电阻急剧增加,因此,铜触头的允许温升都是很低的。银被氧化后的导电与纯银差不多,所以银或镀银的触头工作很稳定。

为了减小接触面的氧化,可以将触头表面搪锡或镀银,以获得较稳定的接触电阻。

(3)触头表面清洁状况的影响

当触头的压力较小时,触头表面的清洁度对接触电阻影响较大,随着压力的增加,这种影响逐渐减小。

5(触头表面的电化学腐蚀

采用不同的金属作触头对时,由于两金属接触处有电位差,当湿度大时,在触头对的接处会发生电解作用,引起触头的电化学腐蚀,使接触电阻增加。

常用金属材料的电化顺序是金(Au)、铂(Pt)、银(Ag)、铜(Cu)、氢(H)、锡(Sn)、镍(Ni)、锅(Cd)、铁(Fe)、铬(Cr)、锌(Zn)、铝(AL)。规定氢的电化电位为0,在它后面的金属具有不同的负电位(如 AL的电化电位为—1.34 V),在它前面的金属具有不同的正电位(如 Ag的电化电位为十0.8 V)。选取触头对时,应取电化顺序中位置靠近的金属,以减小化学电势。例如不宜采用铝—铜、钢—铜做触头对。电镀层或涂层也要注意电化顺序。

三、减小接触电阻的方法

根据接触电阻的形成原因,减小接触电阻一般可采用下列方法:

1.增加接触点数目。为此,应选择适当的接触形式,用适当的方法加工接触表面,并在接触处加一定的压力。

2.采用本身电阻系数小,且不易氧化或氧化膜电阻较小的材料作为接触导体,或作为接触面的覆盖层。

3.触头在开闭过程中应具有研磨过程,以擦去氧化膜。

第三节触头的振动

一、产生振动的原因

触头在闭合过程中,触头间的碰撞、触头间的电动斥力和衔铁与铁心的碰撞都可能引起触头的机械振动。

图14—8 触头振动过程示意图

(a)触头碰撞开始瞬间;(b)触头碰撞后瞬间;(c)触头振动变化过程。

1—静触头;2—动触头;3—触头弹簧;4—动触头支架;

—塑性和弹性变形量;—弹性变形量;—最大振幅。

当触头闭合时,电器传动机构的力直接作用在动触头支架上,使得质量为m的动触头以速度v向静触头运动,在动、静触头相撞时动触头具有一定的动能1 12,已如图3,8(a)所示。触头发生碰撞后,触头表面将产生弹性变形,mv12 此时,一部分能量消耗在碰撞过程中(因为触头不是绝对弹性体),而大部分能量转变为触头表面材料的变形势能。当触头表面达到最大变形时[见图

3,8xSD(b)],变形势能达到最大,而动触头的动能降为零,于是动触头停止向前运动。紧接着触头的弹性变形开始恢复,将势能释放,由于静触头固定不动,动触头应会受到反力作用,以初速度弹[见图3,8(b) ],甚至离开静触头,并把触头弹v2 簧压缩,将动能储存在弹簧中,在触头弹簧的作用下,动触头反跳的速度逐渐减小。与此同时,传动机构继续推动触头支架将弹簧进一步压缩。当动触头反跳的速度降为零时,反跳距离达到最大值[见图3,8(c)]。随后,动触头在弹簧xm 张力的作用下又开始向静触头运动,触头间发生第二次碰撞和反跳。

由于触头第一次碰撞和反跳都要消耗掉一部分能量,同时,在碰撞和反跳的过程中,传动机构使触头弹簧进一步压缩,因而动触头的振动时间和振幅一次比一次要小,直至振动停止,触头完全闭合[见图3,8(d)]。

另外,在触头带电接通时,由于实际接触的只有几个点,在接触点处便产生电流线的密集或弯曲,如图14—9所示。畸变的电流线和通过反向电流的平行导体一样,相互作用产生斥力,使触头趋于分离,该电动力称为收缩电动力。收缩电动力也能引起触头间的振动,特别是在闭合大的工作电流或短路电流时,电动斥力的作用更为显著。

图14—9 接触点电流线密集情况示意图

对于电磁传动的电器来讲,在触头闭合过程中,衔铁以一定的速度向静铁心运动,当街铁吸合时,同样会因碰撞而产生振动,以致触头又发生第二次振动。

在触头振动过程中(见图14—8),如果,则碰撞后触头不会分离,x,xmD

这样的振动不会产生电弧,对触头无害,因而称之为无害振动。反之,若,x,xmD则碰撞后动静触头分离,形成断开电路的气隙,在触头间产生电弧,严重影响触头寿命,故称之为有害振动。两个触头在闭合时发生碰撞产生振动是不可避免的,所谓消除触头闭合过程中的振动,是指消除触头的有害振动。

二、减小振动的方法

为了提高触头的使用寿命,必须减小触头的振动。减小触头振动有如下几种方法:

1 使触头具有一定的初压力。增大初压力可减小触头反跳时的振幅和振动时间。但初压力增大是有限的,如果初压力超过了传动机构的作用力(例如电磁机构的吸力),则不仅触头反跳的距离增加,而且触头也不能可靠地闭合,反而造成触头磨损增加。

122 降低动触头的闭合速度,以减小碰撞动能。由实验可知,减小触头mv12 闭合瞬间的速度可减小触头振动的振幅。这要求吸力特性和反力特性良好配合。需要指出的是,当触头回路电压高于300 V时,若闭合速度过小,则在动、静触头靠近时,触头间隙会击穿形成电弧,反而会引起电磨损的增加。

3 减小动触头的质量,以减小碰撞动能,从而减小触头的振幅。但是,在减小触头质量时必须考虑触头的机械强度,散热面积等问题。

4 对于电磁式电器,减小衔铁和静铁心碰撞时引起的磁系统的振动,以减小触头的二次振动。其方法是吸力特性与反力特性有良好的配合及铁心具有缓冲装置。

三、熔焊的概念

触头的熔焊主要发生在触头闭合有载电路的过程中和触头处于闭合状态时。

在触头闭合过程中,触头的机械振动使触头间断产生电弧,在电弧高温的作用下,使触头表面金属熔化,当触头最终闭合时,这些熔化金属可能凝结而引起熔接,使动、静触头熔焊在一起不能打开。

在触头处于闭合状态时,若通过过大的电流,会使触头接触处温度升高,如果达到了熔化温度,两触头接触处的材料便熔化并结合在一起,使接触电阻迅速下降,其损耗和温度都下降,熔化的金属可能凝结而引起熔接。

这种由热效应而引起的触头熔接,称为触头的“熔焊”。

还有一种触头熔接现象,产生于常温状态,通常称为“冷焊”。“冷焊”常常发在用贵金属材料(如金与金合金等)制成的小型继电器触点中。其原因为贵金属表面不易形成氧化膜,纯净的金属接触面在触头压力作用下,由于金属原子间化学亲

和力的作用,使两个触头表面结合在一起,产生“冷焊”现象。由“冷焊”产生的触头间粘接力很小,但是在小型高灵敏继电器中,由于使触头分开的力也,29.8,10很小(一般小于N),不能把冷焊粘接在一起的触点弹开,常常出现触头粘住不释放的现象。

第四节触头的磨损

一、触头磨损的原因

触头在多次接通和断开有载电路后,它的接触表面将逐渐产生磨耗和损坏,这种现象称为触头的磨损。触头磨损达到一定程度后,其工作性能便不能保证,此时,触头的寿命即告终结。继电器和接触器的电寿命主要取决于触头的寿命。

触头磨损包括机械磨损、化学磨损和电磨损。机械磨损是在触头闭合和打开时研磨和机械碰撞所造成的,它使得触头接触面产生压皱、裂痕或塑性变形和磨损。化学磨损是由于周围介质中的腐蚀性气体或蒸汽对触头材料浸蚀所造成的,它使得触头表面形成非导电性薄膜,致使接触电阻变大,且不稳定,甚至完全破坏了触头的导电性能。这种非导电性薄膜在触头相互碰撞及触头压力作用下,逐渐剥落,形成金属材料的损耗。机械磨损和化学磨损一般很小,约占全部磨损的 10,以下。

