当前位置:文档之家› 地震监测业务管理平台系统

地震监测业务管理平台系统

地震监测业务管理平台系统

地震监测业务管理平台系统 地震监测业务管理平台

地震监测业务管理平台实现的总体目标, 就是对各类型的监测台站、地 震台网及各种监测业务进行统一平台管理, 实现运维管理、 观测业务、 观测数据信息服务的统一管理和直观化展示, 从而使管理者可以对信息进行直观、方便、快捷的管理, 真正实现规范化统一管理的目 标。系统依托网络平台为基础, 建成标准统一、功能完善、安全可靠的地震监测业务管理平台, 提供日常中心台站运维管理、观测 业务、观测数据一站式管理。

完全符合国家数字测震台网数据、国家十五前兆数

据等行业数据规范;

兼容国内外标准数据流服务、前兆十五数据通讯协

议;

与数字地震台网系统 J OPE NS 、 国家前兆十 五数据库

系统等友好、无逢对接;

兼容多种行业主流地震监测设备管理功能;

引进了地震台站监控单元概念,实现智能化、自动

化、分布式监控及管理台站观 测设备。

地震监测运维管理平台 (PC 客户端/移动手机客户端) 坊钓贯 视幔益控

心”

众”

*a 富`心也

,还 ," '" .舫.盗.邕.拧..,

, .".. .".. .... - ... 丸宜.. "田 ,的 0 凇. , " " " (')

(') (') (') (') (') (') (') , .. -· - .... 可 震 , . 霉 惆龟

... ·- " 亏 " = ,_r _-_,,

.,

一星 竺

.J 二 t 二 .字

. 一 · 餐[纳兆]台站俸效故霞 2小时卿

鲨 l!I 电 瀑 O 限 安中心小零

测震 鲨震 酌兆 胃[粕亢 l 台站.败放障 正寓

2 小射躺 ,, 瑾纣小掌 正霄

胃[鹤兆]台站簪咬故赡 2小时晌

O 渴享实翰中字 胃(纳和 台站网 Ill 断开 江霄

2 小厨鹤 0 厥置l 弓叠 断开 畏[倡震]臼贴网络断升 mm

2小射鹃 O 石良小孝 断开 胃[剽震]台站网络断开

2小呵粕 0 云蕾村委 胃[奄瀑l 台站电瀑断开 正寓

2 小射麟l O 扈喟I 弓委

嘶开

O J\一幅筐掌佼

正霄

: @ O :; >;- :.' ?. O 巳 只 专业地震监测系统平台

地震勘探的一些基础知识.doc

接收条件received condition:指地震勘探中接收地震波的仪器的工作状态和条件。广义地说, 接收条件包括地震检波器的安置情况、组合个数与方式,以及地震仪的各种因素等。但通常将接收条件狭义地指地震检波器的安置情况。地震资料的质量与接收条件有密切关系。陆地工作中埋置检波器,海洋工作中使检波器处于水面下一定深度,都是为了避免风、浪等影响而改善接收条件。 界面速度interface velocity:指折射波沿折射界面滑行的速度。界面速度主要反映折射界面以下地层中岩石的物理性质。由于组成地层的岩石颗粒排列有方向性,通常界而速度大于层速度。界面速度可通过折射波测得。 加速度检波器accelerometer:即“压电地震检波器”。 激发条件excited condition:地震勘探中将震源种类、能最、周围介质的情况总称为激发条件。对于炸药震源来说,激发条件一般包括炸药量大小、药包形状,个数,分布方式及埋置岩性和沉放深度等。对于非炸药震源,激发条件则包括装置的种类、能量、参数选择及安置情况等。激发条件的选择是否适当,对地震勘探原始资料质量的影响很大。一般认为,陆地工作中, 风化层下的含水可塑性岩层是有利的激发条件,因此往往采用井中爆炸,在海洋工作小,主要是以减小气泡影响作为合适的激发条件。 海洋地震勘探marine seismic survey:是利用勘探船在海洋上进行地震勘探的方法°其特点是在水中激发,水中接收,激发,接收条件均一;可进行不停船的连续观测。震源多使用非炸药震源,接收常用压电地震检波器,工作时,将检波器及电缆拖曳于船后一定深度的海水中由于上述特点,使海洋地震勘探具有比陆地地震勘探高得多的生产效率,更需要用数字电子计算机处理资料。海洋地震勘探中常遇到一些特殊的干扰波,如鸣震和交混问响,以及与海底有关的底波干扰。海洋地震勘探的原理,使用的仪器,以及处理资料的方法都和陆地地震勘探基本相同。由于在大陆架地区发现大量的石汕和天然气,因此.海洋地震勘探有极为广阔的前景。 高频地震high frequency seismic survey:在水文地质、工程地质调杏和金属矿床勘探中,勘测深度只在儿米到儿百米之间,需要精细分层和精确地测定波的传播时间。为了提高仪器的分辨能力,要用专门的高频地震仪,记录震波的高频分量。高频地震仪的通频带?般在60-350周 /秒之间,专门测定岩石波速时需提高到500-600周/秒。为了压制低频干扰,仪器频率特性的低频一边应有较大的陡度。 干扰波noise:地震勘探中妨碍分辨有效波的振动都属于干扰波。干扰波大体上可分为两种:其中具有明显传播规律的称为规则干扰或干扰波,如声波、面波,多次波等等;没有明显传播规律性的振动称为随机干扰,或简称干扰,如微震等。抗干扰的问题是关系到地震勘探中提高勘探的质量和能力的极其重要的问题。因此,在野外工作和资料处理上采用多种措施,以提高有效波而压制干扰波。干扰波有时也是相对的概念,如在反射法中,折射波就常

