当前位置:文档之家› 年产30万吨合成氨造气工段设计 Word 文档

年产30万吨合成氨造气工段设计 Word 文档

年产30万吨合成氨造气工段设计 Word 文档
年产30万吨合成氨造气工段设计 Word 文档

目录

1 常压固定床间歇气化法 (3)

1.1 半水煤气定义 (3)

1.2 固定床气化法的特点 (3)

1.3 生产半水煤气对原料的选择 (3)

1.4 半水煤气制气原理 (2)

1.5 发生炉内燃料分布情况 (3)

1.6 各主要设备的作用 (3)

1.6.1 煤气发生炉 (5)

1.6.2 燃烧室 (6)

1.6.3 废热锅炉 (7)

1.6.4 洗气箱 (7)

1.6.5洗涤塔 (7)

1.6.6 烟囱 (7)

1.6.7 自动机 (7)

1.7 间歇式制半水煤气的工艺条件 (7)

1.8 生产流程的选择及论证 (8)

1.9 间歇式气化的工作循环 (9)

1.10 间歇式制半水煤气工艺流程 (10)

2 工艺计算 (11)

2.1 煤气发生炉(含燃烧室)的物料及热量衡算 (11)

2.2 物料及热量衡算 (12)

2.3制气阶段的计算 (15)

2.3.1 物料衡算 (15)

2.3.2 热量衡算 (17)

2.4 总过程计算 (18)

2.5 配气计算 (21)

2.6 消耗定额 (21)

2.7 吹净时间核算 (22)

2.8 废热锅炉的热量衡算 (23)

2.9 夹套锅炉的物料及热量衡算 (27)

3 设备计算 (27)

3.1 煤气炉指标计算 (27)

3.2 煤气台数的确定 (28)

3.3 空气鼓风机的选型及台数确定 (29)

4 各设备的选型及工艺指标 (29)

4.1 Φ3米U.G.I型煤气发生炉的工艺指标 (29)

4.2 燃料室的工艺指标 (30)

4.3 洗气箱工艺指标 (30)

4.4索尔维式废热锅炉工艺指标 (31)

4.5填料式洗涤塔工艺指标 (32)

4.6 煤气发生炉自动加煤机工艺指标 (32)

4.7 10000m3螺旋式气柜的工艺指标 (32)

4.8 集尘器 (33)

5 车间布置简述 (33)

6 安全技术与节能 (34)

6.1 安全技术 (34)

6.2 节能 (34)

7投资和成本估算 (35)

7.1 人员工资 (35)

7.2 总投资计算 (36)

7.3 成本计算 (38)

8附录 (35)

年产30万吨合成氨造气工段工艺设计

1常压固定床间歇气化法

1.1 半水煤气定义

半水煤气是以水蒸气为主加入适量的空气为气化剂与赤热的炭反应,所生成的煤气称为半水煤气,它是合成氨的原料气,其成分中CO2+H2一般在68%左右。用于合成氨的半水煤气要求氢氮比为3:1。

1.2 固定床气化法的特点

固定床气化法其煤气发生炉的排渣和加料不是连续的,而是间断的排渣和加料,其致密的煤层在气化过程中是静止不动的,随着气化反应的进行,以温度化分的各区域将逐渐上移,必须经过间歇排渣和加炭后各区域才恢复到原来的位置。

1.3 生产半水煤气对原料的选择

间歇法生产半水煤气对原料的要求:

(1)对水分的要求

燃料中水分含量过高,会影响煤气发生炉的气化效率,在气化过程中因水分蒸发吸热造成炉温下降使燃料消耗增加,炉子操作条件恶化,影响水煤气产量和质量。因此,要求入炉煤的水分含量小于3~5%。

(2)对挥发份的要求

燃料中如果挥发份含量高,则由于甲烷和焦油的含水两增加而不仅会增加动力燃料消耗,而且降低炉子的制气能力影响氨的产量。因此,要求燃料中挥发份较低为宜。

(3)对灰份的要求

煤中含灰分其主要成份为二氧化硅、氧化铁、氧化铝、氧化钙和氧化镁等无机物质。这些物质的含量对灰份有决定性影响。灰份高的燃料,不仅增加运输费用,而且使气化条件变得复杂,所以要求燃料中灰份较低为宜。

(4)对硫份的要求

煤中的硫份在气化过程中转化为含硫气体,不仅对设备和系统管道有腐蚀作用,而且会使催化剂中毒。在合成氨生产系统中,根据流程特点,对含硫量有一定的要求,并应在净化过程中将其除去。

(5)对化学活性的要求

化学活性高的燃料,有利于气体物质和气化率的提高。至于对气化效率的影响,则因所选用的煤气发生炉炉型不同而有所差异。

(6)对机械强度的要求

机械强度高,以免燃料在炉内或上料过程中受碰撞和挤压而发生碎裂,机械强度低会使炉内阻力和气体带出物增加,气化能力下降,消耗增高。

(7)对热稳定性要求

热稳定性是指燃料在受高温后粉碎的程度。热稳定性差的燃料,不仅增加炭阻力和气体带出物,而且会堵塞炉膛和系统管道,增加动力消耗,影响制气产量。

(8)对粘结性的要求

粘结性是煤在高温下干馏粘结的性能,粘结性较强的原料煤,气化过程中煤相互粘结后生成焦,破坏燃料的透气性,妨碍气化剂的均匀分布,影响气体成分和制气产量。所以要求煤的粘结性较低为宜。

(9)对燃料粒度的要求

合成氨原料煤首先对煤种要求是无烟煤,其次对粒度则要求采用块煤和粉煤的成型,特别以23~50mm的粒度最好。

总之,对间歇式生产水煤气,若要使生产取得良好的气化指标,应采用热稳定性好、机械强度高、不粘结、粒度均匀、水分较少、灰分和挥发分不高,灰分熔点较高的原料,本设计采用无烟块煤。

1.4 半水煤气制气原理

固体燃料的气化过程实际上主要是碳与氧的反应和碳与蒸汽的反应,这两个反应称为固体燃料的气化反应。

表1 以空气为气化剂主要反应方程

序号反应方程式

1 C+O2(3.76N2)=CO2(+3.76N2)

2 C+O=2(3.76N2)=2CO(+3.76N2)

3 C+CO2(3.76N2)=2CO(+3.76N=2)

4 2C+3.76N2+O2+3.76N2=CO2+7.52N2

表2 以水蒸汽为气化剂主要反应方程式

序号反应方程式

1 C+H2O(汽)=CO+H2

2 C+2H2O(汽)=CO2+2H2

3 CO+2H2O(汽)=CO2+H2

4 2H2+O2=2H2O(汽)

5 C+H2=CH4

6 CO+3H2=CH4+H2O

7 CO2+4H2=CH4+2H2O(汽)

在气化炉燃烧层中,炭与空气几水蒸汽的混合物相互作用时的产物称为半水煤气,其化学反应按下列方程式进行:2C+O2+3.76N2=2CO2+3.76N2

C+H2O(汽)=CO+H2

灰渣层

氧化层 干馏层 干燥层 还原层 这种煤气的组成由上列两反应的热平衡条件决定。由于半水煤气是生产合成氨的原料气,因此,要求入炉蒸汽与空气(习惯上称为氮空气)比例恰当以满足半水煤气中(CO +H 2):N 2=3要求,但是在实际生产中要求半水煤气(CO +H 2):N 2≧3.2。

1.5 发生炉内燃料分布情况

图1燃料层分区示意图

(3)还原层 气化剂从下面进入碳层氧化区中已含有各种气体成分,而在还原层里,主要进行CO 的还原反应。

(4)氧化层 在这里层中,从下面来的空气与弹反应,生成碳的氧化物,因为氧化速度较快,故其厚度比还原层薄如用水蒸汽作气化剂时,在该层中还进行碳与水蒸汽的氧化反应。一般将还原层和氧化层通称之为气化区。

(5)灰渣层 氧化层下面就是灰渣层,没有化学反应发生,起作用是能分布热空气和保护炉。

必须指出,各层之间并没有严格的界限,即没有明显的分层,各层高度随燃料的种类性质和气化条件不同而异。见表3

1.6 各主要设备的作用

1.6.1 煤气发生炉 在间歇法工艺中,用于生产半水煤气的发生炉主要为UGI 水煤气炉。我自行设计和制造了炉径为Φ1500,Φ2260,Φ3000,Φ3600。等一系列半水煤气炉,他们的结构与UGI 半水煤气炉基本相同。

水煤气发生炉的结构大致分为五个部分,起各部分的作用分叙如下: (1)炉体

炉壳由钢板焊制,上部衬有耐火砖和保温砖硅藻砖,使炉壳免受高温的损害。外面包有石棉制品隔热保温衬铸刚护圈,内部衬有耐火砖和隔热层。

(2)夹套锅炉

夹套锅炉传热面积约为19m 2。外壁包有石棉制品隔热保温层,防止热量损失,夹套锅炉的作用主要是降低氧化层温度,以防止熔渣粘壁并副产蒸汽,夹套锅炉两侧设有探火孔,用于