触头的磨损主要取决于电磨损。电磨损主要发生在触头的闭合和开断过程中,在触头闭合电流时产生的电磨损,主要是由于触头碰撞引起的振动所产生的,在触头开断电流时所产生的电磨损,是由高温电弧所造成的。

二、触头电磨损的形式

触头在分断与闭合电路过程中,在触头间隙中产生金属液桥、电弧和火花放电等各种现象,引起触头材料的金属转移、喷溅和汽化,使触头材料损耗和变形,这种现象称为触头的电磨损。电磨损直接影响电器的寿命。

触头的电磨损形式主要有两种,即液桥的金属转移和电弧的烧损。

1(液桥的形成和金属转移

触头在开断过程中,动、静头间将形成熔化的液态金属桥,简称液桥。触头开断时,在从触头完全闭合到触头刚开始分离的时间内,先是触头的接触压力和接触点数目逐渐减小,接触电阻越来越大,这样就使接触点的电流密度急剧增加,由此产生的热量促使接触处的金属熔化,形成所谓的金属液体滴。触头继续断开时,将金属液体滴拉长,形成液桥。由于温度沿液桥的长度分布不对称,且其最大值是发生在靠近阳极的地方,因此,使金属熔液由阳极转移到阴极。实践证明,由于液桥的金属转移作用,经过很多次的操作后,触头的阳极因金属损耗而形成凹坑,阴极则因金属增多而形成针刺,凸出于接触表面。

在弱电流电器(如继电器)中,液桥对触头的电磨损有着重要的影响。

2(电弧对触头的腐蚀

电弧对触头的腐蚀十分严重,电弧磨损要比液桥引起的金属转移高出5,10 倍。当电弧的温度极高,触头间距离又较大,一般都有电动力吹弧,再加上强烈的金属蒸气热浪冲击,往往把液态金属从触头表面吹出,向四周飞溅。这种磨损与小功率电弧的磨损是不同的,金属蒸气再度沉积于触头接触表面上的机率已大大减小,使触头阴、阳极都遭到严重磨损,由于阳极温度高于阴极,所以阳极磨损更为严重。

三、减小电磨损的方法

减小触头的电磨损,提高触头的寿命,一般可从两方面着手,即减小触头在开断过程中的磨损和减小触头在闭合过程中的磨损。

1(减小触头开断过程中的磨损,即减小触头在开断时的电弧,其方法如下:

(1)选择灭弧系统的参数,例如磁吹的磁感应强度B。B值过小,吹弧电动力小,电弧在触头上停留时间较长,触头的电磨损增加山值过大,吹弧电动力过大,

会把触头间熔化的金属液桥吹走,电磨损也增加,因此,有一个最佳的B值,在该值下电磨损最小。

(2)对于交流电器(如交流接触器)宜采用去离子栅灭弧系统,利用交流电流通过自然零点时不再重燃而熄弧,减小触头的电磨损。

(3)采用熄灭火花的电路,以减小触头的电磨损。这种方法就是在弱电流触头电路中,在触头上并联电阻、电容,以熄灭触头上的火花。这种火花熄灭电路对开断小功率直流电路很有效。

(4)正确选用触头材料。例如,钨、钢的熔点和气化点高,因此,钨、铂及其合金具有良好的抗磨损特性,银、铜的熔点与气化点低,其抗磨损性较差。

2(减小触头闭合时的磨损

触头闭合时的磨损主要是由于触头在闭合过程中的振动所引起的,因此,为了减小触头的电磨损,必须减小触头的机械振动,其方法见本章第三节。

第五节触头材料

触头所采用的材料关系到触头工作的可靠性,尤其是对触头磨损影响甚大。根据各种电器的任务和使用条件的不同,对触头材料性能的要求亦不同,一般要求如下:

(1)电气性能:要求材料本身的电阻系数小,接触电阻小且在长期工作中能保持稳定。要求生弧的最小电流大和最小电压高,电子逸出功及游离电位大。

(2)热性能:要求熔点高,导热性好,热容量大。

(3)机械性能:要有适当的强度和硬度,耐磨性好。

(4)化学性能:要具有很好的化学稳定性,在常温下不易氧化,或者氧化物的电阻尽量小,耐腐蚀。

此外,还要考虑材料的可加工性能好,价格便宜,经济适用。但实际上是不可能同时满足以上各项要求的,而只能根据触头的工作条件及负荷的大小,满足其主要的性能要求。

触头材料分为3大类,即纯金属、合金和金属陶冶材料。

一、纯金属材料

(1)银:银是高质量的触头材料,具有高的导电和导热性能。银在常温下不易氧化,其氧化膜能导电,在高温下易分解还原成金属银。银的硫化物电阻率很高,在高温时也进行分解。因此,银触头能自动清除氧化物,接触电阻低且稳定,允许温度较高。银的缺点是熔点低,硬度小,不耐磨。由于银的价格高,一般仅用于继电器和小功率接触器的触头或用于接触零件的电镀覆盖层。

(2)铜:铜是广泛使用的触头材料,导电和导热性能仅次于银。铜的硬度较大,熔点较高,易加工,价格较低。铜的缺点是易氧化,其氧化膜的导电性很差,当长时间处于较高的环境温度下,氧化膜不断加厚,使接触电阻成倍增长,甚至会使电流通路中断。因此,铜不适用于作非频繁操作电器的触头材料,对于频繁操作的接触器,电流大于 150 A时,氧化膜在电弧高温作用下分解,可采用钢触头,并做成单断点指式触头,在触头分、合过程中有研磨过程,以清除氧化铜薄膜。

(3)铂:铂是贵金属,化学性能稳定,在空气中既不生成氧化物,也不生成硫化物,接触电阻非常稳定,有很高的生弧极限,不易生弧,工艺性好。铂的缺点是导电和导热性能差,硬度低,价格昂贵。因此,不采用纯铂作为触头材料,一般用铂的合金作小功率继电器的触头。

(4)钨:钨的熔点高,硬度大,耐电弧,钨触头在工作过程中几乎不会产生熔焊。但是,钨的导电性能较差,接触电阻大,易氧化,特别是与塑料等有机化合物蒸气作用(例如在封闭塑料外壳内的钨触头),生成透明的绝缘表面膜,而且此膜不易清除,加工困难。因此,除少数特殊场合(如火花放电间隙的电极)

外,一般不采用纯钨做触头材料,而与其他高导电材料制成陶冶材料。

二、合金材料

由于纯金属本身性能的差异,将它们以不同的成分相配合,构成金属合金或金属陶冶材料,使触头的工作性能得以改进。

常用的合金材料有银铜、银钨、把铜、把铱等。

(1)银铜合金:适当提高银铜合金的含铜量,可提高其硬度和耐磨性能。但是,含铜量不宜过高,否则,会和铜一样易于氧化,接触电阻不稳定。银铜合金熔点低,一般不用作触头材料,主要用作焊接触头的银焊料。

2)银钨和把铜:银钨和把铜都有较高的硬度,比较耐磨,抗熔焊。有时(

用于小功率电器及精密仪器仪表中。

(3)把铱合金肥铱合金使用较广泛,铱有效地提高了合金的硬度、强度及抗腐蚀能力。

三、金属陶冶材料

金属陶冶材料是由两种或两种以上的彼此不相熔合的金属组成的机械混合物,其中一种金属有很高的导电性(如银、铜等),作为材料中的填料,称为导电相,另一种金属有很高的熔点和硬度(如钨、镍、铝、氧化铝等),在电弧的高温作用下不易变形的熔化,称为耐熔相,这类金属在触头材料中起着骨架的作用。这样,就保持了两种材料的优点,克服了各自的缺点,是比较理想的触头材料。