地震监控系统硬件的电路方案

地震监控系统硬件的电路方案 版本:V 1.0 深圳市非常智慧信息技术有限公司

2016 年09 月

目录 1 方案简介 (4) 2 方案设计 (4) 2.1 系统框图 (4) 2.2 主要元件选型 (4) 2.3 功耗估算 (6) 2.4 成本估算 (6)

1方案简介 本方案提供了一种低成本、低能耗的野外地质地震检测的电路设计。本方案可实现: ●24bits 模数采样精度,GPS定时时戳获取 ●地震采样数据保存于SD卡 ●电池供电,工作时长可在1个月以上 ●适应高寒、高温环境,工作温度:-40°C to 85°C ●…… 2方案设计 2.1 系统框图 小板电路框图 2.2 主要元件选型 1、MCU的选型

我们主要在两款通用的内嵌处理器芯片之间选型:STM32和MSP430。STM32是意法半导体公司生产的一种32位CPU处理器;MSP430是Ti公司生产的一款面向低成本、低能耗、高稳定性的通用处理器,在本方案中,我们选取其中集成了24位AD转换的型号。这两款CPU,在工业控制领域,均得到广泛应用。 由表一可见,STM32和MSP430芯片各有优点,STM32性能更高;而MSP430能耗更低、片内具备24bits的AD转换器,无需外置独立的ADC器件。本方案中,优选MSP430芯片。 2、GPS定位芯片的选型

SiRF和U-blox为目前为全球最大的两家GPS芯片供应商,其芯片被广泛用于智能手持终端(如手机、平板电脑)、车载导航等领域。相比较而言,SiRF的芯片体积更小而更适合于在小型设备中集成,价格也稍有优势。本方案中,SiRF芯片为优选。 2.3 功耗估算 TF卡:100mA ,3.0V MCU(MSP430): 4.4mA,3.3V GPS(SiRF GSD4e):4.4mA,1.8V 地震传感器:(未定) 总功耗为(未包括地震传感器):100*3+4.4*3.3+4.4*1.8=323mW。 我们下面估算一下采用电池供电(如2600mAH,9.88WH的手机电池)时,地震监控设备在野外可持续工作的时间: 9880/323=30.59小时。这个时间长度显然是不够的,还需在软件中对能耗进行优化。我们可采用“休眠”的方式进行数据采集。即每秒中,MCU只开启10ms进行数据采集,其余990msMCU处于休眠状态。休眠状态的设备能耗近似为0,可忽略不计。则软件优化后,设备在野外工作的时间可在一个月以上。 2.4 成本估算 为主要的硬件Bom成本,供参考。

-地震勘探实验报告讲解

中国地质大学(武汉)地空学院 地震实验报告 姓名:沈 班级:班 学号: 时间: 2015年05月 指导老师:张

一、实验目的 实验一: 1、浅层地震装备的基本组成; 2、认识GEODE96浅层地震仪的主要结构,并学会该类仪器的操作方法; 3、地震波认识。 实验二: 1、掌握浅层地震数据采集方法及注意事项 二、仪器介绍 1、仪器简介 全套美国GEOMETRICS公司生产的Geode96浅层地震仪(相当于四套独立的24道浅层地震仪)该仪器能满足折、反射地震勘探、井间勘探、面波调查等地震监测需要,应用Crystal公司的A/D转换器和高速过采样技术达到了24位地震仪的精度。频带从1.75Hz到20,000Hz,使得采样间隔可以从20毫秒到16微秒。采样到的数据叠加到32位的叠加器中,然后传回到主机的硬盘或其它介质上。内置预触发器,每道有16K的内存。用硬件相关器对震源信号进行实时相关运算。Geode包装坚固、防水、防震,有提手,重4.1公斤,用12V的外接电池可以连续工作10个小时。(如下图)

2、主要操作功能键及快捷键 注释: 1锁定与解锁;2清除界面;4检测噪声;7保存 3、操作步骤及注意事项 1、每个GEODE用数传线按规定串联,通过数传盒与笔记本电脑的USB口连 接。 2、每个GEODE接上12V电源。 3、开关接到与笔记本相连的第一个GEODE上。 4、传盒上的开关置于POWER UP处。 5、采集控制程序,并按工作需要设置好各项参数,然后进行正常数据采集工作。 6、出采集控制程序之前,应将数传盒上的开关置于POWER DOWN处。 7、卸下各连接线并清理整齐。 8、注意的是:在正常工作过程中,任何时候移动数传线与GEODE的连接头时,必须退出采集控制程序。另外Y型头上有红色标记的与GEODE的前12道相连接。而且采集控制软件运行的语言环境必须是英语(美国)。