在煤气发生炉中固体燃料气化过程,燃料与气化呈相反方向和

顺时针方向运动,当气化剂经过燃料层时,进行燃料的气化反应,同时伴随物理变化,燃料层大致可分为如图所示的5个区层

(1) 干燥层 新加入的燃料由于下层高温燃料和炉壁的辐

射热以及下面的高温气流的导热,使燃料中的水分蒸发,形成干燥层,干燥层的厚度与加入燃料的量有关。

(2) 干馏层 干燥层下面温度较高,燃料中的水分蒸发至差

不多后,在高温条件下,燃料便发生分解,放出挥发分,燃料本身也逐渐碳化,干馏层厚度小于干燥层。

测量火层,了解火层分布和温度情况上部装有液位计,水位自动调节器和安全阀等附件。

(3)底盘

底盘和炉壳通过大法兰连成一体,用紫铜薄板包石棉布填料密封。底盘底部有气体中心管与吹风和下吹管线呈倒Y 型连接,中心管下部装有通风阀和清理门。底盘两侧有灰斗,底盘上没有溢流排污管和水封桶,可以排泄冷凝水和油污,并防止气体外透,起安全作用。

(4)机械除灰装置

包括能够转动的灰盘和炉条及固定不动的会犁。灰犁固定在出灰口上,利用它与旋转灰盘之间的相对运动,以减弱机械磨损。

(5)传动装置

机械除灰装置的旋转是由电机提供动力。通过减速箱蜗杆、蜗轮来完成的。传动装置附有注油器,以减弱机械磨损。

表3 发生炉内情况

1.6.2 燃烧室 燃烧室的上部都呈锥行,中部为柱体,内衬有耐火砖及蓄热用的格子砖。燃烧室的作用:

(1)向吹风气添加二次空气,使其中的CO 等可燃物在其中燃烧,所生成的热量被积蓄在格子砖内。

区域

区域名称用途及进行的过程

化学反应 Ⅰ

灰渣层

分配气化剂,防止炉蓖受高温的影响,在本

区域中,借灰渣预热气化剂。

最终反应:

C +O 2+3.76N 2=CO 2+3.76N 2 2C +O 2+3.76N 2=2CO +3.76N 2

氧化层(燃

烧层)

碳被气化剂中的氧氧化成二氧化碳及一氧

化碳并放出热量。

CO 2+C=2CO H 2O +C=CO +H 2 2H 2O +C=CO 2+2H 2

还原区

二氧化碳还原成一氧化碳或水蒸气分解为

氢,燃料依靠热的气体而被预热。

干馏区

燃料依靠热气体换热进行分解,并析出下列物质:1水分;2醋酸、甲醇、甲醛及苯酚;

3树脂;4气体(CO 、CO 2、H 2S 、CH 4、C 2H 4、

氨氮和氢)。

干燥区

依靠气体的显热来蒸发燃料中的水分

自由空间

起聚积煤气的作用。

有时,煤气中部分一氧化碳与蒸汽

进行反应: H 2O +CO=CO 2+H 2

(2)利用所蓄积的热量,预热下吹蒸汽和加氮空气,提高气体的入炉温度,提高分解率。

(3)除去煤气中的细灰,以减少对废热锅炉的损害。

气体从下部入口切线方向进室,避免直接冲撞室壁,以减少对耐火砖的磨损,并使气体在室内分布均匀。燃烧室的顶盖起着泄压作用,当系统发生爆炸时,爆炸压力超过盖子弹簧的作用力,盖子张开,降低压力,避免设备损坏。

1.6.3 废热锅炉废热锅炉主要用于回收吹风气和上行半水煤气的显热,生产0.49-1。18Mpa的蒸汽,为制气和其他用途提供一部分蒸汽来源。

煤气生产中常用火管立式废热锅炉,炉体为一直立的圆筒,用钢板焊接,两头装有钢板封头,内部装有若干根无缝钢管。高温气从上而下与管间的水进行逆流热交换,汽水混合物从上循环管进入气包产生蒸汽。分离下来的水及向气泡补充的新鲜水(软水)由下循环流入废热锅炉下部管间。进炉气体一般为500~700℃出炉后可降至200℃左右。

由于废热锅炉上部装有气泡,为保持炉体重心达到平衡,避免基础受力不均而下陷,故安装时,锅炉炉体倾斜7°,用以促进对流,使热交换效率提高。

1.6.4 洗气箱洗气箱的作用是防止水封以后的煤气倒回煤气炉和空气发生爆炸,并兼冷却除尘的作用。

洗气箱的外行是一个具有圆筒行容器。半水煤气进口管浸入水面以下75~125mm,水至箱顶加入,不断地从锥体部分的溢流管溢出。以保持一定的水面,起到安全水封的作用。它是煤气炉系统确保安全生产不可缺少的设备。

进洗气箱的煤气温度约200℃,出气温度为70℃左右,洗气箱的冷却水用量大,其冷却作用主要靠水的蒸发,煤气主要因失去显热而降温。出洗气箱的煤气已被饱和。

1.6.5洗涤塔洗涤塔的作用是冷却(降温),冷凝(蒸汽)和除尘,它可采用喷塔,也可采用填料塔,其外形一般为柱形。煤气由下部入塔,由上部出塔。由于进塔煤气被水汽饱和。所以,如想继续降温,必须使煤气中的水汽冷凝,由于冷凝热大,故必须用大量的水喷淋,使煤气继续冷却。

1.6.6 烟囱烟囱也是煤气生产中不可缺少的设备,其主要作用是排放废气,另还兼有封和除尘的作用。

1.6.7 自动机自动机的作用在于通过自动机的程序控制,使水煤气的生产操作基本实现自动化。

自动机把高压水按时送到煤气炉各系统各个自动液压阀门,是阀门按照工艺循环的要求准时准备启动,准确控制和调节,保证生产稳定和安全。

1.7 间歇式制半水煤气的工艺条件

选择生产工艺条件时,要求气化效率高,炉子生产强度大,煤气质量好,气化效率指制得半水煤气所具有的热值与制气投入的热量之比。投入的热量包括气化所消耗的燃料热值和气化剂带入的热量(后者主要指蒸汽的潜热)。他是用来表示气化过程中的热能利用率。气

化效率高,燃料利用率高,生产成本低。气化效率用X表示:

X=Q半/(Q燃+Q蒸)×100%

式中:Q半----------半水煤气的热值

Q燃-------------------消耗燃料的热值

Q蒸-------------------消耗蒸汽的热值

生产强度是指每平方米炉膛截面在每小时生产的煤气量,以没标准状态下的立方米表示。煤气质量则根据生产要求以热值或以指定成分要求来衡量。为了保存以上的要求,气化过程的工艺条件有:

1.7.1 温度反应温度沿着燃料层高度而变化,其中氧化层温度最高。操作温度一般主要是指氧化层的温度,简称炉温。炉温高,反应速度快,蒸汽分解率高,煤气产量高,质量好。但炉温高,吹风气中一氧化碳含量高,燃烧发热少,热损失大。此外,炉温还受燃料及灰渣熔点的限制,高温熔融将造成炉内结疤。故炉温通常应比灰熔点低50℃左右,工业上采用炉温范围1000~1200℃。

1.7.2 吹风速度提高炉温的主要手段是增加吹风速度和延长吹风时间。后者使制气时间缩短,不利于提高产量,而前者对制气时间无影响,通过提高吹风速度,迅速提高炉温,缩短二氧化碳在还原层的停留时间。以降低吹风气中的一氧化碳含量,减少热损失。吹风速度以下不使炭层出现风洞为限。

1.7.3 蒸汽用量蒸汽用量是改善煤气产量与质量的重要手段之一。蒸汽流量越大,制气时间愈长,则煤气产量愈大。但要受到燃料活性、炉温和热平衡的限制。当燃料活性好。炉温高时,加大蒸汽流量可加快气化反应,煤气产率和质量也得到提高。但同时因燃料层温下降快而应缩短吹入蒸汽的时间。但燃料活性较低时,宜采用较小的蒸汽流量和较长的送入时间。

1.7.4 燃料层高度在制气阶段,较高的燃料层将使水蒸汽停留时间加长,而且燃料层温度较为稳定,有利于提高蒸汽分解率,但在吹风阶段,由于空气与燃料接触时间家长,吹风气中CO含量增加,更重要的是,过高的燃料层由于阻力增加,使输送空气的动力消耗增加。根据实践经验,对粒度较大、热稳定性较好的燃料,可采用较高的燃料层,但对颗粒小或热稳定性差的燃料,则燃料层不宜过高。

1.7.5 循环时间制气过程一个循环时间包括五个阶段时间,各阶段的时间分配要根据燃料性质,气化剂配分比和煤气组成的要求而定,一个循环时间短时,炉温的波动小,煤气产量和质量也较稳定,故循环时间不宜长,但气化活化较低的燃料时,因反应速度慢,应采用较长的循环时间。

1.7.6 气体成分主要调节半水煤气中(H2+CO)与N2比值。方法是改变加氮气,或改变空气吹净时间。在生产中还应经常注意保持半水煤气中低的氧含量(≤0.5%),否则将引起后序工段的困难,氧含量过高还有爆炸的危险。

1.8 生产流程的选择及论证

根据水煤气生产工艺流程中废热利用的程度,可分为五类:

1.不回收废热的流程:

吹风直接放空,上下行煤气直接进入冷却净化系统,故其热效率差。一般为小型水煤气站采

2.只利用吹气特点持有热的流程:

该流程在吹风阶段,将吹风气通过燃烧室,同时向燃烧室内送入二次空气,合使吹风气中的在燃烧室中燃烧,蓄热,高温燃烧后废热锅炉的收热量后放空。上行、下行煤气直接进入冷却净化系统,不进行热量回收。

3.利用吹气持有热和上行煤气显热的流程

这是我国目前广泛使用的一类流程,它可使大部分的废热得以回收利用。此流程适用于炉径大于2740mm。

4.完全利用吹风气所持有热及上、下行煤气显热的流程

该流程与流程(3)的差别仅在于下行煤气的显热亦于回收,废热的回收利用程度最高,废热锅炉的温度波动较小,蒸发量也较稳定。

5.增热水煤气流程

在水煤气生产中,用油裂解来提高煤气热值的方法称为增热,它的热值高达16.7到18.8MJ/m3。但CO含量高达30%以上,故它不宜单独作为城市煤气,但可作为城市煤气的补充气源以备调峰之用。

综上所述,以(2)和(3)两种流程为最佳,流程(4)效率高于(3)、(4)中由于加了回收下行煤气显热,使得阀门和管道增多,操作变得复杂,投资增加,且由于煤气温度不高于200℃,从经济效益上考虑,流程(3)比流程(4)更为实用,本设计采用流程(3)。

1.9 间歇式气化的工作循环

常压固定床法制半水煤气其工艺流程气化过程按5个阶段分别叙述如下:

(1)吹风阶段来自鼓风机的加压空气送入煤气发生炉底部,经与燃料层燃烧放出大量的热量储存于炭层内,生成吹风气由炉顶出,经旋风除尘器除去灰尘后,进入废热锅炉的管间的水换热,水受热蒸汽产生的低压蒸汽经气包蒸汽管道可供本炉制气用。吹风气被冷却降温后出废热锅炉,由烟囱放空。

(2)上吹制气阶段蒸汽与加氮空气一起自炉底送入,经与灼热的燃烧层反应后,气体层上移,炉温下降,生成半水煤气由炉顶引出除去带出灰尘。进入废热锅炉回收气体中的显热后进入洗气箱至洗气塔洗净和冷却至常温由洗气塔上部引出送出气柜。

(3)下吹制气阶段蒸汽自炉顶送入,经灼热的气化层反应,气化层下移,炉温继续下降,生成的水煤气由炉底引出,因下行煤气通过灰渣层降低温度,不再进入废热锅炉直接进入洗气箱、洗气塔洗净降温,由塔顶引出至气柜。

(4)二次吹气阶段基本同一次上吹制气阶段,但不加入氮空气,其目的在于置换下部及管道中残存的煤气,防止爆炸现象。

(5)吹净阶段其工艺流程同上吹制气阶段,但不用蒸汽而改用空气,以回收系统中的煤气至气柜。

以上5个阶段的工作循环,由液压或气压两种形式自动机控制,目前正在发展成微型程序制代替自动机控制。

间歇式制气工作循环各阶段气体的流向如图所示。阀门开闭情况见表4

图2 间歇制半水煤气各阶段气体流向图

表4 各阶段阀门开启情况

阀门开闭情况

阶段

1 2 3 4 5 6 7

吹风O X X O O X X

一次上吹X O X O X O X 下吹X X O X X O O

二次上吹X O X O X O X

空气吹净O X X O X O X 注:O---阀门开启:X------阀门关闭

1.10 间歇式制半水煤气工艺流程

如附图1所示,固体燃料由加料机从炉顶间歇加入炉内,吹风时,空气鼓风机自下而上通过燃料层,吹风气经燃烧室及废热量后由烟囱放空。燃烧室中加入二次空气,将吹风气中的可燃气体燃烧,使室内的格子蓄热砖温度升高。燃烧室盖子具有安全阀作用,当系统发生

爆炸时可泄压,以减轻设备的破坏。蒸汽上吹制气时,煤气经燃烧室及废热锅炉回收余热后,再经洗气箱及洗涤塔进入气柜。下吹制气时,蒸汽从燃烧室顶部进入,经预热后自上而下流经燃料层。由于煤气温度较低,可直接由洗气箱经洗涤塔进入气柜。二次上吹时,气体流向与上吹相同。空气吹净时,气体经燃烧室、废热锅炉、洗气箱和洗涤塔进入气柜,此时燃烧室不必加入二次空气,在上、下吹制气时,如配入加氮空气,则其送入时间应稍迟于水蒸汽的送入,并在蒸汽停送之前切断,以避免空气与煤气相遇而发生爆炸。燃料气化后,灰渣经旋转炉蓖由刮刀刮入灰箱,定期排出炉外。

附图2 合成氨厂制半水煤气的带控制点的工艺流程

2 工艺计算

2.1 煤气发生炉(含燃烧室)的物料及热量衡算

已知条件的确定:

表5 入炉煤组成,重量%

C H O N S A W 合计

78.13 1.32 0.43 0.77 0.51 13.24 5.6 100

燃烧热值28476kJ/㎏

1.吹风气组成,体积%

表6 吹风气组成,体积%

CO2O2CO H2CH4N2合计H2S

16.55 0.35 6.56 3.34 0.76 72.45 100 0.85g/Nm3

2.半水煤气真正组成,体积%

表7 半水煤气组成,体积%

CO2 O2 CO H2CH4 N2合计H2S

7.5 0.20 32.10 44 0.54 16.66 100 1.45g/Nm3

3.各物料进出炉的温度

空气25℃;相对湿度80%,空气含水汽量0.0213kg(水汽)/kg(干汽);

吹风气,上行煤气流600℃;下吹煤气200℃;灰渣200℃;

上行蒸汽120℃;饱和蒸汽的焓2730kJ/kg;

下吹蒸汽550℃;过热蒸汽的焓3595kJ/kg;

4.生产循环时间%,时间(S)

表8 生产循环时间

吹风上吹下吹二次上吹吹净合计

26 26 36 8 4 100

46.8s 46.8s 64.8s 14.4s 7.2s 180s

5.计算基准:100kg入炉燃料

6.带出物数量及其组分

带出物数量:2kg绝对干料

带出物组分及各组分重量

表9 带出物数量及其组分

元素组成,重量% 各组分重量,kg

C 82.5. 2×0.8250=1.65

H 1.66 2×0.0166=0.03

O 0.47 2×0.0047=0.01

N 0.80 2×0.008=0.02

S 0.57 2×0.0057=0.01

灰分14.00 2×0.14=0.28

合计100 2

带出物热值30030kJ/㎏

7.灰渣组成及其各组分重量

灰渣组成。重量%

C S 灰分合计

14.60 0.3 85.2 100

灰渣重量(按灰分平衡计算),kg

(13.24-0.28)÷0.852=15.2

灰渣各组分重量,kg

C 15.2×0.146=2.2

S 15.2×0.003=0.05

灰分15.2×0.852=12.95

合计:15.2

8.燃料气化后转入煤气中的元素量,kg

C 78.13-(1.65+2.20)=74.28

H 1.32+(5.6×2)/18-0.03=1.91

O 0.43+(5.6×16)/18-0.01=5.40

N 0.77-0.02=0.75

S 0.51-(0.01+0.05)=0.45

合计:82.8

计算误差==[100-(82.8+15.2+2)]/100×100%=0%

2.2 物料及热量衡算

吹风阶段的计算:(物料衡算)1. 每Nm3吹风气中含有的元素量,kg C [12×(0.1655+0.0656+0.0076)]/22.4=0.128

H [2×(0.0334+0.0076×2)]/22.4+0.00085×2/34=0.00438

O [32×(0.0035+0.1655+0.0656×0.5)]/22.4=0.288

N 28/22.4×0.7245=0.906

S 0.00085×32/34=0.0008

2. 由碳平衡计算吹风气量:74.28/0.128=580Nm3

3. 由氮平衡计算空气用量:[580×0.906-(0.77-0.02)]/(0.79×28/22.4)=530m3

空气带入水汽量:530×1.293×0.0213=14.6(1.293为空气密度)

4. 氢平衡(以千克计)

进项:a。燃料带入氢量:1.91

b.空气中水蒸汽带入氢量:14.6×2/18=1.62

合计:3.53

出项:

a.吹风气中含氢量:580×0.00438=2.54

b.吹风气中水汽含量:3.53-2.54=0.99

合计:3.53

吹风气中水汽含量:0.99×18/2=8.91

每标准m3吹风气中水汽含量:8.91/580=0.0154

5.氧平衡(以kg计)

进项:

a.燃料带入氧量;空气中氧量:5.40

b.空气中含氧量:530×0.21×32/22.4=159

c.空气中水汽含氧量:14.6×16/18=12.98

d.合计:177.38

出项:

a.吹风气中氧量:580×0.288=167.04

b.吹风气中水汽含氧量:8.91×16/18=7.92

c.合计:174.96

误差:(177.38-174.96)/177.38×100%=1.36%

6.硫平衡(以kg计)