常用的金属陶冶材料有银一氧化铝、银一氧化钢、银一钨、银一石墨等。

(1)银一氧化镉:导电性能和导热性能好,抗熔焊,耐电磨损,接触电阻低且稳定,特别是在高温电弧的作用下,氧化钢分解为氧气和钢蒸气,能驱使电弧支点迅速移动,有利于吹灭电弧,故称银一氧化钢触头具有一定的自灭弧能力。此外,它的可塑性好,且易于加工。因此,它是一种较为理想的触头材料,广泛用于大、中容量的电器中。

电阻件检验规范(含表格)

电阻件检验规范 (IATF16949-2016/ISO9001-2015) 1.0目的: 1.1确保生产所需电阻材料均能正确检验,以确认其符合品质要求。 2.0范围: 2.1本公司电阻材料包括贴片电阻、炭膜电阻等各类电阻。 2.2 电阻材料入料检验和制程材料确认。 3.0职责: 3.1仓库:负责确认进料物料的相关资料、产品的相关核对及物料送检、保存动作。 3.2品管部:负责对进料进行检验判定、资料分发及品质资料存档。 3.3资材部:负责供应商异常情况联络,品管检验不良品跟进处理。 4.0名词定义: 4.1IQC:进料品质检验 4.2 SQE:供应商品质工程师 5.0步骤: 5.1 抽样方式依《检验抽样管理规范》进行抽样。 5.2 检验注意事项: 5.2.1 核对有无公司零件图或物料承认书及首件样品,若无则不予验收。 5.2.2 尺寸规格依据物料承认书或公司零件图中之数据;尺寸检验合格时,记录于报告中;若有尺寸检验不合格时,将重点检验不合格数据全部记录于检验

表单中。 5.2.3 检验项目为本公司设备,治具,能力所无法验证之部分的物料,则依供应商之出厂检验报告为保证依据。 5.2.4 一般检验依5.3之项目执行,若有特殊项目或标准则依特殊要求检验,检验的记录则填写于备注栏,或附件中。 5.3 常规的检验项目: 注: 1.每批检验须有记录,其它各项在有异常需要时备注或附上相关记录。 2.尺寸规格依据物料承认书或公司零件图中之数据保持二位小数取得,其公差不变;尺寸检验合格时,将实测的最大值与最小值记录于报告中,若有尺寸检验不合格时,将重点检验不合格数据全部记录于检验表单中。 3.对于外观:全部内容都需要检验到位,记录3~5个重要方面即可。 4.检验项目为本公司设备、治具,能力所无法验证之部分的物料,则依供应商之出厂检验报告为保证依据。 5.一般检验依5.3之项目执行,若有特殊项目或标准则依特殊要求检验,检验之记录则填写于备注栏或附件中。

连接器接触电阻

连接器接触电阻 不论是高频电连接器,还是低频电连接器,接触电阻、绝缘电阻和介质耐压(又称抗电强度)都是保证电连接器能正常可靠地工作的最基本的电气参数。通常在电连接器产品技术条件的质量一致性检验A、B组常规交收检验项目中都列有明确的技术指标要求和试验方法。这三个检验项目也是用户判别电连接器质量和可靠性优劣的重要依据。但根据多年来从事电连接器检验的实践发现;目前各生产厂之间以及生产厂和使用厂之间,在具体执行有关技术条件时尚存在许多不一致和差异,往往由于采用的仪器、测试工装、操作方法、样品处理和环境条件等因素的不同,直接影响到检验结果的准确性和一致性。为此,针对目前这三个常规电性能检验项目在实际操作中存在的问题进行一些专题研讨,对提高电连接器检验可靠性是十分有益的。 另外,随着电子信息技术的迅猛发展,新一代的多功能自动检测仪正在逐步替代原有的单参数测试仪。这些新型测试仪器的应用必将大大提高电性能的检测速度、效率和准确可靠性。 2.1 作用原理 在显微镜下观察连接器接触件的表面,尽管镀金层十分光滑,则仍能观察到5-10微米的凸起部分。会看到插合的一对接触件的接触,并不是整个接触面的接触,而是散布在接触面上一些点的接触。实际接触面必然小于理论接触面。根据表面光滑程度及接触压力大小,两者差距有的可达几千倍。实际接触面可分为两部分;一是真正金属与金属直接接触部分。即金属间无过渡电阻的接触微点,亦称接触斑点,它是由接触压力或热作用破坏界面膜后形成的。这部分约占实际接触面积的 5-10%。二是通过接触界面污染薄膜后相互接触的部分。因为任何金属都有返回原氧化物状态的倾向。实际上,在大气中不存在真正洁净的金属表面,即使很洁净的金属表面,一旦暴露在大气中,便会很快生成几微米的初期氧化膜层。例如铜只要2-3分钟,镍约30分钟,铝仅需2-3秒钟,其表面便可形成厚度约2微米的氧化膜层。即使特别稳定的贵金属金,由于它的表面能较高,其表面也会形成一层有机气体吸附膜。此外,大气中的尘埃等也会在接触件表面形成沉积膜。因而,从微观分析任何接触面都是一个污染面。 综上所述,真正接触电阻应由以下几部分组成; 1) 集中电阻 电流通过实际接触面时,由于电流线收缩(或称集中)显示出来的电阻。将其称为集中电阻或收缩电阻。 2) 膜层电阻 由于接触表面膜层及其他污染物所构成的膜层电阻。从接触表面状态分析;表面污染膜可分为较坚实的薄膜层和较松散的杂质污染层。故确切地说,也可把膜层电阻称为界面电阻。 3) 导体电阻

接地网电阻计算公式

接地网电阻计算公式 三维方法设计变电站的接地电阻 陈光辉1 江建武2 (1 深圳市长科防雷技术有限公司,深圳) (2 深圳供电局变电部,深圳) 【摘要】用三维方法设计变电站的接地电阻,可使接地电阻比传统设计更加准确,结合现有国内外接地新材料.新技术,新 工艺,可使变电站接地网接地电阻达到最佳效果 【关键词】三维地网设计、新材料,新工艺施工。 前言 目前,由于征地等原因,变电所的占地面积越来越小,有的GIS 室内型110kV 变电站占地面积仅有1500m2, 且大部分建在山上,这些地方往往电阻率很高,欲在这样的地方不扩网、不外引,在原地使其工频接地电阻达到 规程要求标准,用常规方法很难实现。我公司在实践过程中,采用三维方法设计,即A-T-N 方案,成功解决了 土壤电阻率300Ωm,占地面积为5000m2 情况下的接地电阻R≤0.5Ω的国家规定标准。 1 A 方案 用常规的方法实现工频接接地电阻RA,主要是用于解决地网的电位分布均匀,均衡最大值下的冲击电压,以 及降低水平网的工频接地电阻,它可以利用工地的自然接地体,如建筑物、自来水管等来完成网格式接地网的接 地电阻,它是在不扩网、不外引、不使用任何降阻剂的情况下计算出的工频接地阻抗值,计算公式采用部颁《交流 电气装置的接地》[1]有关规定的公式进行。 a e R a R 1 = (1) 1 3ln 0 0.2 L S S L a ? ?? ? ? ?? ? = ?(2) ?? ? ??= + + ? ? B

hd S L B S Re 5 9 ln 2 0.213 (1 ) π ρρ (3) S h B 1 4.6 1 + = (4) 式中:Ra—任意形状边缘闭合接地网的接地电阻(Ω); Re—等值(即等面积、等水平接地极总长度)方形接地网的接地电阻(Ω); S—接地网的总面积(m2); d—水平接地极的直径或等效直径(m); h—水平接地极的埋设深度(m); LO—-接地网的外缘边线总长度(m); L—水平接地极的总长度(m)。 简化后的计算方法: S R a ′ = 0.5ρ(5) 式中:ρ—土壤电阻率(Ωm); S—地网面积(m2)。 上式公式中, a R 和土壤电阻率ρ成正比,和地网占地面积S 成反比。如果取p=300Ωm,欲达到R=0.5Ω面 积S 则必须达到90000m2。 在正方型接地网中,当网格数超过16 个时,基本(1)式=(5)式;当网格数少于16 个时,a R > R′a 。 日本川漱太朗公式为: ?? ? ?? ? + ? ′