二维地震勘探报告

一、施工情况 按照《煤炭煤层气地震勘探规范》MT/T 897-2000的有关技术规定和要求,山西山地物探技术有限公司于2010年9月18日至9月23日历时5天,在该区开展了野外试验工作。9月26日开始转入生产工作。于2010年10月16日完成了野外采集,历时29天,共完成地震测线4条,测线长度7.82km。完成试验点1个,试验物理点14个,微测井1个;设计生产物理点238个,完成生产物理点229个;共计完成物理点233个。其中:甲级记录125张,占54.6%,乙级记录100张,占43.7%,物理合格率98.3%。野外原始资料质量满足《规范》和《合同》要求。为后续处理工作奠定了基础. 2010年10月8日~10月18日在涿州恒顺技术服务有限公司完成了资料处理,共获得地震时间剖面5条,处理剖面长度7.32km,满24次覆盖剖面长度3.7km。依据《规范》要求,对满覆盖时间剖面进行了评价,其中Ⅰ类剖面2.93km,占79.2%;Ⅱ类剖面0.44km,占11.9%。Ⅰ+Ⅱ类剖面168.51km,占91.1%,资料处理质量满足规范要求。 2010年10月20日完成了全部构造解释、图件编绘和报告编制工作。 二、地质任务 根据《煤炭煤层气地震勘探规范》MT/T897-2000及勘探地质目的要求,本次二维地震勘探的地质任务为: 1、了解测线控制范围的构造形态,查明F 2、F3断层的落差、性质及其平面展布情况,平面误差不大于50 m。对地震测线上新发现的20m以上断点做出解释。 2、控制测线范围内2号、9号煤层底板的赋存形态,解释误差不大于5%。 三、测线布置 地震主测线布设北西-南东向,与构造主方向和地层走向近垂直,布设测线5条,详见图1。

地震勘探实验报告记录

地震勘探实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

中国地质大学(武汉)地空学院 地震实验报告 姓名:沈 班级:班 学号: 时间: 2015年05月 指导老师:张

一、实验目的 实验一: 1、浅层地震装备的基本组成; 2、认识GEODE96浅层地震仪的主要结构,并学会该类仪器的操作方法; 3、地震波认识。 实验二: 1、掌握浅层地震数据采集方法及注意事项 二、仪器介绍 1、仪器简介 全套美国GEOMETRICS公司生产的Geode96浅层地震仪(相当于四套独立的24道浅层地震仪)该仪器能满足折、反射地震勘探、井间勘探、面波调查等地震监测需要,应用Crystal公司的A/D转换器和高速过采样技术达到了24位地震仪的精度。频带从1.75Hz到20,000Hz,使得采样间隔可以从20毫秒到16微秒。采样到的数据叠加到32位的叠加器中,然后传回到主机的硬盘或其它介质上。内置预触发器,每道有16K的内存。用硬件相关器对震源信号进行实时相关运算。Geode包装坚固、防水、防震,有提手,重4.1公斤,用12V的外接电池可以连续工作10个小时。(如下图)

2、主要操作功能键及快捷键 注释: 1锁定与解锁;2清除界面;4检测噪声;7保存 3、操作步骤及注意事项 1、每个GEODE用数传线按规定串联,通过数传盒与笔记本电脑的USB 口连接。 2、每个GEODE接上12V电源。 3、开关接到与笔记本相连的第一个GEODE上。 4、传盒上的开关置于POWER UP处。 5、采集控制程序,并按工作需要设置好各项参数,然后进行正常数据采集工作。 6、出采集控制程序之前,应将数传盒上的开关置于POWER DOWN处。 7、卸下各连接线并清理整齐。 8、注意的是:在正常工作过程中,任何时候移动数传线与GEODE的连接头时,必须退出采集控制程序。另外Y型头上有红色标记的与GEODE的前12道相连接。而且采集控制软件运行的语言环境必须是英语(美国)。

国内外微地震检测技术现状与应用

国内外微地震检测技术现状与应用 一、国内技术应用现状 基于微震监测的裂缝评价技术正发展成为油层压裂生产过程中直观而又可靠的技术。近几年来,国内众多油气田纷纷投入人力、物力和资金,积极开展该技术的应用与研究工作,广泛用于油气勘探开发工作。 1、2011年,东方物探公司投入专项资金,积极开展压裂微地震监测技术研究,压裂微地震监测技术水平得到快速提升。截止2011年11月,东方物探公司已成功对11口钻井实施了压裂微地震监测。 2、同年,华北油田物探公司针对鄂尔多斯工区大力推广水平井分段压裂技术、不断提高储量动用率及单井产量的要求,2011年年初就对微地震检测技发展状况进行调研,并对检波器、记录仪器、处理软件进行实际考察。 他们与科研院校合作,在鄂南工区富县牛东4井与洛河4井开展微地震监测裂缝评价技术攻关,采用微地震技术对储层压裂进行监测,结果与人工电位梯度方法(ERT)监测结果一致。该公司还通过组建微地震监测项目组,加强相关专业知识的培训和学习,并与科研院校“高位嫁接”,开发微地震检测特色技术,打造差异化竞争优势。 3、近年来,胜利油田积极开展微地震压裂检测技术应用研究,并把它作为油气勘探开发的重要技术手段和技术储备。 据了解,“十二五”期间,非常规油气藏将成为胜利油田的一个重要接替阵地,而微地震压裂检测技术是非常规油气藏勘探领域中的一项重要新技术。 通过开展对国内外微地震压裂检测技术现状、微地震压裂检测采集方法、数据处理及裂缝预测方法、目前成熟的处理反演软件、微地震压裂检测技术应用实例分析等方面调查研究,全面了解和掌握微地震压裂检测技术的技术特点、技术关键、技术实用性及其发展方向,为胜利油田下一步开展非常规油气资源的勘探开发工作提供先进的技术支持,更好地为油气藏勘探开发工作服务。 二、国外技术研究与应用 在20世纪40年代,美国矿业局就开始提出应用微地震法来探测给地下矿井造成严重危害的冲击地压,但由于所需仪器价格昂贵且精度不高、监测结果不明显而未能引起人们的足够重视和推广。 近10年来,地球物理学的进展,特别是数字化地震监测技术的应用,为小范围内的、信号较微弱的微地震研究提供了必要的技术基础。为了验证和开发微地震监测技术在地下岩石工程(如地热水压致裂、水库大坝、石油、核废料处理等)中所具有的巨大潜力,国外一些公司的研究机构和大学联合,进行了一些重大工程应用实验。如1997年,在美国德州东部的棉花谷进行了一次全面而深入的水压致裂微地震成像现场实验,以验证微地震成像技术的实用价值。该实验取得了巨大成功,证明微地震成像技术相对于其它技术来讲,分辨率高、覆盖范围广、经济实用及可操作性强,很有发展潜力。 美国之所以成为目前世界上页岩油气开发的领跑者,就是因为它已经熟练掌握了利用地面、井下测斜仪与微地震检测技术相结合先进的裂缝综合诊断技术,可直接地测量因裂缝间距超过裂缝长度而造成的变形来表征所产生裂缝网络,评价压裂作业效果,实现页岩气藏管理的最佳化。该技术有以下优点: ①、测量快速,方便现场应用; ②、实时确定微地震事件的位置; ③、确定裂缝的高度、长度、倾角及方位;

