当前位置:文档之家› 平面几何选讲—利用塞瓦定理解决完全四边形问题

平面几何选讲—利用塞瓦定理解决完全四边形问题

平面几何选讲—利用塞瓦定理解决完全四边形问题
平面几何选讲—利用塞瓦定理解决完全四边形问题

平面几何60条著名定理

1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、三角形的三条高线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

平面几何基本定理

. 一.平面几何 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边 的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则 有)(22222BP AP AC AB +=+; 中线长:2 222 22a c b m a -+= 4. 垂线定理:2 2 2 2 BD BC AD AC CD AB -=-?⊥ 高 线 长 : C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---= 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线 段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定 理) 角平分线长:2 cos 2)(2A c b bc a p bcp c b t a +=-+= (其中 p 为周长一半) 6. 正弦定理: R C c B b A a 2sin sin sin ===, (其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a c cos 2222 -+= 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2 ·DC +AC 2 ·BD -AD 2 ·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一 半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定 理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙ O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作 一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2 -r 2 |.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两 组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过 点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近 两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距 离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点 18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、 △BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF = CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向 外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙ A 1 、⊙ B 1的圆心构成的△——外拿破仑的三角形,⊙ C 1 、 ⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心 19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形 中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点 (3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕 20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心 依次位于同一直线(欧拉线)上. 21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半 径为r ,外心与内心的距离为d ,则d 2 =R 2 -2Rr . 22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各 边距离的和. 23. 重心:三角形的三条中线交于一点,并且各中线被这个点分 成2:1的两部分;)3 ,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利 用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE . 由∠BAF =∠BCE ,可知 ∠BAF =∠BPE . 有P 、B 、A 、E 四点共圆. 于是,∠EBA =∠APE . 所以,∠EBA =∠ADE . 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2 欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3 在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ . 证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GD CG ,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是, PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷. 3 为了线段比的转化 ∥= A D B P Q 图1P E D G A B F C 图2 A N E B Q K G C D M F P 图3

高中平面几何常用定理总结

高中平面几何常用定理 总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 (高中)平面几何基础知识(基本定理、基本性质) 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-?⊥. 高线长:C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例. 6. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+= (其中p 为周长一半). 7. 正弦定理:R C c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 8. 余弦定理:C ab b a c cos 2222-+=. 9. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin . 10. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .

平面几何三角形四心竞赛题A卷及答案

三角形四心竞赛训练题1 一、填空题 1、三角形的三条边的垂直平分线的交点叫做三角形的 心;三个角的平分线的交点叫做三角形的 心;三条中线的交点叫做三角形的 心;三条高线的交点叫做三角形的 心。 2、在△ABC 中,∠A=40o,为△ABC 的内心,则∠BOC = 度。 3、圆的外切正三角形的边长是圆内接三角形的边长的 倍。 4、已知三角形三边长分别为3、4、5,则其内切圆半径为 。 5、设△ABC 的垂心为H ,则∠BHC +∠BAC= 度。 二、解答题 6、如图1,△ABC 中,AD 为BC 边的高线,点O 为△ABC 的外心,求 证:∠BAO=∠DAC 。 7、求证:三角形的三条中线交于一点,且这一点到顶点的距离等于中线长的2 3。 8、如图2,Rt △ABC 的内切圆⊙O 和斜边BC 的切点为T ,求证: ABC BT TC S ??=。 9、如图3,已知△ABC 的内心为I ,△BCI 的外心为D ,求证:A 、B 、C 、D 四点共圆。 10、如图4,已知△ABC 的内切圆和BC 相切于D ,求证:△ABD 、△ACD 的内 切圆相切。 11、如图5,设△ABC 的垂心为H ,并且直线AH 和外接圆及边BC 的交点分别为E 、D ,求证:HD=DE 。 12、如图6,△ABC 的垂心为H ,外心O 到边BC 的距离为OM ,求证:AH=2OM 。 13、如图7,△ABC 的垂心为H ,外心为O ,若∠A =60o;求证:三直线HO 、AB 、AC 所作成的△APQ 是正三角形。 14、如图8,△ABC 的垂心H ,若垂足三角形DEF 的外接圆和HC 的交点为G ,求证:HG=CG 。 15、设从△ABC 的外接圆的圆心O 向BC 边作垂线OD ,求证:∠BOD=∠A 或者∠BOD+∠A=180o 16、如图9,△ABC 中,∠A=2∠B ,由顶点C 作∠A 的平分线AD 的垂线CF ,垂足为F ,求证:CF 经过△ABC 的外心。 17、如图10,设过△ABC 的内心I 作BC 的平行线和AB 、AC 分别交于D 、E 、M 是BC 的中点,求证:∠DME 是钝角。 重内垂外A 卷 (1) (5) (2) I (3) C B A (4) D C B A (6)M O H D C B A (7)(9) F E D C B A (10)D (8) H G F E C B A