高频连接器设计必看

电缆的阻抗 本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。 什么是电缆的阻抗,什么时候用到它? 首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。这时该轮到电缆阻抗和传输线理论粉墨登场了。传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。 电缆阻抗是如何定义的? 电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。(伏特/米)/(安培/米)=欧姆 欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立: Z = E / I 无论是直流或者是交流的情况下,这个关系都保持成立。 特性阻抗一般写作Z0(Z零)。如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。所以特性阻抗由下面的公式定义: Z0 = E / I 电压和电流是有电缆中的感抗和容抗共同决定的。所以特性阻抗公式可以被写成后面这个形式: 其中 R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆 G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆 j=只是个符号,指明本项有一个+90'的相位角(虚数) π=3.1416 L=单位长度电缆的电感量 c=单位长度电缆的电容量 注:线圈的感抗等于XL=2πfL,电容的容抗等于XC=1/2πfL。从公式看出,特性阻抗正比于电缆的感抗和容抗的平方根。 对于电缆一般所使用的绝缘材料来说,和2πfc相比,G微不足道可以忽略。在低频情况,和R 相比2πfL微不足道可以忽略,所以在低频时,可以使用下面的等式: 注:原文这里是Zo = sqrt ( R / (j * 2 * pi * f * L)) 应该是有个笔误。阻抗不应该是反比于感抗.实际上低频时应该是电阻和容抗占主导地位。 如果电容不跟随频率变化,则Z0和频率的平方根成反比关系,在接近直流的状态下有一个-45'的相位角,当频率增加相位角逐渐减少到0'。 当频率上升时,聚氯乙烯和橡胶材料会稍微降低电容,但聚乙烯,聚丙烯,特氟纶(聚四氟乙烯)的变化不大。 当频率提高到一定程度(f足够大),公式中包含f的两项变的很大,这时候R和G可能可以被忽略。等式成为

接触电阻

接触电阻 ----“接触对”导体件呈现的电阻成为接触电阻。 一般要求接触电阻在10-20 mohm以下。有的开关则要求在100-500uohm以下。有些电路对接触电阻的变化很敏感。应该指出,开关的接触电阻是在开关在若干次的接触中的所允许的接触电阻的最大值。 Contact Area 接触电阻 在电路板上是专指金手指与连接器之接触点,当电流通过时所呈现的电阻之谓。为了减少金属表面氧化物的生成,通常阳性的金手指部份,及连接器的阴性卡夹子皆需镀以金属,以抑抵其“接载电阻”的发生。其他电器品的插头挤入插座中,或导针与其接座间也都有接触电阻存在。 作用原理 在显微镜下观察连接器接触件的表面,尽管镀金层十分光滑,则仍能观察到 5-10微米的凸起部分。会看到插合的一对接触件的接触,并不整个接触面的接触,而是散布在接触面上一些点的接触。实际接触面必然小于理论接触面。根据表面光滑程度及接触压力大小,两者差距有的可达几千倍。实际接触面可分为两部分;一是真正金属与金属直接接触部分。即金属间无过渡电阻的接触微点,亦称接触斑点,它是由接触压力或热作用破坏界面膜后形成的。部分约占实际接触面积的5-10%。二是通过接触界面污染薄膜后相互接触的部分。因为任何金属都有返回原氧化物状态的倾向。实际上,在大气中不存在真正洁净的金属表面,即使很洁净的金属表面,一旦暴露在大气中,便会很快生成几微米的初期氧化膜层。例如铜只要2-3分钟,镍约30分钟,铝仅需2-3秒钟,其表面便可形成厚度约2微米的氧化膜层。即使特别稳定的贵金属金,由于它的表面能较高,其表面也会形成一层有机气体吸附膜。此外,大气中的尘埃等也会在接触件表面形成沉积膜。因而,从微观分析任何接触面都是一个污染面。 综上所述,真正接触电阻应由以下几部分组成; 1) 集中电阻 电流通过实际接触面时,由于电流线收缩(或称集中)显示出来的电阻。将其称为集中电阻或收缩电阻。 2) 膜层电阻 由于接触表面膜层及其他污染物所构成的膜层电阻。从接触表面状态分析;表面污染膜可分为较坚实的薄膜层和较松散的杂质污染层。故确切地说,也可把膜层电阻称为界面电阻。 3) 导体电阻 实际测量电连接器接触件的接触电阻时,都是在接点引出端进行的,故实际测得的接触电阻还包含接触表面以外接触件和引出导线本身的导体电阻。导体电阻主

电阻焊检查标准 (1)

HES E 001-05 电 阻 焊 检 查 标 准

1.概述 此项标准明确了强度等级260~980MPa且厚度不大于4.0mm(*1)的钢板点焊(包括连续缝焊和滚动焊)的外观检查方法及标准,也适用于强度等级在260~270MPa(*2)的普碳钢板的凸焊和缝焊。 备注: (*1)汽车用热轧钢板及带钢参照HES C 051,汽车用冷扎钢板及带钢参照HES C 052,汽车用热浸镀锌钢板及带钢参照HES C 071。 (*2)该标准适用于含碳量<0.15%的普碳钢,包括表面处理钢板,例如镀锌钢板和防锈钢板。 说明: 此标准中采用的单位和数值的表示方法参照的是国际单位体系(SI),用{}特殊标注的数值是指经验值。 2.分类及标注方法 每个组成部件和分总称分为A、B、C三个强度等级和a、b、c三个外观等级,该标准应该在接收标准,量产检查标准、以及作业标准中明确。 2.1强度等级分类 完成车以及零部件根据结构强度分为A、B、C三个等级。 2.2外观等级分类 完成车中对外观有要求的部分分成如表1所示的三个等级。 2.3标准方法 当对强度和外观都有等级要求时,分类及标注方法如表2所示。如果不要求标注外观等级,则应该仅对强度进行标注。但是,在这种情况下对外部缺陷的要求应参照4.3部分。 表2 3.试片 3.1点焊试片 点焊试片参照标注JIS Z 3136。

3.2凸焊试片 用于断面检查的试片应该使用产品的形状,用于剪切应力检查的试片应该采用图1所示的形状,凸焊的各个尺寸要求参照HES A 1018。 表3 备注: 1.上图是一个环形焊缝的例子。检测时必须在试片上固定一个支撑(图中阴影部分所使用的材料及厚度需要可以抵抗所施加的拉力)。固定时需要注意固定的位置及方法(如果采用点焊固定,就要注意由于焊接热应力产生的扭曲)。 2.当不同板厚和材质的板材结合时,试片的尺寸标准应该以(材料强度)×(板厚)值较小的板材为参照。如果为三层板或者是多层板结合,试片的尺寸标准应参照两个承载的板材。 3.3缝焊试片 试片的形状如图1所示,沿着标记线进行切割。对密闭性有要求的试片形状如图2所示。 图1

绝缘电阻的正确测量方法及标准

绝缘电阻的正确测量方法 一、测试内容施工现场主要测试电气设备、设施和动力、照明线路的绝缘电阻。 二、测试仪器 测试设备或线路的绝缘电阻必须使用兆欧表(摇表),不能用万用表来测试。兆欧表是一种具有高电压而且使用方便的测试大电阻的指示仪表。它的刻度尺的单位是兆欧,用ΜΩ表示。在实际工作中,需根据被测对象来选择不同电压等级和阻值测量范围的仪表。而兆欧表测量范围的选用原则是:测量范围不能过多超出被测绝缘电阻值,避免产生较大误差。施工现场上一般是测量500V以下的电气设备或线路的绝缘电阻。因此大多选用500V,阻值测量范围0----250ΜΩ的兆欧表。兆欧表有三个接线柱:即L(线路)、E(接地)、G(屏蔽),这三个接线柱按测量对象不同来选用。 三、测试方法 1、照明、动力线路绝缘电阻测试方法线路绝缘电阻在测试中可以得到相对相、相对地六组数据。首先切断电源,分次接好线路,按顺时针方向转动兆欧表的发电机摇把,使发电机转子发出的电压供测量使用。摇把的转速应由慢至快,待调速器发生滑动时,要保证转速均匀稳定,不要时快时慢,以免测量不准确。一般兆欧表转速达每分钟120转左右时,发电机就达到额定输出电压。当发电机转速稳定后,表盘上的指针也稳定下来,这时指针读数即为所测得的绝缘电阻值。测量电缆的绝缘电阻时,为了消除线芯绝缘层表面漏电所引起的测量误差,其接线方法除了使用“L”和“E”接线柱外,还需用屏蔽接线柱“G”。将“G”接线柱接至电缆绝