进项:燃料带入硫量:0.45

出项:吹风气中含硫量:580×0.0008=0.46

误差:(0.45-0.46)/0.45×100%=2.2%

热量衡算: 1. 进项(以kJ计)

(1)燃料热值:100×28476=2847600

(2)燃料显热:100×25×1.05=2625(1.05为燃料的比热)

(3)干空气显热:530×25×1.30=17225(1.30为空气的比热)

(4)空气中水汽的焓:14.6×2562.84=37418

合计:2904868

2. 出项(以kJ计)

(1)吹风气热值:580×1180.78=684852

1 m3吹风气热值为:12810×0.0334+12684×0.0656+39984×0.0076=1180.78

(2)干吹风气显热:580×1.408×600=489984

0.1655×2.066+0.0035×1.420+0.0656×1.360+0.0334×1.302+0.0076×2.255+0.7245×1.352

=1.408kJ/ m3℃

(3)吹风气中水汽的焓:8.91×3696=32931(32931为600℃时过热蒸汽的焓)

(4)带出物热值:30030×2=60060

28164.6/(1-0.056)=29835.38

(5)带出物显热:2×1.05×600=1260(1.05为燃料的比热)

(6)灰渣中可燃物热值:34020×220+10500×0.05=75369

(34020,10500分别为碳和硫的发热值)

(7)灰渣显热:15.2×0.94×200=2858 (0.94为灰渣的比热)

(8)热损失(取燃料发热量的8%)

2847600×0.08=227808

(1)~(8)合计:1575121

(9)积蓄在煤层中的热量:2904868-1575121=1329747

3.吹风效率:1329747/2847600×100%=46.6%

3.热量平衡表:

表10热量平衡表(kJ)

进项出项

燃料热值2847600 吹风气热值684852

燃料显热2625 干吹风气显热489984

干空气显热17225 吹风气中水汽的焓32931 空气中水汽的焓37418 带出物热值60060

带出物显热12600

灰渣中可燃物热值75369

灰渣显热2858

热损失227808

积蓄在煤层中的热量132974 合计2904868 合计2904868

2.3制气阶段的计算(以100kg入炉燃料为基准)

2.3.1 物料衡算 1.每Nm3半水煤气中含有的元素量,kg

C=12/22.4×(0.075+0.321+0.0054)=0.215

H=2/22.4×(0.43+2×0.005)+2/34×0.00145=0.0390

O=32/22.4×(0.002+0.075+0.321×0.5)=0.340

N=28/22.4×0.1666=0.2083

S=32/34×0.00145=0.00136

2.由碳平衡计算半水煤气产量:

74.28/0.215=344N m3

3.由氮平衡计算氮空气用量:

(344×0.2083-0.75)/(0.79×28/22.4)=72N m3

氮空气中含水汽量:

72×1.293×0.0213=1.982

4.氢平衡

已知和假设数据

上行半水煤气产量为XNm3

上行半水煤气中含水蒸汽量为0.25kg/N m3

上、下吹蒸汽用量相等各为Wkg

下行半水煤气产量为(344-X)Nm3

下行半水煤气中含水蒸汽量为0.42kg/ Nm3

为方便计算,假设上、下吹气体成分相同,上、下吹氮空气作为均匀加入计。上行制气阶段氢平衡(以kg计)

进项:

(a)燃料带入氢量:

1.91×X/344=0.00555

水蒸汽带入氢量:

W×2/18=W/9

(b)氮空气中水蒸汽含氢量:

1.982×2/18×X/344=0.00064X

合计:W/9+0.0062X

出项:

(1)半水煤气中氢量:0.0390X

(2)半水煤气中水汽含氢量:(0.25×2/18)X=0.0278X

合计:0.067X

平衡:W/9+0.0062X=0.067X

W=0.556X--------------------------(1)

下行制气阶段氢平衡(以kg计)

进项:

(1)燃料带入氢量1.91-0.00555X

(2)蒸汽带入氢量W×2/18=W/9

(3)氮空气中水汽含氢量:1.982×2/18-0.00064X=0.22-0.00064X 合计:W/9+2.13-0.0062X

出项:

a.半水煤气中氢量

(344-X)×0.0390=13.42-0.0390X

b.半水煤气中水汽含氢量

(0.42×2/18)×(344-X)=16.05-0.047X

合计:29.47-0.086X

平衡:W/9+2.13-0.0062X=29.47-0.086X

W=246-0.78X---------------------------(2)

解方程(1)和(2)得:X=184

W=102.4

由此得:

上行半水煤气产量:184N m3

上行半水煤气产量占总产量的百分数:184/344×100%=53.4%

下行半水煤气产量:344-184=160

下行半水煤气产量占总产量的百分数:160/344×100%=46.6%

上行半水煤气中水蒸汽量0.25×184=46kg

下行半水煤气中水蒸汽汽量:0.42×160=67.2

46+67.2=113.2

蒸汽总耗量:102.4×2=204.8kg

上吹蒸汽分解率:(102.4-46)/102.4×100%=55.08%

下吹蒸汽分解率:(102.4-67.2)/102.4×100%=34.38%

平均蒸汽分解率:[204.8-(46+67.2)]/204.8×100%=44.73%

5.氧平衡(以kg计)

进项:

(1)燃料中带入氧量:5.40

(2)蒸汽带入氧量:204.8×16/18=182.04

(3)氮空气中氧含量:72×0.21×32/22.4=21.6

(4)氮空气中水汽含氧量:1.982×16/18=1.76

合计:210.80

出项:

(1)半水煤气中氧量:344×0.34=118.96

(2)半水煤气中水汽含氧量:(67.2+46)×16/18=100.62

合计211.42

误差:(211.42-210.80)/210.80×100%=0.29%

6.硫平衡(以kg计)

进项:

燃料带入硫量:0.45

合计0.45

出项:

半水煤气中含硫量:344×0.00136=0.47

2.3.2 热量衡算 1. 进项(以kJ计):

(1) 燃料热值:100×28476=2847600

(2) 燃料显热:100×25×1.05=2625

(3)蒸汽的焓:102.4×2730+102.4×3595=647680

(2730 、3595分别为上行蒸汽和下行蒸汽的焓)

(4)干氮空气显热:72×25×1.30=2344(1.30为空气的比热)

(5)氮空气中水汽的焓:1.982×2564=5081 (2564为水蒸汽的焓)

合计:3505330

2.出项:

(1)半水煤气热值:344×9795.77=3369746

1标准m3半水煤气热值为:12810×0.43+12684×0.321+39984×0.0054=9795.77

(2)干半水煤气的显热:184×1.223×600+160×1.346×200=178091

上行半水煤气比热:

0.075×2.06+0.002×1.42+0.321×1.36+0.43×1.31+0.0054×2.26+0.1666×1.35=1.223kJ/ m3℃

下行半水煤气比热:

0.075×1.81+0.002×1.34+0.321×1.31+0.43×1.30+0.0054×1.76+0.1666×1.31=1.346kJ/ m3℃

(1)半水煤气中水汽的焓:46×3696+67.2×2890=364224 (3696、2890分别为600 ℃和200 ℃蒸汽的焓)

(2)带出物热值:30030×2=60060

(3)带出物显热:600×1.05×2=1260 (1.05为带出物的比热)

(4)灰渣中可燃物热值:34020×2.20+10500×0.05=75369 (34020、10500分别为碳和硫的热值)

(5)灰渣显热:15.2×0.97×200=28488 (0.97为灰渣的比热)

(6)热损失(取燃料发热值的8%)2847600×0.08=227808

合计:4305044

3.需从煤层中吸取的热量(kJ)

4305044-3505330=799714

4.制气效率:

3505330/(2847600+799714+647680)×100%=81.6%

5.热量平衡表

表11热量平衡表(kJ)

进项出项

燃料热值2847600 半水煤气热值3369746

燃料显热2625 干半水煤气显热179159

蒸汽的焓647680 半水煤气中水汽的焓364224

干氮空气显热2344 带出物热值60060

氮空气中水汽的焓5081 带出物显热1260

从煤层中吸取热量799714 灰渣中可燃物热值75369

灰渣显热28488

热损失227808

合计4305044 合计4305044

2.4 总过程计算

2.4.1 燃料使用分配设100kg燃料用于制半水煤气为Xkg

根据热量平衡得:799714X=(100-X)×132974

X=62.4

每100kg燃料用于制半水煤气为62.4%,用于制吹风气未37.6% 4.4.2 每100kg燃料的生产指标吹风气产量:

580×0.376=218N m3

半水煤气产量:

344×0.624=214.6N m3

氮空气消耗量:

72×0.624=44.9

蒸汽消耗量:

204.8×0.624=127.8

吹风时空气消耗量:

530×0.376=199

总过程效率:

(214.6×9795.77)/(2847600+647680×0.624)×100%=64.6% 2.4.3 物料衡算(kg) 1.碳平衡

进项:燃料中碳含量:74028

合计:74.28

出项:

(1)半水煤气中碳含量:214.6×0.215=46.14

(2)吹风气中碳含量:218×0.128=27.90

合计:74.04

误差:(74.28-74.04)/74.28×100%=0.32%

2.氢平衡

进项:

(1)燃料中氢含量:1.91

(2)空气中水汽含氢量:199×1.293×0.0213×2/18=0.61

(3)氮空气中水汽含氢量:44.9×1.293×0.0213×2/18=0.14 (4)蒸汽含氢量:127.8×2/18=14.2

合计:16.86

出项:

(1)半水煤气中氢含量:214.6×0.0390=8.37

(2)半水煤气中水气含氢量:214.6×113.2/344×2/18=7.85 (3)吹风气中含氢量:218×0.00438=0.95

(4)吹风气中水汽含氢量:218×0.0154×2/18=0.37

合计:17.54

误差:(17.54-16.86)16.86×100%=4%

3 氧平衡

进项:

(1)燃料中氧含量5.40

(2)空气中氧含量:199×0.21×32/22.4=59.7

(3)蒸汽中含氧量:127.8×16/18=113.6

(4)空气中水汽含氧量:199×0.21×32/22.4=4.87

(5)氮空气中水汽含氧量:44.9×1.293×0.0213×16/18=1.10 (6)氮空气中氧量:44.9×0.21×32/22.4=13.47

合计:198.14

出项:

(1)半水煤气中氧含量:214.6×0.340=72.96

(2)半水煤气中水汽含氧量:214.6×113.2/344×16/18=62.77 (3)吹风气中氧含量:218×0.288=62.78

(4)吹风气中水汽含氧量:218×0.0154×16/18=2.98

合计:201.49

误差:(201.49-198.14)/198.14×100%=1.6%

4 氮平衡

进项:

(1)燃料中氮含量:0.75

(2)空气中氮含量:199×0.79×28/22.4=196.51

(3)氮空气中氮含量:44.9×0.79×28/22.4=44.34

合计:241.60

出项:

(1)半水煤气中氮含量:214.6×0.2083=44.70

(2)吹风气中氮含量:218×0.905=197.50

合计:242.2

误差:(242.2-241.60)/242.2×100%=0.2%

5硫平衡

进项:

(1)燃料中硫含量:0.45

出项:

(1)吹风气中硫含量:218×0.0008=0.1744

(2)半水煤气中硫含量:214.6×0.00136=0.2918

合计:0.46

误差:(0.46-0.45)/0.46×100%=2.1%

2.4.4 热量衡算(kJ)进项:

(1)燃料热值:2847600

(2)燃料显热:100×25×1.05=2756

(3)干空气显热:199×25×1.30=6467

(4)空气中水汽的焓:199×1.293×0.0213×2564=14052.4 (5)干氮空气显热:44.9×25×1.30=1459.25

(6)氮空气中水汽的焓:44.9×1.293×0.0213×2564=3170.6

合成氨变换工段车间布置图Word版

摘要 变换工段是指一氧化碳与水蒸气反应生成二氧化碳和氢气的过程。一氧化碳变换既是原料气的净化过程,又是原料气制备的继续。目前,变换工段主要采用中变串低变的工艺流程。本设计针对中低温串联变换流程进行设计,对流程中各个设备进行物料、能料衡算、以及设备选型,并绘制了带控制点的流程图。 关键词:合成氨,变换,工艺设计,设备选型

30kt/a Retention Of Ammonia Synthesis Process Preliminary Design Abstact Transform section refers to the reactions that produce carbon dioxide carbon monoxide and hydrogen and water vapor in the process. Carbon monoxide transformation is the gas material purification process, and the preparation of gas material to continue. At present, the transformation mainly by grow string sections of variable process low. This design of low-temperature series transformation process of process design, materials, each device can material calculation, and the equipment selection, and plotted take control in the flow chart and variable furnace equipment assembly drawing. Keywords:ammonia, transformation, process design,equipment choice

年产18万吨合成氨、30万吨尿素项目建议书

一、项目概况 1、项目名称:年产18万吨合成氨、30万吨尿素项目 2、合作方式:独资、合资、合作、贷款等均可 3、建设单位:XX煤业有限责任公司及合作单位 4、建设性质:新建 5、建设范围:内蒙古自治区XX自治旗XX矿区 6、建设内容及规模:以XX矿区丰富的褐煤资源为依托,建设年产合成氨18万吨、尿素 30 万吨的项目。可联产轻质油4752吨/年、煤焦油 14454吨/年,氨水(16%)27720吨/年、粗酚1980吨/年 7、建设期限:项目建设期为4年,即2005年4月-2008年9月。 8、投资估算及资金筹措: 投资规模:总投资为147215万元,其中建设投资 138703万元,流动资金8512万元。 本项目资金来源可以是贷款、风险投资等。 9、经济评价 经济评价一览表

二、项目区基本情况 1.地理位置 XX矿区位于内蒙古自治区呼伦贝尔市XX自治旗境内的东北部,地处大兴安岭西麓。其地理坐标是东经120°24′~120°38′、北纬49°09′~49°16′。矿区西连海拉尔区,东接牙克石市,南临巴彦嵯岗苏木,北至海拉尔河,与陈巴尔虎旗隔河相望,南北宽约13.7Km,东西长约46.1Km,总面积385.7Km2。XX火车站东距牙克石18Km,西距呼伦贝尔市64Km,滨州铁路线由东向西穿过XX矿区,北有301国道,铁路经过牙克石可达齐齐哈尔,哈尔滨乃至全国各地,经海拉尔可达满州里市,民航经海拉尔机场可达北京、呼和浩特等地,交通十分方便。 2.煤炭资源及煤质情况 ⑴资源情况 XX煤业公司拥有XX矿区、扎尼河矿区、伊敏河东区、陈旗巴彦哈达矿区、莫达木吉矿区五大矿区。煤炭储量丰富,XX矿区精查储量17.3亿吨;扎尼河矿区预计储量15.8亿吨;伊敏河东区普查储量58.4亿吨,其中详查储量6.1亿吨,精查储量2.3亿吨;巴彦哈达区预计储量49.0亿吨;莫达木吉矿区普查储量30.0亿吨。煤田内煤层集中,赋存稳定,构造较简单,倾角小,沼气含量低,埋藏较深,适宜于井工大型机械集约化连续生产。 ⑵煤质情况

年产合成氨30万吨

目录 一、绪论 (1) 、概述 (3) 、设计任务的依据 (1) 二、装置流程及说明 (2) 、生产工艺流程说明 (2) 、粗苯洗涤 (4) 、粗苯蒸馏 (4) 三、吸收工段工艺计算 (7) 、物料衡算 (7) 、气液平衡曲线 (8) 、吸收剂的用量 (9) 、塔底吸收液 (10) 、操作线 (10) 、塔径计算 (10) 、填料层高度计算 (13) 、填料层压降计算 (16) 四、脱苯工段工艺计算 (17) 、管式炉 (17) 、物料衡算 (18) 、热量衡算 (22)

五、主要符号说明 (25) 六、设计心得 (26) 七、参考文献 (27)

一、绪论 概述 氨是重要的化工产品之一,用途很广。在农业方面,以氨为主要原料可以生产各种氮素肥料,如尿素、硝酸铵、碳酸氢氨、氯化铵等,以及各种含氮复合肥料。液氨本身就是一种高效氮素肥料,可以直接施用。目前,世界上氨产量的85%—90%用于生产各和氮肥。因此,合成氨工业是氮肥工业的基础,对农业增产起着重要的作用。合成氨工业对农业的作用实质是将空气中游离氮转化为能被植物吸收利用的化合态氮,这一过程称为固定氮。 氨也是重要的工业原料,广泛用于制药、炼油、纯碱、合成纤维、合成树脂、含氮无机盐等工业。将氨氧化可以制成硝酸,而硝酸又是生产炸药、染料等产品的重要原料。生产火箭的推进剂和氧化剂,同样也离不开氨。此外,氨还是常用的冷嘲热讽冻剂。 合成氨的工业的迅速发展,也促进了高压、催化、特殊金属材料、固体燃料气化、低温等科学技术的发展。同时尿素的甲醇的合成、石油加氢、高压聚合等工业,也是在合成氨工业的基础上发展起来的。所以合成氨工业在国民经济中占有十分重要的地位,氨及氨加工工业已成为现代化学工业的一个重要部门。 在合成氨工业中,脱硫倍受重视。合成氨所需的原料气,无论是天然气、油田气还是焦炉气、半水煤气都人含有硫化物,这些硫化物主要是硫化氢(S H 2)、二硫化碳(2CS )、硫氧化碳(COS )、硫醇(SH -R )和噻吩(S H C 44)等。其中硫化氢属于无机化合物,常称为“无机硫”。 合成氨在生产原料气中硫化物虽含量不高,但对生产的危害极大。 ①腐蚀设备、管道。含有S H 2的原料气,在水分存在时,就形成硫氢酸(HSH ),腐蚀金属设备。其腐蚀程度随原料气中S H 2的含量增高而加剧。 ②使催化剂中毒、失活。当原料气中的硫化物含量超过一定指标时,硫化物与催化剂活性中心结合,就能使以金属原子或金属氧化物为活性中心的催化剂中毒、失活。包括转化催化剂、高温变换催化剂、低温变换催化剂、合成氨催化剂