地震勘探基础知识

地震勘探基础知识(总13页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

1. 有关地震勘探的一些基本概念 1.1 地震勘探是勘探石油的有效方法 勘探石油的方法和技术,按其勘探手段划分,可分为地质法、物探法和钻探法三种基本类型。 地球物理勘探法(物探法)运用物理学的原理和方法,即利用地壳中岩石的物理性质(如岩石的弹性、密度、磁性和电性)上的差异来研究地球,了解地下岩层的起伏情况和组成情况,从而达到寻找储油构造以勘探石油的一种勘探方法。 依据研究对象的不同,物探法主要分为以下几种: 地震勘探(利用岩石的弹性差异) 重力勘探(利用岩石的密度差异) 磁法勘探(利用岩石的磁性差异) 电法勘探(利用岩石的电性差异) 在石油勘探中,最经济的方法是物探法。首先用物探法对工区的含油气远景作出评价,为钻探提供探井井位。然后钻探法通过实际钻进,以对物探法进行验证。如果构造含油,又可根据物探资料和探边井计算出含油面积和地质储量。 在我国,陆上是广大的地表松散沉积(如松辽平原、华北平原等)和沙漠覆盖区(如塔什拉玛干大沙漠),海上是被辽阔的海水所覆盖的“一片汪洋”,已看不到岩层的地面露头的出露。而钻井法成本高、效率低。如何解决这些地区的地质构造和地质储量问题呢?在这时就充分显示了物探法应用的威力。 在各种物探方法中,地震勘探具有精度高的突出优点,而其它物探方法都不可能象地震勘探那样详细而准确地了解地下由浅至深一整套地层的构造特点。因此,地震勘探已成为石油勘探中一种最有效的方法。 1.2 地震勘探基本原理 地震勘探是利用人工激发地震波的方法引起地壳的振动,并用仪器把来自地下各个地层分界面的反射波引起地面上各点的振动情况记录下来。利用记录

地震勘探实验报告

地震勘探实验报告 院系:_____________ 专业:_____________ 班级:_____________ 姓名:_____________ 2014年5月5日

地震勘探野外实验报告 一、基本任务 1.1 实验目的和要求 实验按指导书要求完成,以便通过此次实验,达到巩固和加深对校内课堂理论教学内容的理解和认识,提高分析和解决实际生产问题的能力;培养学生严肃认真的学习态度,理论联系实际,实事求是的科研作风;团结协作的精神。具体要求如下: 1、初步实践野外地震勘探各种技术工作; 2、基本掌握野外数据采集方法技术和地震仪器装备的使用和操作; 3、学习地震记录的分析与评价; 4、学习地震资料几种常规处理方法; 5、学习反射波地震勘探资料的构造解释。 1.2 实验内容 实验主要内容为:地震勘探野外数据采集方法作业,简单的数据处理和室内资料的解释成图,具体包括如下内容: 1、野外数据采集 ①工区地质、地球物理概况及地震地质条件的了解; ②测线布置依据和观测系统设计; ③排列的布设; ④仪器的学习及操作; ⑤仪器参数和观测系统参数的试验及正确设置; ⑥野外数据采集施工技术; 2、室内数据处理; 3、室内资料解释和成图 二、数据采集仪器 1、一台McSEIS-SX 48 XP地震仪(配件:一条电源线,一条大缆接受器,一个鼠标)(图一) 2、两根5m大缆 3、24个100Hz检波器 4、一块12V蓄电池 5、一条同步触发道 6、激发装置:一把18磅铁锤,一个铁块