缘纸上。 2、电气设备、设施绝缘电阻测试方法首先断开电源,对三相异步电动机定子绕组测三相绕组对外壳(即相对地)及三相绕组之间的绝缘电阻。摇测三相异步电动机转子绕组测相对相。测相对地时“E”测试线接电动机外壳,“L”测试线接三相绕组。即三相绕组对外壳一次摇成;若不合格时则拆开单相分别摇测;测相对相时,应将相间联片取下。 四、绝缘电阻值测试标准 绝缘阻值判断 (1)、所测绝缘电阻应等于或大于一般容许的数值,各种电器的具体规定不一样,最低限值: 低压设备0.5MΩ, 3-10KV 300MΩ、 20-35KV为400MΩ、 63-220KV为800MΩ、 500KV为3000MΩ。 1、现场新装的低压线路和大修后的用电设备绝缘电阻应不小于0.5ΜΩ。 2、运行中的线路,要求可降至不小于每伏1000Ω=0.001MΩ,每千伏1 MΩ。 3、三相鼠笼异步电动机绝缘电阻不得小于0.5ΜΩ。 4、三相绕线式异步电动机的定子绝缘电阻值热态应大于0.5ΜΩ、冷态应大于2ΜΩ,转子绝缘电阻值热态应大于0.15ΜΩ、冷态应大于0.8ΜΩ。

(完整版)接触电阻

接触电阻 接触电阻产生的原因有两个:第一,由于接触面的凹凸不平,金属的实际接触面减小了,这样,当电流流过导体时,使电流线在接触面附近发生了严重的收缩现象,即在接触面附近导体有效的导电截面大大缩小,因而造成电阻的增加,这个电阻称为收缩电阻。第二,接触面在空气中可能迅速形成一层导电性能很差的氧化膜附着于表面,也使电阻增大了,这部分电阻称为膜电阻。因此,接触电阻是由收缩电阻和膜电阻组成。 导体的接触形式大体分为点接触,线接触和面接触,这几种接触形式对接触电阻的影响是不相同的。点接触时对接触电阻的影响主要是收缩电阻大,而面接触时对接触电阻的影响则是膜电阻,线电阻介于两者之间。因而,接触电阻的大小不仅取决于收缩电阻,还有膜电阻的影响。而接触压力对接触电阻的影响是十分重要的,没有足够的压力,只靠加大接触面,并不能使接触电阻有明显的下降。增加接触压力,可以增加接触点的有效接触面积,同时,当接触点的压强超过一定值时,可以使触点的材料产生塑性变形,表面膜被压碎出现裂缝,增大了金属的接触面,使接触电阻迅速下降,因此,加大接触压力,使收缩电阻和膜电阻都减小,总的接触电阻将减小。 除了以上影响接触电阻的因素以外,还有材料的性质,接触表面的加工情况,触点的密封情况等等都会对接触电阻产生影响。因此,我们在日常维护和排除线路故障的时候,也要充分考虑接触电阻的影响。 我们经常在排除线路故障时会发现由于插头的腐蚀,在插钉表面就会形成一层无机膜或插钉变形,导致插钉的接触电阻增大,发生故障。因此,我们在对插头进行施工或维护时,一定要严格按照维护手册的标准进行。在安装插头时,应该仔细检查插头与插座内的插钉,不能有破损,弯曲,腐蚀等情况,也不要人为的去破坏插头的封严部分,对于特殊区域的插头要采取特殊的防护,比如对插头进行封严等。对于某些工作环境比较恶劣的地方,如发动机本体上的插头,在安装时一定要注意,要对插头进行保险,一些特殊的插头一定要按照标准打好力矩,否则插头在发动机的高频振动下会松脱,有的会使插头内的插钉接触不良,造成跳火,灼伤插钉,使之工作不可靠和缩短使用期限。 接触电阻: 触点有四种工作状态,即:闭合状态、断开过程、断开状态、闭合过程。 在理想情况下,触点闭合时其接触电阻为零;触点断开时接触电阻为无穷大;在闭合过程中接触电阻瞬时由无穷大变为零;在断开过程中接触电阻瞬时由零变为无穷大。但实际上,在闭合状态时耦合触点间有接触电阻存在,若接触电阻太大,就可能导致被控电路压降过大或不通;在断开状态时要求触点间有一定的绝缘电阻,若绝缘电阻不足就可能导致击穿放电,致使被控电路导通;在闭合过程中有触点弹跳现象,可能破坏触点的可靠闭合;在断开过程中可能产生电弧破坏触点可靠断开。 无论使用哪一种接触,导体接触的不连续性会产生一个附加的电阻——称为“接触电阻”。这个电阻比接触器自身的电阻(在没有接触面存在时)要大。这个电阻值将决定连接的质量,因为:接触电阻阻值越高,则接触电阻上的压降越大,因而接触点释放的热量将越多。如果温度上升到一定的极限,接触点就会损坏。温度越高,损坏就越快,这种现象会迅速蔓延。

SMA射频同轴连接器设计和计算

SMA直角转接器的设计 陈肇扬,王新恩 【摘要】本文主要是通过几年来对SMA直角转接器的研制情况总结,阐述其设计原理,提出过渡模式,总结出一个经验公式,并简单地介绍一下一些特殊工艺及性能特征。 一、前言 在微波同轴连接器系列中,直角转接器是一种必不可少的元件,随着我国电子工业的不断发展,引进设备的日益增多,对微波同轴元器件提出高精度、小型化的要求。近几年来我们开始研制SMA型射频同轴连接器系列,到目前为止,已有数十个品种、规格、本文主要是介绍SMA直角转接器的研制情况,阐述它的设计原理、设想它的过渡模式,总结出一个经验公式,并简要地介绍在制造过程中的一些特殊工艺及SMA直角转接器的主要性能特征。 二、设计原理 众所周知,当微波讯号,从同轴线传输到直角转弯处时,从场论的观点来看,必定产生畸变,这主要是因为直角转弯处可以看成为由二段同轴线直角相交而成,它的电力线分布如图1所示。显然,在直角转弯处,场是不均匀的。而我们的目的是,当TEM波传输到直角转弯处时,具有低的输入反射,要求不产生高次谐波。但在这样的过渡段中,传输的波已不再是纯的TEM波,可能激发出高阶模。储藏了电抗性能量,在直角转弯处呈现一个电抗。在设计过程中,要是没有考虑到这一点,就可能使直角转接器的性能变坏。 图 1 当然,若用耦合波理论来解决这个问题也是可以的。那就必须找到一个适当的分布函数,使它仅仅在要求的给定频率范围之中,反射系数总小于某一个给定的极大值。但是,对于工程技术人员来说,即使寻找出这个分布函数,要加工出符合这个分布函数边界条件的零件是很不容易的事。因此,我们认为,用寻找适当的分布函数方法来解决直角过渡问题似乎太烦杂,也没有必要。我们觉得,用物理概念来解决似乎比较方便一点。即只要找出一个适当的方法,以补偿过渡段中不可避免存在的不连续电容所引起的电抗,达到整个传输段在要求的给定频率范围之内,反射系数总小于某一个给定的极大值。根据这个设想,我们拟就高阻抗补偿模式来解决直角过渡问题。它的原理就象串联一个电感,以补偿不连 续电容,达到减少反射系数的目的,使研制出的SMA直角转接器符合设计的要求。 169