生产管理--年产五万吨合成氨变换工段工艺初步 精品

四川理工学院 毕业设计 题目年产五万吨合成氨变换工段工艺初步设计 系别化学工程与工艺 专业无机化工 011 指导教师 教研室主任 学生姓名 接受任务日期 20XX年2月28日 完成任务日期 20XX年6月1日

四川理工学院 毕业论文任务书 材料与化学工程系无机化工专业2001-1 班题目年产五万吨合成氨变换工段工艺初步设计 起迄日期20XX年 2 月25 日起至20XX 年 6 月1日止 指导老师 教研室主任(签名) 系主任(签名) 学生姓名 批准日期20XX 年 2 月25 日 接受任务日期20XX 年 2 月25 日 完成任务日期20XX 年 6 月 1 日

一、设计(论文)的要求: 1、说明书包括前言,合成氨变换工段工序原理,工艺条件及工艺流 程确定,以及主要设备的选择说明,对本设计的评述。 2、计算部分包括物料衡算,热量衡算,有效能利用率计算,主要设备 计算。 3、图纸带控制点的工艺流程图。 二、设计(论文)的原始数据: 天然气成分:以鸿化厂的实际工作数据为依据来进行。 年工作日330天,其余数据自定。 三、参考资料及说明: 《化工工艺设计手册》(上、下册)、《氮肥工艺设计手册》理化数据、《化肥企业产品能平衡》、《小合成氨厂工艺技术与设计手册》、《合成氨工学》、《化工制图》、《化工原理》、《化学工程》、《化工设计概论》以及关于氮肥的其他相关杂志。

目录 1.前言 (4) 2.工艺原理 (4) 3.工艺条件 (5) 4.工艺流程的确定 (6) 5.主要设备的选择说明 (6) 6.对本设计的综述 (6) 第一章变换工段物料及热量衡算 (8) 第一节中变物料及热量衡算 (8) 1.确定转化气组成 (8) 2.水汽比的确定 (8) 3.中变炉一段催化床层的物料衡算 (9) 4.中变炉一段催化床层的热量衡算 (11) 5.中变炉催化剂平衡曲线 (13) 6. 最佳温度曲线的计算 (14) 7.操作线计算 (15) 8.中间冷淋过程的物料和热量计算 (16) 9.中变炉二段催化床层的物料衡算 (17) 10.中变炉二段催化床层的热量衡算 (18) 第二节低变炉的物料与热量计算 (19) 第三节废热锅炉的热量和物料计算 (24) 第四节主换热器的物料与热量的计算 (26) 第五节调温水加热器的物料与热量计算 (28) 第二章设备的计算 (29) 1. 低温变换炉计算 (29) 2. 中变废热锅炉 (31) 及致谢 (35)

合成氨工艺流程

合成氨工艺流程标准化管理部编码-[99968T-6889628-J68568-1689N]

将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到~,送入脱硫塔,用溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机~后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到~MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。

30万吨合成氨项目实施建议书

30万吨合成氨联产尿素 项目建议书 湖滨区大项目办公室 2006年9月27日 1总论 一、工艺技术状况 来自厂的焦炉煤气,压力300mmH2O柱,温度35℃,进入罗茨鼓风机,加压后依次进入两台串联的脱硫塔与自上而下的与PDS脱硫液逆流接触,吸收气体中的H2S及部分有机硫,出塔后经气液分离器分离液体后,至焦炉气压缩工序。 吸收了H2S及部分在同硫的脱硫液进入循环槽与溶液槽反应救分钟后,由半贫液泵或富液泵打至再生液混合器,经再生喷

射器与自吸空气混合,进行强化氧化反应,然后进入喷射再生槽,这硫泡沫及溶液从喷射再生槽迅速返上,在再生槽顶部,浮选出的硫泡沫自流入硫泡沫混和槽,再由空压罐压送至硫泡沫高位槽,用蒸汽加热至85℃左右,自流入熔硫釜,继续用蒸汽加热至95℃左右,不断排出清液,待浓度达到45%左右时,加热至135℃熔融后放入硫磺冷却盘,自然冷却后得副产品硫磺。 从再生槽分离出来的清液经液位调节器进入贫液槽,经贫液泵加压至0.5MPa后,分两股进入脱硫塔。 脱硫过程中所消耗的碱,以及需要补充的ADA、偏钒酸钠、PDS等试剂,均在溶液制备槽配制成溶液后,用溶液泵送反应槽或事故槽而进入系统。 当循环溶液中的硫氰酸钠及硫代硫酸钠积累到一定程度后,从贫液泵出口抽取部分溶液去回收楼提取硫氰酸钠和硫代硫酸钠。 来自贫液泵后的贫脱硫液,流入回收楼的母液槽,由母液泵定期抽入真空蒸发器用蒸汽加热浓缩,待蒸发结束后通过旋转的溜槽将料液放至真空吸滤器,热过滤除Na2CO3等杂质。滤渣在滤渣溶解槽中用脱硫溶解后予以回收,滤液至结晶槽用夹套冷却水(冷冻水)冷至5℃左右,加入同质晶种使其结晶,最后在离心机中分离得至粗制Na2S2O3产品。 分离得到Na2S2O3的滤液(或NaCNS/Na2 S2O3>5的脱硫清液)经中间槽用压缩空气压入真空蒸发器,用蒸汽加热浓缩,待

18万吨合成氨、30万吨尿素

一、市场情况 (一)产品用途 尿素是一种含氮量最高的中性固体肥料,也是重要的化工原料。农业用尿素占90%,10%用于工业。农业上尿素可作单一肥料、复合肥料、混合肥料及微肥使用,也用作饲料添加剂。在工业上,尿素可生产脲醛树脂、氰尿酸、氯化异氰尿酸、三羟基异氰酸酯、水合肼、盐酸氨基脲、脲烷、氨基磺酸、发泡剂AC 、尿囊素等;尿素可制氨基甲酸酯、酰尿、造影显影剂、止痛剂、漱口水、甜味剂等医药品;尿素可生产石油炼制的脱蜡剂;尿素用于生产含脲聚合物,也可作纤维素产品的软化剂;尿素还可以作炸药的稳定剂,选矿的起泡剂,也可用于制革颜料生产。 (二)市场情况 2000年到2006年,我国尿素产能从 二、产品方案及生产规模 (1)合成氨:600吨/日(中间产品),公称能力18万吨/年 (2)尿素:1052吨/日,公称能力30万吨/年 工厂年运行天数:330天/年、按8000小时 三、工艺技术方案 原料煤与水在棒磨机湿法研磨,浓度达到61%的水煤浆加压后与高压氧气一起进行部分氧化,生产出含有CO 、H 2的粗合成气。合成气送到变换工段,在变换工段,大部分的CO 和水蒸汽反应生成H 2和CO 2,变换气中的CO 2和H 2S 等酸性气体在低温甲醇洗工段中被脱除,得到的净化气送入液氮洗工段精制,并配氮使合成气中的氢氮比达到3:1,精制气进入合成气压缩机,升压至后送入氨合成系统生产合成氨。低温甲醇洗的CO 2部分送往尿素装置,经压缩与液氨合成为尿素。

(一)气化工艺技术简介 气化工艺一般分为三种类型:移动床(有时也被称为固定床),流化床和气流床。 1、固定床气化炉是最老的气化炉,它很长时间在煤气化工艺中占主要地位。固定床煤气技术经历了固定层间歇气化法、富氧连续气化法和鲁奇加压气化法。 固定床气化炉中的氧化剂与煤的流动方向相反,通过由煤变为焦油,再到灰等一系列反应区。当空气被作为氧化剂时,温度通常不会超过灰熔点,而纯氧气流床气化炉既可以是干灰也可以是熔渣。由于粗煤气出口温度(400~500℃)相对较低,粗合成气中通常会有液态碳氢化合物。固定层间歇气化法因吹风过程中放空气对环境污染严重而被淘汰,富氧连续气化法因原料只能用焦炭和无烟煤,原料价格高,且生成气中甲烷含量高;富氧气化的特点是投资少,操作简单,在中型氮肥厂中具有丰富的操作经验,是国家重点推荐的中氮厂造气技术。由于国家大力整治小煤窑和国家经济发展和重化工业的强力拉动,全国各地的煤价格随着需求的增加正在节节上扬,使合成氨成本大幅上升,所以必须采用先进的煤气化工艺,提高煤的利用率和水煤气中有效气组成。鲁奇(Lurgi)加压气化技术,在我国建有3套装置。该技术虽然能连续加压气化,但由于气化温度低,生成气中甲烷含量大,同时生成气中含苯、酚、焦油等一系列难处理的物质,净化流程长;尤其是该技术只能用碎煤不能用粉煤,因而原料利用率低,大量筛分下来的粉煤要配燃煤锅炉进行处理。 2、流化床气化炉采用粉碎了的煤作为原料,用氧化剂(氧气或空

合成氨工艺流程

工艺流程说明: 将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到1.9~2.0Mpa,送入脱硫塔,用A.D.A.溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机12.09~13.0Mpa后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到30.0~32.0 MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。 上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。 二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。 CO变换:一氧化碳对氨催化剂有毒害,因此在原料气进入合成氨工序之前必须将一氧