7、测绳一根 9、罗盘一个 10、野外记录本 图一地震仪 图二部分实验仪器

三、野外地震勘探数据采集 3.1 测线的布置 测线布置的原则:主测线的方向,应尽可能地垂直地层或构造走向,并与设有地质钻井以及其他物探测线的方向重合,以利于各种勘探资料的对比分析和相互补充验证,主测线之间还应布置联络测线,以控制勘探精度。(图三) 图三测线布设 3.2 观测系统设计 反射波勘探一般采用多次覆盖系统。表示出共炮点线(含道号),共接收点线,共偏移距线,共CDP点线,并标出炮号、桩号、道号、道间距、覆盖次数和比例尺。(图四) 3.3 激发 实验采用锤击震源,采用18磅的铁锤以及15~25cm见方、重10~20kg的铁板作为锤击激发震源。激发点应平整、坚实、表层浮土应予清除,垫板要摆放平实。 3.4 接收 (1) 检波器的选择:根据勘探目的和勘探深度选择浅层反射波勘探100Hz的检波器。 (2) 检波器埋置:检波器要平稳、垂直(倾斜度应小于10o)、埋实在接收点位置上。检波器与电缆连接应正确,防止漏水造成的漏电和地面渍水造成的短路,也要防止极性接反和接触不良。(图五)

地震监控系统解决方案

地震监控系统解决方案 地震行业观测台站广泛设立在边远郊区等交通环境恶劣的环境中,致使获取数据的效率以及台站观测数采仪设备的维护效率大大降低。无法及时、快速、准确的处理数据信息。为了提高地震背景场探测系统的信息化水平,提高数据分析的及时性和准确性,避免地震带来的重大危害,有效及时发现并救援,将各采集点的数据实时上传到中心监控端进行分析预测是地震监测行业中非常重要的一环。 智联物联根据地震行业的监测特点,采用4G路由器ZR2000系列智能网关,构建一整套地震监控系统解决方案,实现地震背景场探测系统的自动化、信息化、网络化,加强地震科学研究、监测预报、震灾预防及紧急救援的基础设施。

项目需求: ?支持2G/3G/4G 网络 ?与强震动仪实现串口协议对接 ?支持远程管理与维护 ?工业防护等级大于等于 4 级 ?宽压支持DC12-48V ?能够长期承受-20℃-70℃的高低温环境智联物联地震监控系统解决方案:

采用智联物联4G路由器ZR2000与固定观测台站数据采集仪相连接,通过以太网方式将现场的地震数据上传到地震背景场探测系统中心; 4G路由器ZR2000能够适应严苛的室外环境,采用2G/3G/4G高速无线网络作为数据承载网络,为远程设备和站点之间的联网提供安全高速的无线连接。无论观测站点身在何处,都可通过2G/3G/4G网络快速接入互联网,4G路由器ZR2000通过VPN与地震背景场探测系统中心建立通信连接,便于技术工程师使用专业软件对强震数据进行分析处理; 智联物联科技集产品研发、生产、销售、技术服务及定制化开发于一体,产品有工业级3G/4G无线路由器,GPRS DTU,3G /4G DTU,车载wifi,无线视频监控,移动路由器,联通路由器,电信路由器,GRE,PPTP,L2TP,IPSec,OPENVPN,,GPS模块,4G模块,直播负载均衡路由器,4G工控机,M2M云平台等硬件及软件。 遍及智能电力、智能交通、智能消防、智能家居、智慧水利、智慧医疗、快递柜、充电桩、自助终端、公共安全、安防通信、工业监测、环境保护、环境监测、路灯照明、花卉栽培、车载Wifi等多个领域。 对所有地震台站4G路由器ZR2000的在线状态监控、批量管理、流量监控,提高管理效率;基于地图的网管系统,方便用户进行现场定位,精细化管理设备现场;优化的网管协议,适合低带宽、高延时的网络环境,符合无线移动网络特点。4G路由器ZR2000通过触手可及的对远程设备进行管理和监控,优化了地震监测行业的整体通信解决方案。 智联物联优势:

特殊观测系统在地震勘探的应用

特殊观测系统在地震勘探的应用 地震勘探是地质勘察的一种方法,关系到地质分析的效率和效益。地震勘探中的特殊观测系统,有利于提高地震勘探的水平,优化地震勘探在地质分析中的应用,落实特殊观测系统中的实践性,进而发挥特殊观测系统的优势。因此,本文通过对特殊观测系统进行研究,分析其在地震勘探中的应用。 标签:特殊观测系统地震勘探炮点 地震勘探很容易受到外界环境的影响,增加了地质勘测的压力,引发了多项勘探问题。特殊观测系统在地震勘探中具有实践性的价值,加强地震勘探在野外环境中的控制力度,提高地震勘探的作业水平。特殊观测系统在地震勘探中取得良好的应用效益,完善地震勘探的环境,体现了特殊观测系统的积极性与控制性,强调地震勘探的准确度。 1地震勘探中特殊观测系统的原理与布置 特殊观测系统在地震勘探中的原理是:在矿区地震勘探的过程中,地震波传输的过程中很容易遇到障碍物,不能保障地震勘测的质量。特殊观测法在地震勘探中,取代了传统的勘探方法,通过研究激发点得出地震勘探反射波的路径,记录相关的反射点,合理安排信息处理。 地震勘探中特殊观测系统的布置方法为:首先确定地震勘探的震源点,在震源处实行放炮激发,途中会经过需要勘探的障碍物,而障碍物的另一侧需要安置接收装置,便于获取地震勘探的数据资料;然后根据震源点和接收点的数据信息,得出相关的数据资料,利用特殊观测系统移动震源位置,比对数据后得出障碍物的信息;最后将震源位置与接收位置相互调换,重新安排特殊观测系统的应用,获得另一部分障碍物的信息,由此得出整个障碍物的信息,找准矿区勘探中的障碍物[1]。特殊观测系统在地震勘探中的布置方法,需要加强准确性的控制,保障数据处理的准确性,消除潜在的误差信息。 2地震勘探中特殊观测系统的设计 特殊观测系统的综合性强,需要根据地震勘探的方法进行设计,确保其符合地震勘探的需求[2]。特殊观测系统在地震勘探中的应用,主要是勘探地下障碍物的信息,得出障碍物的准确信息。特殊观测系统在地震勘探中,需要采取灵活修改的方式,合理安排修改,落实特殊观测系统的设计方法。分析地震勘探中特殊观测系统比较常见的设计方式,如:(1)安排专业人员执行修测,按照地震勘探的方式,设计出灵活的特殊观测系统;(2)充分准备特殊观测系统应用中所需要的设备,促使系统设备能够满足实际设计的需求,避免出现发送或接收问题,还能保障炮点分配的准确性;(3)特殊观测系统中应该保障覆盖次数设计的准确性,尽量设计出高于正常值的次数,便于特殊观测系统应用的调节,辅助地震勘探能够准确的得出障碍物的信息,满足现代地震勘探的需求,表现特殊观测系统

海底地震观测系统设计方法研究_伍忠良

第31卷第2期2011年03月 西安科技大学学报 J OURNAL OF X I.AN UNI V ERSI T Y OF SCI E NCE AND TEC HNOLOGY V o.l31N o12 M ar12011 文章编号:1672-9315(2011)02-0194-04 海底地震观测系统设计方法研究* 伍忠良1,马德堂2,沙志彬1 (1.广州海洋地质调查局,广东广州510760;2.长安大学地测学院,陕西西安710054) 摘要:海底地震仪(OBS)可以获取纵波、转换横波等多种有效的地震波信息。丰富的多波勘探信息对于弄清水合物内部速度结构、提高地层的分辨率具有重要意义。海底地震观测系统设计的主要研究目的是为海底地震数据采集提供最佳的海底地震仪分布形态、分布间距等观测系统参数。本文中结合国外OBS在天然气水合物中的应用成果,采用射线追踪法,实现了海底地震观测系统设计,取得了较好的应用效果。 关键词:天然气水合物;海底地震仪;观测系统设计 中图分类号:P315.61文献标志码:A 1发展现状与观测系统设计的意义 1992年欧盟成立的欧洲大陆边缘水合物储量预测技术委员会(HYDRATECH),于当年6~7月在挪威外海斯瓦尔巴特(STOREGGA)滑塌区(水深840~1150m),采用海底地震仪(OBS)进行了针对天然气水合物的二维地震和三维地震数据采集,使用的海底地震仪有法国地调局的M icr O bs,德国K.U.M.-Obs 以及海底高频检波器等设备,一共采集了2次。第1次于6月22日~7月3日,进行了三维地震与M-i c Obs的联合采集,针对天然气水合物特定的目标体,使用了3@7矩阵排列,其排列间距为400m,如图1所示。第2次于7月7~20日,采用OBS进行了二维地震数据采集。OBS间距根据地质目的而呈现不等间距排列。调查资料为后续天然气水合物速度结构分析提供了较好的纵、横波研究资料[1]。 2001年英国BP公司在墨西哥湾雷马油田(ThunderH orse O ilF ield)采用OBS进行了三维地震联合采集,使用了80台G eoPr o OBS,组成了8@10OBS方阵,排列间距为400m,获得了良好的纵横波信息[2]。可见,无论是深海油气勘探,还是天然气水合物调查,尽管投放海底的OBS的个数有限,但通过合理安排OBS布设方式、排列间距、炮点及炮线间距,可以获得比较好的纵横波及其转换波的有效信息。 2观测系统设计的方法与步骤 这里主要采用射线追踪方法获得OBS能接收到的各类波的射线路径、旅行时、面元叠加次数等运动学参数,根据这些参数综合判定观测系统的优劣,继而选取最优的野外采集观测系统。射线追踪方法较多,主要包括求解初值问题的/打靶法0(Sa m bri d ge,Kennet,t1990)[3]、求解边值问题的/弯曲法0(Per-eyraet a,l1980)[4]和基于程函方程的波前法(V ida le,1990)[5]等。鉴于三维射线追踪方法耗时多,这里采用/二维拟三维0的方法,即在以往天然气水合物调查的基础上针对特定的水合物目标体建立三维地质模型,然后沿多个特定方向切取二维地质剖面,按野外采集的作业方式以及不同的OBS间距与分布形态,用/打靶法0进行二维射线追踪,再统计分析OBS分布区间内各类波特别是转换横波的面元叠加次数,据此判断OBS间距与分布形态的合理性,并确定最优的OBS的间距与分布形态,从而实现观测系统设计,具体步骤如下。 *收稿日期:2010-06-10 基金项目:国家/8630计划重大项目(2006AA09A202) 通讯作者:伍忠良(1967-),男,湖南安乡人,高级工程师,主要从事海洋地质地球物理勘察研究.