ETAP接地网计算

接地网计算培训讲稿 一、关于接地网的基本知识。 在电力系统中,为了保护设备和人身的安全,接地现象是非常常见的。将电气装置、设施该接地部分经接地装置与大地做良好的电气连接称为接地。接地根据用途可以分为工作接地、保护接地、防雷接地和防静电接地。接地装置由接地体和接地线两部分组成。 埋入地中并且与大地直接接触的金属导体称为接地体;把电气装设施该接地部分经接地体连接起来的金属导体称为接地线。接地体又分为人工接地体和自然接地体。兼作接地体用的直接与大地接触的各种金属构件、非可燃气体或液体的金属管道、建筑物中的钢筋、电缆外皮、电杆基础上的避雷线和中性线等都是自然接地体;为满足接地装置接地电阻要求而专门埋设的接地体称为人工接地体。我们所研究的接地网就是一种人工接地体,接地网由由水平接地体和垂直接地体,接地网的材料一般有钢管、角钢、圆钢、扁钢和铜带,接地网祈祷的作用有泻放电流和均压作用。 不同形状接地体周围土壤电位分布演示。 电流经接地体流入大地,在大地表面形成分布电位。接地体和大地零电位点间的电压称为接地装置的对地电压(或对地电位)。接地线电阻和接地体的对地电阻(电流自接地体向外散流所遇到的电阻,又称散流电阻或扩散电阻)之和成为接地装置的接地电阻。接地线电阻基本上很小,所以可以认为接地电阻就等于扩散电阻。接地电阻数值上等于对地电位与从接地体流入大地电流的比值。按流过接地体的电流是工频电流求得的电阻称为工频接地电阻;按流过接地体的电流是冲击电流求得的电阻称为冲击接地电阻。接地电阻和土壤电阻率、接地体规格有关。所以改变接触电阻的主要手段就是改变土壤电阻率和改变接地体敷设。土壤的电阻率大小主要取决于土壤中导电离子的浓度和水分含量。干燥的土壤是不导电的,有时候为了降低土壤电阻率还会采用降阻济。 评估接地网是否满足要求的指标除了接地电阻和对地电位外,还有接触电压和跨步电压。人站在地面上里设备水平距离0.8米处手触到设备外壳、构架离地面1.8米处,加于人手与脚之间的电压称为接触电压;人在分布电位区域中沿散流方向行走,步距为 0.8米时两脚间的电压称为跨步电压。在大接地短路电流系统中接触电压和跨步电压应 满足: ;

圆柱形导体接地电阻的计算

电磁场仿真实验报告

2010级4班 吴开宇2010302540009

圆柱形导体接地电阻的计算 一、基本原理 一般来说,接地电阻由连接导线的电阻、连接导线和接地体的接触电阻、接地体本身的电阻和电流流入大地时所具有的电阻组成。由于前三项与最后一项相比很小,可忽略不计,所以接地电阻为电流从接地体流入地中时所具有的电阻,即:R=U/I(其中U为接地体对于无穷远的电压,I为流经接地体而注入大地的流散电流)。 二、相关数据 试求长为1m,直径0.05m,与大地垂直的、上圆柱表面与地面持平的管形接地体电阻(电阻率ρ1= 1.5×10-7Ω·m)。 我们无法建一个无穷大的土壤模型,而离开接地电极距离为接地电极尺寸10倍以内的土壤对接地电阻值有较大影响,因此一个长宽高分别为4m、4m、20m 的长方体土壤块基本满足我们的精度要求(电阻率ρ2=500Ω·m)。

圆柱形导体接地体接地电阻计算的物理模型 三、实验步骤 0、定义分析类型。 进入Main Menu>Preferences,在弹出的对框中选中“Electric”,点击“OK”(command: /COM, Electric)。 1、进入前处理菜单。 进入Main Menu>Preprocessor,点开菜单即可(command: /PREP7)。 2、建立一个圆柱体模型。 点击Modeling>Create>Volumes>Cylinder>Solid Cylinder。在弹出的对话框中,“WPX”和“WPY”分别为圆心在工作平面上的X和Y坐标,“Radius”为圆柱体的半径,“Depth”为圆柱体的深度;依次填入“0,0,0.025,-1”,点击“OK”。这样

连接器检验规范

连接器检验 不论是高频电连接器,还是低频电连接器,绝缘电阻、介质耐压(又称抗电强度)和接触电阻都是保证电连接器能正常可靠地工作的最基本的电气参数。通常在电连接器产品技术条件的质量一致性检验A、B组常规交收检验项目中都列有明确的技术指标要求和试验方法。这三个检验项目也是用户判别电连接器质量和可靠性优劣的重要依据。但根据笔者多年来从事电连接器检验的实践发现,目前各生产厂之间以及生产厂和使用厂之间,在具体执行有关技术条件时尚存在许多不一致和差异,往往由于采用的仪器、测试工装、操作方法、样品处理和环境条件等因素不同,直接影响到检验准确和一致。我们认为,针对目前这三个常规电性能检验项目和实际操作中存在的问题进行一些专题研讨,对提高电连接器检验可靠性是十分有益的。 另外,随着电子信息技术的迅猛发展,新一代的多功能自动检测仪正在逐步替代原有的单参数测试仪。这些新型测试仪器的应用必将大大提高电性能的检测速度、效率和准确可靠性。 1 绝缘电阻检验 1.1 作用原理 绝缘电阻是指在连接器的绝缘部分施加电压,从而使绝缘部分的表面或内部产生漏电流而呈现出的电阻值。即绝缘电阻 (MΩ)= 加在绝缘体上的电压(V)/泄漏电流(μA)。通过绝缘电阻检验,

确定连接器的绝缘性能能否符合电路设计的要求,或在经受高温、潮湿等环境应力时,其绝缘电阻是否符合有关技术条件的规定。 绝缘电阻是设计高阻抗电路的限制因素。绝缘电阻低,意味着漏电流大,这将破坏电路和正常工作。如形成反馈回路,过大的漏电流所产生的热和直流电解,将使绝缘破坏或使连接器的电性能变劣。 1.2影响因素 主要受绝缘材料、温度、湿度、污损、试验电压及连续施加测试电压的持续时间等因素影响。 1.2.1绝缘材料 设计电连接器时选用何种绝缘材料非常重要,它往往影响产品的绝缘电阻能否稳定合格。如某厂原使用酚醛玻纤塑料和增强尼龙等材料制作绝缘体,这些材料内含极性基因,吸湿性大,在常温下绝缘性能可满足产品要求,而在高温潮湿下则绝缘性能不合格。后采用特种工程塑料 PES (聚苯醚砜)材料,产品经200℃、1000h和240h 潮湿试验,绝缘电阻变化较小,仍在10[sup]5[/sup] MΩ以上,无异常变化。 1.2.2温度 高温会破坏绝缘材料,引起绝缘电阻和耐压性能降低。对金属壳体,高温可使接触件失去弹性、加速氧化和发生镀层变质。如按GJB598 生产的耐环境快速分离电连接器系列 II 产品,绝缘电

波分计算公式

1再生段光衰耗、色散、光信噪比、Q值、BER值、DGD 值计算说明 1.1衰耗受限计算 采用最坏值法设计: L=(Ps-Pr-C)/a 式中: Ps:为光放大器(OAU板)单信道的最小输出功率,单位为dBm。光功率放大器OAU 单信道输出功率取为+1dBm。 Pr:为单信道接收端的最小允许输入功率,单位为dBm。 C:所有光连接器的衰减和,每个光连接器的衰减为0.5dB。 a:为光纤损耗系数(dB/km),包含了光纤衰减、光纤熔接衰减和光纤富裕度,默认值取0.275dB/km 。 衰耗受限距离计算: 对于发端配置OAU(+1dB输出)、收端配置OAU(-32dB接收)的33dB的光中继段:L=(Ps-Pr-C)/a=[1-(-32)-2×0.5]/0.275=116km 注:DWDM系统是OSNR受限系统,以上数据仅表明光放大器的在此距离内是不受限的。 本次工程站间距离及衰减已经过测试,指标值标注在传输系统配置图中。 1.2色散受限距离计算 DCM的补偿方法详见3.1色散容限配置部分。 1.3级联光放大器时的光信噪比OSNR计算 (1)、单个放大器产生的ASE噪声功率: 一个光放大器产生的自发辐射噪声功率PASEˊ为 PASEˊ=2Nsp(G-1)hv·△v(mw) 式中:Nsp是放大器自发辐射因子 v是光中心频率 h是普朗克常数