年产5万吨合成氨变换工段工艺初步讲解

毕业设计 题目年产五万吨合成氨变换工段工艺初步设计 系别化学工程与工艺 专业 指导教师 教研室主任 学生姓名 接受任务日期 完成任务日期

四川理工学院 毕业论文任务书 指导老师 教研室主任(签名) 系主任(签名) 学生姓名 批准日期2005 年 2 月25 日接受任务日期2005 年 2 月25 日完成任务日期2005 年 6 月 1 日

一、设计(论文)的要求: 1、说明书包括前言,合成氨变换工段工序原理,工艺条件及工艺流 程确定,以及主要设备的选择说明,对本设计的评述。 2、计算部分包括物料衡算,热量衡算,有效能利用率计算,主要设备 计算。 3、图纸带控制点的工艺流程图。 二、设计(论文)的原始数据: 天然气成分:以鸿化厂的实际工作数据为依据来进行。 年工作日330天,其余数据自定。 三、参考资料及说明: 《化工工艺设计手册》(上、下册)、《氮肥工艺设计手册》理化数据、《化肥企业产品能平衡》、《小合成氨厂工艺技术与设计手册》、《合成氨工学》、《化工制图》、《化工原理》、《化学工程》、《化工设计概论》以及关于氮肥的其他相关杂志。

目录 1.前言 (4) 2.工艺原理 (4) 3.工艺条件 (5) 4.工艺流程的确定 (6) 5.主要设备的选择说明 (6) 6.对本设计的综述 (6) 第一章变换工段物料及热量衡算 (8) 第一节中变物料及热量衡算 (8) 1.确定转化气组成 (8) 2.水汽比的确定 (8) 3.中变炉一段催化床层的物料衡算 (9) 4.中变炉一段催化床层的热量衡算 (11) 5.中变炉催化剂平衡曲线 (13) 6. 最佳温度曲线的计算 (14) 7.操作线计算 (15) 8.中间冷淋过程的物料和热量计算 (16) 9.中变炉二段催化床层的物料衡算 (17) 10.中变炉二段催化床层的热量衡算 (18) 第二节低变炉的物料与热量计算 (19) 第三节废热锅炉的热量和物料计算 (24) 第四节主换热器的物料与热量的计算 (26) 第五节调温水加热器的物料与热量计算 (28) 第二章设备的计算 (29) 1. 低温变换炉计算 (29) 2. 中变废热锅炉 (31) 参考文献及致谢 (35)

年产20万吨合成氨项目可行性研究报告

年产20万吨合成氨项目 可行性研究报告 第一章总论 1.1概述 1.1.1项目名称、主办单位名称、企业性质及法人 项目名称:20万吨/年合成氨项目 主办单位:X 企业性质:股份制 企业法人: 邮编: 电话: 传真: 1.1.2可行性研究报告编制的依据和原则 1.1. 2.1编制依据 1.原化工部化计发(1997)426号文“化工建设项目可行性研究报告内容和深度的规定”(修订本); 2.《中华人民共和国工程建设标准强制性条文》; 3.《建设项目环境保护设计规定》[(87)国环字第002号]及国务院

(98)253号文; 4.《建设项目环境保护管理办法》; 5. 污水综合排放标准:(GB8978-96); 6.大气污染物综合排放标准:(GB1629-1996); 7.合成氨工业水污染物排放标准:(GB13458-2001); 8. 环境空气质量标准:(GB3095-1996); 9.锅炉大气污染物排放标准(GB13271-2001); 10.恶臭污染物排放标准(GB14554-93); 11.城市区域环境噪声标准(GB3096-93); 12..工业企业厂界噪声标准(GB12348-90); 1.1. 2.2编制原则 1.实事求是的研究和评价,客观地为上级主管部门审议该项目提供决策依据。 2.坚持可持续发展战略,企业生态环境建设,实现社会、经济、环境效益的统一。 3.坚持以人为本的原则,创造优美的企业环境。 4.合理有序的安排用地结构,用地功能布局考虑产业用地与生态环境协调发展。 5.根据工厂的区域位臵及性质,严格控制污染,污水的排放应遵循大集中小分散的原则。 6.在满足生产工艺及兼顾投资的前提下,尽可能地推广新技术、新工艺、新设备新材料的应用,以体现本工程的先进性。

年产30万吨合成氨工艺设计毕业论文

年产30万吨合成氨工艺设计毕业论文 目录 摘要........................................................................ I Abstract................................................................... II ...................................................................... IV 1 综述.................................................................. - 1 - 1.1 氨的性质、用途及重要性.......................................... - 1 - 1.1.1 氨的性质................................................... - 1 - 1.1.2 氨的用途及在国民生产中的作用............................... - 1 - 1.2 合成氨生产技术的发展............................................ - 2 - 1.2.1世界合成氨技术的发展....................................... - 2 - 1.2.2中国合成氨工业的发展概况................................... - 4 - 1.3合成氨转变工序的工艺原理......................................... - 6 - 1.3.1 合成氨的典型工艺流程介绍................................... - 6 - 1.3.2 合成氨转化工序的工艺原理................................... - 8 - 1.3.3合成氨变换工序的工艺原理................................... - 8 - 1.4 设计方案的确定.................................................. - 9 - 1.4.1 原料的选择................................................. - 9 - 1.4.2 工艺流程的选择............................................. - 9 - 1.4.3 工艺参数的确定............................................ - 10 - 1.4.4 工厂的选址................................................ - 11 - 2 设计工艺计算......................................................... - 1 3 -

合成氨变换工段设计说明

工商职业技术学院 毕业论文 题目:合成氨变换工段设计 作者:焦鹏丽学号:2101100125系别:化工工程系 专业:应用化工技术 指导教师:晋萍专业技术职务讲师 2012 年1月1

工商职业技术学院 毕业设计说明书 题目:合成氨变换工段设计 作者:焦鹏丽学号:2101100125 系别:化工工程系 专业:应用化工技术 指导教师:晋萍专业技术职务讲师 2012 年1月1

摘要:本文是关于煤炭为原料一氧化碳变换工段初步设计。在合成氨的生产中,一氧化碳变换反应是非常重要的反应。用煤炭制造的原料气中,含有一部分一氧化碳,这些一氧化碳不能直接做为合成氨的原料,而且对合成氨的催化剂有毒害作用,必须在催化剂的催化作用下通过变换反应加以除去。一氧化碳变换反应既是原料气的净化过程,又是原料气的制造过程。本设计主要包括工艺路线的确定、中温变换炉的物料衡算和热量衡算、触媒用量的计算、中温变换炉工艺计算和设备选型、换热器的物料衡算和热量衡算以及设备选型等。 关键词:煤炭;一氧化碳变换;中温变换炉;流程图 结论中提到完成了设计宗指,但你的设计宗指到底是什么?没有表达出来。结论中也没有对你的设计做一个总结,你到底做这个设计的做用是什么?解决了什么问题?目录中二级目录应比一级目录再缩进两格,下级目录同理。

目录 第一章绪论 0 1.1 氨的性质和用途 0 1.1.1 氨的性质 0 1.1.2 氨的用途 0 1.2 我国合成氨生产现状 (1) 1.3 一氧化碳变换在合成氨中的意义 (1) 第二章变换流程及工艺条件 (2) 2.1 变换工艺原理 (2) 2.1.1变换反应的热力学分析 (2) 2.1.2 变换反应的动力学分析 (2) 2.2变换工艺的选择 (3) 2.3 工艺条件 (4) 2.3.1 温度 (4) 2.3.2 压力 (5) 2.3.3 水汽比 (5) 第三章工艺计算 (6) 3.1 基本工艺数据的确定 (6) 3.1.1水气比的确定 (6) 3.2中变炉一段催化床层的物料衡算 (7) 3.2.1 中变炉一段催化床层的物料衡算 (7) 3.2.2中变炉一段催化床层的热量衡算 (8) 3.2.3 中变一段催化剂操作线的计算 (11) 3.3中间冷凝过程的物料和热量计算 (12) 3.4中变炉二段催化床层的物料与热量衡算 (13) 3.4.1中变炉二段催化床层的物料衡算: (13) 3.4.2中变炉二段催化床层的热量衡算 (15) 3.4.3中变二段催化剂操作线计算 (16) 3.5 主换热器的物料与热量的衡算 (18)

合成氨的工艺流程

合成氨工艺流程 氨就是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都就是以氨为原料的。合成氨就是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。 德国化学家哈伯1909年提出了工业氨合成方法,即“循环法”,这就是目前工业普遍采用的直接合成法。反应过程中为解决氢气与氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气与新鲜氢氮气混合重新参与合成反应。合成氨反应式如下: N2+3H2≒2NH3 合成氨的主要原料可分为固体原料、液体原料与气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都就是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。 1、合成氨的工艺流程 (1)原料气制备将煤与天然气等原料制成含氢与氮的粗原料气。对于固体原料煤与焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类与石脑油,工业中利用二段蒸汽转化法制取合成气。 (2)净化对粗原料气进行净化处理,除去氢气与氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。 ① 一氧化碳变换过程 在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分就是H2与N2,因此需要除去合成气中的CO。变换反应如下: CO+H2OH→2+CO2 =-41、2kJ/mol 0298HΔ 由于CO变换过程就是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步就是高温变换,使大部分CO转变为CO2与H2;第二步就是低温变换,将CO含量降至0、3%左右。因此,CO变换反应既就是原料气制造的继续,又就是净化的过程,为后续脱碳过程创造条件。 ② 脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫与碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序就是脱硫,用以保护转化催化剂,以重油与煤为原料的部分氧化法,根据一氧化碳变换就是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常就是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。 粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO与CH4等组分,其中以CO2含量最多。CO2既就是氨合成催化剂的毒物,又就是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。 一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类就是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类就是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA 法等。 4