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

平面几何习题集大全

平面几何习题大全 下面的平面几何习题均是我两年来收集的,属竞赛围。共分为五种类型,1,几何计算;2,几何证明;3,共点线与共线点;4,几何不等式;5,经典几何。 几何计算-1 命题设点D是Rt△ABC斜边AB上的一点,DE⊥BC于点E,DF⊥AC于点F。若AF=15,BE=10,则四边形DECF的面积是多少? 解:设DF=CE=x,DE=CF=y. ∵Rt△BED∽Rt△DFA, ∴BE/DE=DF/AF <==> 10/y=x/15 <==> xy=150. 所以,矩形DECF的面积150. 几何证明-1 命题在圆接四边形ABCD中,O为圆心,己知∠AOB+∠COD=180.求证:由O向四边形ABCD所作的垂线段之和等于四边形ABCD的周长的一半。 证明(一) 连OA,OB,OC,OD,过圆心O点分别作AB,BC,CD,DA的垂线,垂足依次为P,Q,R,S。 易证ΔAPO≌ΔORD,所以DR=OP,AP=OR, 故OP+OR=DR+AP=(CD+AB)/2。 同理可得:OQ+OS=(DA+BC)/2。 因此有OP+OQ+OR+OS=(AB+BC+CD+DA)/2。

证明(二) 连OA,OB,OC,OD,因为∠AOB+∠COD=180°,OA=OD,所以易证 RtΔAPO≌RtΔORD,故得DR=OP,AP=OR, 即OP+OR=DR+AP=(CD+AB)/2。 同理可得:OQ+OS=(DA+BC)/2。 因此有OP+OQ+OR+OS=(AB+BC+CD+DA)/2。 几何不等式-1 命题设P是正△ABC任意一点,△DEF是P点关于正△ABC的接三角形[AP,BP,CP延长分别交BC,CA,AB于D,E,F],记面积为S1;△KNM是P点关于正△ABC的垂足三角形[过P 点分别作BC,CA,AB垂线交于K,N,M],记面积为S2。求证:S2≥S1 。 证明设P点关于正△ABC的重心坐标为P(x,y,z),a为正△ABC的边长,则正△ABC的面积为S=(a^2√3)/4。 由三角形重心坐标定义易求得: AD=za/(y+z),CD=ya/(y+z),CE=xa/(z+x),AE=za/(z+x),AF=ya/(x+y),BF=xa/(x+y). 故得: △AEF的面积X=AE*AF*sin60°/2=Syz/(z+x)(x+y); △BFD的面积Y=BF*BD*sin60°/2=Szx/(x+y)(y+z); △CDE的面积Z=CD*CE*sin60°/2=Sxy/(y+z)(z+x). 从而有S1=S-X-Y-Z=2xyzS/(y+z)(z+x)(x+y)。 因为P点是△KNM的费马点,从而易求得:

第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得

同理 将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC 的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

平面几何四大定理

. . 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。 求证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平 行线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB

DEG 截△ABM →1DB MD GM AG EA BE =??(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 B

平面几何四大定理

平面几何四大定理 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Me nelau s)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R,则P、Q 、R共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Pto lemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(S imso n)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△A BC的边BC 上的中线,直线CF 交AD 于F 。求 证:FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B、D 之一作CF 的平行 线。 2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F,交CB 于

平面几何四大定理 D 。 求证: 1FA CF EA BE =+。 【分析】连结并延长AG 交BC 于M,则M为BC 的中点。 DEG 截△AB M→1DB MD GM AG EA BE =??(梅氏定理) D GF 截△AC M→1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE + =MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、C A、AB 边上, λ===EA CE FB AF DC BD ,A D、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△B CE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 【评注】塞瓦定理 5. 已知△ABC 中,∠B=2∠C。求证:AC 2=AB 2+AB ·B C。