G 是放大器的增益(倍数) △v 是光接收机的带宽(取0.1nm)。 进而可以推导出,一个光放大器产生的以dBm 计的自发辐射噪声功率: PASE = -58 + NFi + Gi (dBm ) (1) 其中:NFi 为光放大器噪声系数(dB ); Gi 为光放大器的增益(dB )。 (2)、复用通路光接收机输入端的信噪比 ①、 系统模型 包括N 个级联光放大器的WDM 系统模型如下图所示 G 3G i 图中:L1、L2、… Ln -1分别是第1、2、… n -1个区段的衰减(dB); G1、G2、 … Gn 分别是第1、2、… n 个光放大器的增益(dB)。 ②、 各光放大器产生的ASE 噪声功率 利用已经推导出的公式,首先分别计算出每个光放大器产生的ASE 噪声功率PASEi (dBm)。 ③、 计算N 个光放大器在光接收机输入端产生的ASE 累积噪声功率PASE 每个光放大器产生的ASE 噪声功率PASE ,都既要经过其后面的光纤区段衰减,又要经过其后面的光放大器的放大;然后才能到达光接收机的输入端Rn 点。 因此,系统中N 个光放大器在光接收机输入端Rn 点的累积噪声功率为: PASE ˊ= EDFA1产生的累积自发辐射噪声功率 + EDFA2产生的累积自发辐射噪声功率 + …… + EDFAn -1产生的累积自发辐射噪声功率 + EDFAn 产生的累积自发辐射噪声功率 = 10E[0.1(PASE1-L1+G2-……-Ln-1+Gn )]+ 10E[0.1(PASE2-L2+ G3-……-Ln-1+Gn)] + …… + 10E[0.1(PASEn -1-Ln-1+Gn)] + 10E[0.1(PASEn)] (mw) (2) 为了便于光信噪比的计算,需把以上计算结果换算成dBm 形式: PASE = 10㏒PASE ˊ (dBm) ④、计算光接收机输入端Rn 点的光信号功率

最全的电机功率计算[1]

电机功率计算公式是:单相、P=I×220×Cosφ·η;三相、 P=I×1.73×380×Cosφ·η(单相电机功率因数和效率均取0.75,三相电机取各0.85)。 关于功率的问题,功率实际上就好比一个人力气,最大能出多少力,只要是在他的力气范围内进行。不存在你说的现象,比如吸尘器不做工时电流小功率就低,做工时负荷大,电流也就跟着大。空转与非空转主要是表现为他们的使用效率上,空转效率低,就是常说的无功损耗,因为空转照样用电,没有效益。 公式:P=U×I 直观的方法是直接通电,启动后用钳形电流表测量电流的读数,根据公式:用测量的电流读数×电机用的电压数=功率数(即电动机的功率)。 说的是直流电动机吧。换向器也称整流子,在直流电动机和交流串激电动机中广泛使用。由于大功率整流元件的广泛使用,直流发电机已基本不用这种整流方式了。直流电动机的定子磁场方向是固定的,转子也需要一个相对固定的磁场与定子磁场相互作用才能连续旋转。但转子在转过180度以后,其线圈上固定方向电流产生的固定磁场也转过了180度,与固定磁场成异性相吸关系,使转子旋转趋于停止。这时,由于换向器也转过了180度,而电刷的位置和电压极性是固定不变的,这样就使进入转子的电流方向改变,从而改变转子的磁场方向,维持转子持续旋转。 回答人的补充 2009-12-17 15:30 交流串激电动机由于定子与转子电压、电流方向同时改变,其工作、换向原理与直流电机相同。 精华知识 收藏 转载到QQ空间 电机连轴器怎么拆 [ 标签:电机,联轴器 ] 我有一个75KW的电机,用几年了,连接器拆不下来,请高手们指点一下 颓废的风回答:3 人气:3 解决时间:2010-02-28 17:07 精华知识 可以用锤子在联轴器的外壁(紧贴电动机轴)轻轻敲打,要多打,均匀的打。然后用拉吗拉着,等拉吗上紧了,再用锤子击打拉吗丝杆头,打两下以后,再紧拉

接地电阻计算要求

标准接地电阻规范要求 一、规范值; 1、独立的防雷保护接地电阻应小于等于(≤)10欧; 2、独立的安全保护接地电阻应小于等于(≤)4欧; 3、独立的交流工作接地电阻应小于等于(≤)4欧; 4、独立的直流工作接地电阻应小于等于(≤)4欧; 5、防静电接地电阻一般要求小于等于(≤)100欧。 6、共用接地体(联合接地)应不大于接地电阻1欧。 【避雷针的地线属于防雷保护接地,如果避雷针接地电阻和防静电接地电阻都是按要求设置的,那么就可以将防静电设备的地线与避雷针地线接在一起,因为避雷针的接地电阻比静电接地电阻小10倍,因此发生雷电事故时,大部分雷电将从避雷针地泄放,经过防静电地的电流则可以忽略不计。】 二、接地分三种 1、保护接地:电气设备的金属外壳,混凝土、电杆等,由于绝缘损坏有可能带电,为了防止这种情况危及人身安全而设的接地。1Ω以下。 2、防静电接地:防止静电危险影响而将易燃油、天然气贮藏罐和管道、电子设备等的接地。 3、防雷接地:为了将雷电引入地下,将防雷设备(避雷针等)的接地端与大地相连,以消除雷电过电压对电气设备、人身财产的危害的接地,也称过电压保护接地。

注意的是.三种接地要分离设置. 三、接地线的标识: 区分线别接地体规定 保护接地线黄绿双色线三种接地体间的距离必须大于20米 防静电接地线绿色线 防雷接地线镀锌圆钢 四、接地要求: 交流电气装置的接地应符合下列规定: 1 、当配电变压器高压侧工作于小电阻接地系统时,保护接地网的接地电阻应符合下式要求: R≤2000/I (12.4. 1-1) 式中 R――考虑到季节变化的最大接地电阻(Ω); I――计算用的流经接地网的人地短路电流(A)。 2、当配电变压器高压侧工作于不接地系统时,电气装置的接地电阻应符合下列要求: 1)高压与低压电气装置共用的接地网的接地电阻应符合下式要求,且不宜超过4Ω: R≤120/I (12.4.1-2) 2)仅用于高压电气装置的接地网的接地电阻应符合下 式要求,且不宜超过100,: 尺≤250/I (12.4.1-3) 式中 R――考虑到季节变化的最大接地电阻(Ω);