小合成氨厂低温变换工段工艺设计资料

《化工工艺设计任务书》

变换工艺设计说明书 设计题目小合成氨厂低温变换工段工艺设计 课题来源小合成氨厂低温变换工段工艺设计变换工段化学工艺设计标准变换工段在合成氨生产起的作用既是气体净化工序,又是原料气的再制造工序,经过变换工段后的气体中的CO含量大幅度下降,符合进入甲烷化或者铜洗工段气质要求。 要求:1.绘制带控制点的工艺流程图 2.系统物料、能量衡算 3.系统主要设备能力及触媒装填量核算 4?该工段设备多,工艺计算复杂,分变换炉能力及触媒装填量核算、系统热量核算和系统水循环设备及能力核算。 变换工艺流程 低压机四段来的半水煤气压力 2.0 MPa,温度40C的半脱气经热水洗涤塔除去气体中的油 污、杂质,进入饱和塔下部与上部喷淋下来的166?175 C的热水逆流接触,进行传质传热, 使气体中的水汽含量接近饱和,从塔顶出来到蒸汽喷射器,补入外管来的高压蒸汽,进一步 提高气体的温度和水气比,使出0/干气=0.6?0.7。达到变换所需的液气比值。接着气体进 入半水煤气换热器I,半水煤气换热器n管内加热,温度升至300 C,经过加压电炉进入中 变炉内。中变炉触媒分三段,每段各装一层触媒,上段出口变换气CO含量13?15%,温度 437C,通过甲烷化加热器壳程换热和增湿器降温,增湿温度降至370C进入中变二段,二 段出口CO变换率8?9%,温度403 C进入增温器,三段出口变换气中,CO 3?3.5%,温度386C,经过半水煤气换热器n和半水煤气换热器I的管间,加热进中变的半水煤气,温度降至285C 然后进入一水加热器被管内的循环热水降温至185C,进入低变炉进行低温变换。 低变炉触媒分上、下两段,每段各层一层耐硫变换催化剂,上段出口变换气温度222C,含CO 0.5?0.6%,进入段间冷却器管间,温度降至190C,进入低变炉下段反应,出口变换气 温度232 C,含CO 0.2?0.3%,进入二水加热器降温后,温度170 C进入热水塔与饱和塔底 出来的热水逆流接触,进行传质传热,进一步降温并回收热量,147C的变换气接着又进入 脱盐水预热器管内与来自脱盐水站的脱盐水换热后进入变换气水冷器管间,出来后温度降至 40 C,在变换气水分离器内,分离冷凝水后去变脱工段。 变换工段化学工艺设计原则 1.入工序气体流量:6000kmol/h (干基)压力: 2.47Mpa温度:40 C 2.入口气体组分:CO%=2.01% CO2%=10.95% 出%=41.49% 2%=1 3.93% CH4%=0.21% H2O%=31.23% Ar=0.18 %(体积比) 3.出口气体组分:CO% < 0.34% (体积比) 目录

合成氨变换工段毕业设计说明书

摘要 本文是关于重油为原料年产8万吨氨一氧化碳变换工段初步设计。在合成氨的生产中,一氧化碳变换反应是非常重要的反应。用重油制造的原料气中,含有一部分一氧化碳,这些一氧化碳不能直接做为合成氨的原料,而且对合成氨的催化剂有毒害作用,必须在催化剂的催化作用下通过变换反应加以除去。一氧化碳变换反应既是原料气的净化过程,又是原料气的制造过程。本设计主要包括工艺路线的确定、中温变换炉的物料衡算和热量衡算、触媒用量的计算、中温变换炉工艺计算和设备选型、换热器的物料衡算和热量衡算以及设备选型等。并且综合各方面因素对车间设备布置进行了合理的设计,最终完成了20 000字的设计说明书及生产工艺流程图、车间平立面布置图及主体设备装配图的绘制。 关键词:重油;一氧化碳变换;中温变换炉;流程图

Abstract This article was about the annual output of heavy oil as raw materials to transform eight thousand tons of carbon monoxide ammonia preliminary design section. In the production of ammonia, transformation of carbon monoxide was a very important reaction. Manufactured using heavy oil feed gas which containa part of carbon monoxide, carbon monoxide could not be directly used as those of the raw materials of synthetic ammonia, but also a catalyst for ammonia poisoning effect there must be a catalyst for transformation through the catalytic reaction to be removed. Transformation of carbon monoxide is a gas purification process of raw materials, but also the manufacturing process of feed gas. The design of the main routes which include the identification process, the medium variant of the furnace material balance , heat balance, the calculation of the amount of catalyst, in the variable furnace process of calculation and selection of equipment, heat exchanger of the material balance and heat balance as well as equipment selection type and so on. Taking all factors and workshop equipment to carry out a reasonable arrangement of the design. In the end, the20 000-word statement and map production process, shopping facade and the main equipment layout drawing assembly were completed. Key words: Heavy oil; Transformation of carbon monoxide; Temperature shift converter; Flow chart

年产30万吨合成氨脱碳工段工艺设计

年产30万吨合成氨脱碳 工艺项目 可行性研究报告 指导教师:姚志湘 学生:魏景棠

目录 第一章总论 (3) 1.1 概述 (3) 1.1.1 项目名称 (3) 1.1.2 合成氨工业概况 (3) 1.2 项目背景及建设必要性 (4) 1.2.1 项目背景 (4) 1.2.2 项目建设的必要性 (4) 1.2.3 建设意义............................................................................. 错误!未定义书签。 1.2.4 建设规模 (4) 第二章市场预测 (6) 2.1国内市场预测 (6) 2.2 产品分析 (6) 第三章脱碳方法及种类.. (7) 3.1 净化工序中脱碳的方法. (7) 3.1.1 化学吸收法 (7) 3.1.2 物理吸收法 (8) 3.1.3 物理化学吸收法................... (8) 3.1.4 固体吸收法 (10) 3.2碳酸丙烯酯(PC)法脱碳基本原理 (10) 3.2.1 PC法脱碳技术国内外的情况 (10) 3.2.2 发展过程 (10) 3.2.3 技术经济 (11) 3.2.4 工艺流程 (11) 3.2.5 存在的问题及解决方法 (12) 3.2.6 PC脱碳法发展趋势 (13)

第一章项目总述 2.1 概述 1.1.1项目名称 年产30万吨合成氨脱碳工段工艺设计 1.1.2合成氨工业概况 1898年,德国A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙(又称石灰氮),进一步与过热水蒸气反应即可获得氨: CaCN2+3H2O(g)→2NH3(g)+CaCO3 在合成氨工业化生产的历史中,合成氨的生产规模(以合成塔单塔能力为依据)随着机械、设备、仪表、催化剂等相关产业的不断发展而有了极大提高。50年代以前,最大能力为200吨/日,60年代初为400吨/日,美国于1963年和1966年分别出现第一个600t/d 和1000t/d的单系列合成氨装置,在60-70年代出现1500-3000t/d规模的合成氨。 世界上85%的合成氨用做生产化肥,世界上99%的氮肥生产是以合成氨为原料。虽然全球一体化的发展减少了用户的选择范围,但市场的稳定性却相应地增加了,世界化肥生产的发展趋势是越来越集中到那些原料丰富且价格便宜的地区,中国西北部有蕴藏丰富的煤炭资源,为发展合成氨工业提供了极其便利的条件。 2.2 项目背景及建设必要性 1.2.1 项目背景 我国是一个人口大国,农业在国民经济中起着举足轻重的作用,而农业的发展离不开化肥。氮肥是农业生产中需要量最大的化肥之一,合成氨则是氮肥的主要来源,因而合成氨工业在国民经济中占有极为重要的位置。 我国合成氨工业始于20世纪30年代,经过多年的努力,我国的合成氨工业得到很大的发展,建国以来合成氨工业发展十分迅速,从六十年代末、七十年代初至今,我国陆续引进了三十多套现代化大型合成氨装置,已形成我国特有的煤、石油、天然气原料并存和大、中、小规模并存的合成氨生产格局。目前我国合成氨产能和产量己跃居世界前列。 但是,由于在我国合成氨工业中,中小型装置多,技术基础薄弱,国产化水平低,远远不能满足农业生产和发展的迫切需要,因此,开发新技术的同时利用计算机数学模型来提高设汁、生产、操作和管理等的核算能力,促进设计、管理和生产操作的优化,从而推动合成氨工业发展,提升整体技术水平,己成为国内当前化学工程科研、工程设计的重要课题。

相关主题
文本预览
相关文档 最新文档