平面几何的几个重要定理--托勒密定理

托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组 对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之 和). 即:ABCD AB CD AD BC AC BD ?+?≥? 定理:在四边形中,有: ABCD 并且当且仅当四边形内接于圆时,等式成立; () ABCD E BAE CAD ABE ACD AB BE ABE ACD AB CD AC BE AC CD AB AE BAC EAD ABC AED AC AD BC ED AD BC AC ED AC AD AB CD AD BC AC BE ED AB CD AD BC AC BD E BD A B C ∠=∠∠=∠ ??∴=??=? =∠=∠∴?? ∴=??=? ∴?+?=?+ ∴?+?≥? 证:在四边形内取点,使, 则:和相似 又且和相似 且等号当且仅当在上时成立,即当且仅当、、、 一、直接应用托勒密定理 例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合), 求证:PA=PB+PC. 分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为 繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB, ∵AB=BC=AC.∴PA=PB+PC. 二、完善图形借助托勒密定理 例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2 证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是 圆内接四边形. 由托勒密定理,有AC·BD=AB·CD+AD·BC.① 又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.② 把②代人①,得AC2=AB2+BC2. 例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD, 求证:AD·BC=BD(AB+AC). 证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD. ∵∠1=∠2,∴BD=CD. 故AD·BC=AB·BD+AC·BD=BD(AB+AC). 三、构造图形借助托勒密定理 例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1. 证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB, 使AC=a,BC=b,BD=x,AD=y. 由勾股定理知a、b、x、y是满足题设条件的. 据托勒密定理,有AC·BD+BC·AD=AB·CD. ∵CD≤AB=1,∴ax+by≤1. 四、巧变原式妙构图形,借助托勒密定理 例5已知a、b、c是△ABC的三边,且a2=b(b +c),求证:∠A=2∠B. 分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进 而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c. 证明:如图,作△ABC 的外接圆,以A为圆心,BC为半径作弧交圆于 D,连结BD、DC、DA.∵AD=BC,ACD BDC =∴∠ABD=∠BAC. 又∵∠BDA=∠ACB(对同弧),∴∠1=∠2. 依托勒密定理,有BC·AD=AB·CD+BD·AC.① 而已知a2=b(b+c),即a·a=b·c+b2.② ∴∠BAC=2∠ABC. 五、巧变形妙引线 借肋托勒密定理 例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4, 分析:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起 来,可联想到托勒密定理,进而构造圆内接四边形. 如图,作△ABC的外接圆,作弦BD=BC,边结AD、CD. 在圆内接四边形ADBC中,由托勒密定理, 有AC·BD+BC·AD=AB·CD 易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC, 1.已知△ ABC 中,∠ B=2∠ C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。 则CD=DA=AB,AC=BD。由托勒密定理,AC·BD=AD·BC+CD·AB。 2.ABC BC P BC AC AB PK PL PN BC AC AB PK PL PM ? =+ 由外接圆的弧上一点分别向边、与作垂线、和, 求证:

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边 AB 、BC 、CA 于点D 、E 、F ,且D 、E 、 F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===-, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、 A B C D F P

F ,且D 、E 、F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交 于点P ,直线CP 交AB 于点D /,则 据塞瓦定理有 //1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、梅涅劳斯定理 3.梅涅劳斯定理及其证明 定理:一条直线与?ABC 的三 边AB 、BC 、CA 所在直线分别交 于点D 、E 、F ,且D 、E 、F 均不 是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. A B C D F P D / A B C D E F G

初中数学竞赛平面几何常用公式及例题讲解

面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 和角公式 A B B A B A cos sin cos sin )sin(+=+ A B B A B A sin sin cos cos )cos(-=+ B A B A B A tan tan 1tan tan )tan(-+=+ 差角公式 A B B A B A cos sin cos sin )sin(-=- A B B A B A sin sin cos cos )cos(+=- B A B A B A tan tan 1tan tan )tan(+-=-

常用角度的三角比

相关练习题: 1.已知ABC ?中,,75 =∠B ,60 =∠C ,10=BC 求AB 与AC 的长及三角形的面积 2.求证面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? 3.求证海伦公式 ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 4. 已知ABC ?中,,7=AB ,8=BC ,9=AC 求sinA , sinB , sinC 5.在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积。 6.已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点是P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长. 7.在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。 A B C E F A B C P

相关主题
文本预览
相关文档 最新文档