接地电阻的计算与测量

接地电阻的计算与测量(转贴) 2003-2-28 路灯设施的接地保护事关国家财产和人民生命安全的大事。为做好接地保护并有效地设置接地电阻,必须正确计算和测量接地电阻。 理论上,接地电阻越小,接触电压和跨步电压就越低,对人身越安全。但要求接地电阻越小,则人工接地装置的投资也就越大,而且在土壤电阻率较高的地区不易做到。在实践中,可利用埋设在地下的各种金属管道(易燃体管道除外)和电缆金属外皮以及建筑物的地下金属结构等作为自然接地体。由于人工接地装置与自然接地体是并联关系,从而可减小人工接地装置的接地电阻,减少工程投资。 一、接地电阻值的规定 在1000V以下中性点直接接地系统中,接地电阻Rd应小于或等于4Ω,重复接地电阻应小于或等于10Ω。而电压1000V以下的中性点不接地系统中,一般规定接地电阻R为4Ω。因此,根据实际安装经验,在路灯照明系统中接地电阻Rd应小于或等于4Ω。 二、人工接地装置接地电阻的计算 人工接地装置常用的有垂直埋设的接地体、水平埋设的接地体以及复合接地体等。此外,接地电阻大小还与接地体形状有关,在路灯施工应用中,通常使用垂直、水平接地体,这里只简要介绍上述两种接地电阻的计算。 1、垂直埋设接地体的散流电阻 垂直埋设的接地体多用直径为50mm,长度2-2.5m的铁管或圆钢,其每根接地电阻可按下式求得:Rgo=[ρLn(4L/d)]/2πL 式中:ρ—土壤电阻率(Ω/cm) L—接地体长度(cm) d—接地铁管或圆钢的直径(cm) 为防止气候对接地电阻值的影响,一般将铁管顶端埋设在地下0.5-0.8m深处。若垂直接地体采用角钢或扁钢(见图1),其等效直径为: 等边角钢d=0.84b 扁钢d=0.5b 为达到所要求的接地电阻值,往往需埋设多根垂直接体,排列成行或成环形,而且相邻接地体之间距离一般取接地体长度的1-3倍,以便平坦分布接地体的电位和有利施工。这样,电流流入每根接地体时,由于相邻接地体之间的磁场作用而阻止电流扩散,即等效增加了每根接地体的电阻值,因而接地体的合成电阻值并不等于各个单根接地体流散电阻的并联值,而相差一个利用系数,于是接地体合成电阻为Rg=Rgo/(ηL*n) 式中,Rgo—单根垂直接地体的接地电阻(Ω); ηL—接地体的利用系数; n—垂直接地体的并联根数。 接地体的利用系数与相邻接地体之间的距离a和接地体的长度L的比值有关,a/L值越小,利用系数就越小,则散流电阻就越大。在实际施工中,接地体数量不超过10根,取a/L=3,那么接地体排列成行时,ηL在0.9-0.95之间;接地体排列成环形时,ηL约为0.8。 2、水平埋设接地体的散流电阻 一般水平埋设接地体采用扁钢、角钢或圆钢等制成,其人工接地电阻按下式求得: Rsp=(ρ/2πL)*[Ln(L2/dh)+A]

电阻检验标准.

电阻检验标准 1.外观 1.1.色码均匀,易于识别,断环不得大于60C; 12电阻体均匀,表面有光泽、无气孔、无起泡、无起皱、无露头; 13引线不得发黄,不得露铜,应无油污,引线根部不允许有长度超过 1.0mm 的漆。 2.尺寸 2.1.签订技术协议按技术协议检验; 22 没有签订技术协议按厂家承认或提供的产品规格说明书中的尺寸检验。 3.电参数要求 3.1.电阻值误差:J( ± 5%); 3.2.绝缘电阻:〉10GQ 。 3.3.耐压: 3.3.1.特殊电阻 3.3.1.1.电阻680KQ /0.25W&0.5W:加1500V 的DC 电压3S,要求:LC<3mA 外观无可见损伤、△ RW土10%R 3.3.1.2.电阻470KQ /0.25W&0.5W:加1100V 的DC 电压3S,要求:LC<3mA 外观无可见损伤、△ R<± 5%R 3.3.1.3.电阻330KQ /0.25W&0.5W:加900V 的DC电压3S,要求:LC<5mA 夕 卜观无可见损伤、△ R<± 3%R 3.3.1. 4.电阻220KQ /0.25W&0.5W:加700V 的DC电压5S, LC<5mA 要求: 外观无可见损伤、△ R<± 1.5%R 3.3.1.5.RSN型电阻:加2.5 X (PR)0.5的DC电压5S,自然放置30分钟后测量 阻值,要求:外观无可见损伤、△ R<± 1%R。 备注:△ R=试验后阻值-试验前阻值,R-试验前阻值 3.3.2. 其余电阻: 加3X (PR)0.5的DC电压5S,要求:外观无可见损伤、不得冒烟烧毁。 3.4.高温阻值变化 3.4.1.特殊电阻 电阻680KQ、470KQ、330KQ、220KQ /0.25W&0.5W :在125± 2°C 环境温度下放置30分钟测电阻值,要求:△ R<± 7%R 3.4.2.RSN型电阻:在室温+50± 2C环境温度下放置15分钟后测阻值,要求: (△ R/R) /50*10 6PPM/C = ± 300PPMC。 3.4.3.其余电阻: 在125±2C环境温度下,30分钟,要求:△ R<± 3.5%R。备注:试验后阻值-试验前阻值,R-试验前阻值 4.阻燃特性 4.1.1.明火阻燃性 无对流风的环境中,将样品放置酒精灯火焰的外焰进行10秒的燃烧至离开的过程中不得有火焰出现。

接触电阻是由收缩电阻和膜电阻组成

接触电阻是由收缩电阻和膜电阻组成 接触电阻对导体间呈现的电阻称为接触电阻。一般要求接触电阻在10-20 mohm以下。有的开关则要求在100-500uohm以下。有些电路对接触电阻的变化很敏感。应该指出,开关的接触电阻是开关在若干次的接触中的所允许的接触电阻的最大值。 接触电阻产生的原因有两个:第一,由于接触面的凹凸不平,金属的实际接触面减小了,这样,当电流流过导体时,使电流线在接触面附近发生了严重的收缩现象,即在接触面附近导体有效的导电截面大大缩小,因而造成电阻的增加,这个电阻称为收缩电阻。第二,接触面在空气中可能迅速形成一层导电性能很差的氧化膜附着于表面,也使电阻增大了,这部分电阻称为膜电阻。因此,接触电阻是由收缩电阻和膜电阻组成。 导体的接触形式大体分为点接触,线接触和面接触,这几种接触形式对接触电阻的影响是不相同的。点接触时对接触电阻的影响主要是收缩电阻大,而面接触时对接触电阻的影响则是膜电阻,线电阻介于两者之间。因而,接触电阻的大小不仅取决于收缩电阻,还有膜电阻的影响。而接触压力对接触电阻的影响是十分重要的,没有足够的压力,只靠加大接触面,并不能使接触电阻有明显的下降。增加接触压力,可以增加接触点的有效接触面积,同时,当接触点的压强超过一定值时,可以使触点的材料产生塑性变形,表面膜被压碎出现裂缝,增大了金属的接触面,使接触电阻迅速下降,因此,加大接触压力,使收

缩电阻和膜电阻都减小,总的接触电阻将减小。除了以上影响接触电阻的因素以外,还有材料的性质,接触表面的加工情况,触点的密封情况等等都会对接触电阻产生影响。 因此,我们在日常维护和排除线路故障的时候,也要充分考虑接触电阻的影响。我们经常在排除线路故障时会发现由于插头的腐蚀,在插钉表面就会形成一层无机膜或插钉变形,导致插钉的接触电阻增大,发生故障。因此,我们在对插头进行施工或维护时,一定要严格按照维护手册的标准进行。在安装插头时,应该仔细检查插头与插座内的插钉,不能有破损,弯曲,腐蚀等情况,也不要人为的去破坏插头的封严部分,对于特殊区域的插头要采取特殊的防护,比如对插头进行封严等。对于某些工作环境比较恶劣的地方,如发动机本体上的插头,在安装时一定要注意,要对插头进行保险,一些特殊的插头一定要按照标准打好力矩,否则插头在发动机的高频振动下会松脱,有的会使插头内的插钉接触不良,造成跳火,灼伤插钉,使之工作不可靠和缩短使用期限。 接触电阻:触点有四种工作状态,即:闭合状态、断开过程、断开状态、闭合过程。在理想情况下,触点闭合时其接触电阻为零;触点断开时接触电阻为无穷大;在闭合过程中接触电阻瞬时由无穷大变为零;在断开过程中接触电阻瞬时由零变为无穷大。但实际上,在闭合状态时耦合触点间有接触电阻存在,若接触电阻太大,就可能导致被控电路压降过大或不通;在断开状态时要求触点间有一定的绝缘电阻,若绝缘电阻不足就可能导致击穿放电,致使被控电路导通;在闭

相关主题
文本预览
相关文档 最新文档