微地震检测技术简介

微地震监测技术及应用 随着非常规致密砂岩气、页岩气藏的开采开发,压裂技术在储层改造中起着举足轻重的作用,而微地震监测技术是评价压裂施工效果的关键且即时的技术之一。根据微地震监测处理高精度地反演微震位置,从而预测压裂裂缝的发展趋势及区域,对压裂施工效果进行跟踪及评判,同时也为后期油气藏的开采和开发提供技术指导。 第一节微地震监测技术原理与发展 微地震监测技术是通过观测、分析生产活动中所产生的微小地震事件来监测生产活动的影响、效果及地下状态的地球物理技术,其基础是声发射学和地震学。与地震勘探相反,微地震监测中震源的位置、发震时刻、震源强度都是未知的,确定这些因素恰恰是微地震监测的首要任务。微地震是一种小型的地震(mine tremor or microseismic)。在地下矿井深部开采过程中发生岩石破裂和地震活动,常常是不可避免的现象。由开采诱发的地震活动,通常定义为,在开采坑道附近的岩体内因应力场变化导致岩石破坏而引起的那些地震事件。开采坑道周围的总的应力状态。是开采引起的附加应力和岩体内的环境应力的总和。 一、技术背景 岩爆是岩石猛烈的破裂,造成开采坑道的破坏,只有那些能够引起矿区附近的地区都受到破坏的地震事件才叫做冲击地压或煤爆、“岩爆”。对地下开采诱发的地震活动性的研究表明,矿震不一定全都发生在开采的地点,且不同地区的最大震级也不相同,但矿震深度一般对应于开采挖掘的深度。每年在一些矿区的地震台网能记录到几千个地震事件,只有几个是岩爆。在由开采引起的地震事件的大的系列里,岩爆只是其中很小的一个分支。对矿山地震、微地震及冲击地压的观测具有一致性,但应用到实际生产中必须区别对待。 二、微地震技术的发展 基于微震监测的裂缝评价技术正发展成为油层压裂生产过程中直观而又可靠的技术。近几年来,国内众多油气田纷纷投入人力、物力和资金,积极开展该技术的应用与研究工作,广泛用于油气勘探开发工作。2011年,东方物探公司投入专项资金,积极开展压裂微地震监测技术研究,压裂微地震监测技术水平得

广州市地震监测中心广州市地震监测数据管理组织与信息服务系统

广州市地震监测数据处理和信息服务系统建设(二期)——应用软件开发采购需求书 一、项目名称 广州市地震监测中心广州市地震监测数据处理与信息服务系统(二期)-应用软件开发 二、采购项目主要内容 主要内容包括:委托开发预警数据综合分析展示子系统、警报信息分析与发布子系统、预警信息接收终端、预警工作管理子系统、地震监测信息公众服务子系统升级改造、数据接口,项目资源库建设、数据迁移,采购数据库软件和智能报表工具各一套。 三、采购项目名称、编目及预算情况 1、采购项目名称:广州市地震监测中心广州市地震监测数据处理与信息服务系统(二期)-应用软件开发。 2、采购编目:xxxxxx 3、本子项目总预算128.9万元。(支付金额按市财政局下达额度为准)具体支付方式在标书上反映。 四、商务要求 1、投标供应商应具备《政府采购法》第二十二条规定的相关条件;

2、投标供应商必须在中国境内依法注册、具有独立法人资格且注册资金200万人民币或以上的合法企业; 3、投标供应商必须具备相关主管部门颁发的《软件企业认定证书》; 4、本项目不接受联合体形式的投标。 五、技术需求 1、软件系统建设一览表

2、开发广州市地震监测数据处理与信息服务系统(二期)建设标准规范如下:(技术标准以建设方案为准)《《计算机软件开发规范》GB8566-88 《软件包质量要求和测试》GB/T 17544 《信息技术软件产品评价质量特性及其使用指南》GB/T 16260 《电气装置安装工程接地装置施工及验收规范》GB50169-92 《电子计算机机房设计规范》GB50174-93 《国家中长期科学和技术发展规划纲要(2006-2020年)》《中国地震信息服务系统技术规程》(JSGC-06) 《地震数据库系统技术规范(试行)》(中国地震局2001年9月发布) 《中国地震局信息网站管理办法》(试行) 《地震数据分类与代码》 DB/T11.1-2000 《地震科学数据共享管理办法》 《地震科技数据与共享用户的分类、分级指南》 《地震科学数据共享服务规定》 《地震科学数据汇交管理规定》

地震监测系统

GIS地震探测系统 一、概述 地震又称地动、地振动,是地壳快速释放能量过程中造成振动,期间会产生地震波的一种自然现象。全球每年发生地震约五百五十万次。地震常常造成严重人员伤亡,能引起火灾、水灾、有毒气体泄漏、细菌及放射性物质扩散,还可能造成海啸、滑坡、崩塌、地裂缝等次生灾害。 地球的构造分为三层:即中心层地核、中间层地幔、外层地壳; 1.地壳:分为上地壳和下地壳。是岩石圈上部次极圈层。 2.地幔:分为上地幔和下地幔。岩石圈是它的一部分,软流层以上。地幔多以流体形式的岩浆等物质存在 3.地核:分为外核和内核。外核是液体的,所以又称外核液体圈。内核,是固体的,主要由铁、镍组成,又称内核固体圈。 地壳与地幔之间由莫霍面界开,地幔于地核之间由古登堡面界开。地震一般发生在地壳之中。地壳内部在不停地变化,由此而产生力的作用,使地壳岩层变形、断裂、错动,于是便发生地震。超级地震指的是指震波极其强烈的大地震。但其发生占总地震7%~21%,破坏程度是原子弹的数倍,所以超级地震影响十分广泛,也是十分具破坏力。 下图为全球板块构造运动图:

地震是地球内部介质局部发生急剧的破裂,产生的震波,从而在一定范围内引起地面振动的现象,地震就是地球表面的快速振动,在古代又称为地动,他就像海啸、龙卷风、冰冻灾害一样,是地球上经常发生的一种自然灾害,大地振动是地震最直观、最普遍的表现;在海底或滨海地区发生的强烈地震,能引起巨大的海浪,称为海啸。地震是极其频繁的,全球每年发生地震约550万次。 地震波发源的地方,称为震源。震源在地面上的垂直投影,地面上离震源最近的一点称为震中,它是接受振动最早的部位,震中到震源的深度叫做震源深度。通常将震源深度小于70公里的叫做浅源地震,深度在70~~300公里的叫做中源地震,深度大于300公里的叫做深源地震。对于同样大小的地震,由于震源深度不一样,对地面造成的破坏程度也不一样;震源越浅,破坏越大,但波及范围也越小,反之亦然。 破坏性地震一般是浅源地震。如1976年的唐山大地震的震源深

微地震技术与压裂效果评价

微地震技术与压裂效果评价 摘要:本文就油田不同开发阶段,利用微地震监测技术对水力压裂人工裂缝实时监测,根据裂缝监测结果应用科学的评价方法,定量计算水力压裂措施前后渗流阻力及产量,是一项十分必要评价压裂效果的可靠方法。 关键词:微地震;监测;油气藏;地应力;储层;评价 目前提高低渗透油藏单井产量最有效的方法是对油层进行水力压裂改造。通过微地震监测技术,监测压裂人工裂缝形成过程中所诱发的微地震事件,通过对微地震事件反演及震源定位,就可以了解裂缝的产状,进而客观的描述压裂裂缝的再生作用导致的应力改变,以有效地提高油田开发水平。 1.微地震监测技术 微震动(包括微地震)监测技术是20世纪90年代发展起来的一项地球物理勘探新技术,应用于油气藏勘探开发、煤矿“三带”(冒落带,裂缝带和沉降带)监测,矿山断裂带监测,地质灾害监测等多个领域。目前微地震监测技术在国内外油气田勘探开发中的应用已经比较普遍。 1.1监测原理 油气水井新井投产或后期改造进行水力压裂时,在射孔位置,当迅速升高的井筒压力超过岩石抗压强度,岩石遭到破坏,形成裂缝,裂缝扩展时,必将产生一系列向四周传播的微震波,微震波被布置在压裂井周围的多个监测分站接收到,根据各分站微震波的到时差,会形成一系列的方程组,求解这一系列方程组,就可确定微震震源位置,进而计算出裂缝分布的方位、长度、高度及地应力方向等地层参数;同时结合井口压力监测可获得闭合压力、液体滤失系数、液体效率、裂缝宽度等参数。 1.2压裂效果评价方法 根据目前国际上通常评价系统,水力压裂前后几何渗流阻力(ΩrP)、产油量(q ) 、渗流阻力下降率(V )分别为: 2.微地震监测技术在青海柴达木地乌南油田应用实例 2.1乌南油田基本概况 乌南油田位于青海省柴达木盆地西部南区,为柴达木盆地茫崖坳陷区昆北断阶亚区乌北-绿草滩断鼻带上的一个三级构造,构造面积130km2 ,构造整体为一由东南向北西方向倾没的鼻状构造,构造轴向为北西向,构造西南翼地层倾角较大,东北翼地层倾角相对较小,主体部位轴向330度。区内断裂发育,大小断裂20余条,

基于工业级4G路由器地震监测系统方案

基于工业级4G路由器地震监测系统方案本文提供了一种基于4G网络的地震监控系统设计原理和实现方案,简要介绍了4G技术的基本知识,描述了4G无线传输应用于地震监控系统的实现方法。 一、前言 地震监测行业具有网点多、布局分散的特点,将各采集点的数据实时上传到中心监控端进行分析预测是地震监测行业中非常重要的一环,这对于突发事件的预测及震后的监测都至关重要,而对于每监测点数据的采集通过有线网络传输来实现是不切实际的,根据地震监测行业的特点,依托 4G/3G网络和INTERNET互联网提供的丰富的网络资源、运用先进的无线数据传输技术进行建设,为地震局提供完善的远程、实时、交互数据采集、无线传输、监测设备状态及数据分析功能。下面我们以4G为例,根据该项目的要求,我们厦门才茂通信科技有限公司为该项目提出了一套切实可行的方案。 二.网络结构 下图为整个系统方案的网络结构图:

如上图:各个台站的测震设备通过以太网口与无线路由器CM520连接,CM520-8上电后按照监控中心网络管理员的生成的vpn配置,向监控中心internet上的VPN Router发起VPN连接,当中心端路由器通过认证检测后,会为下端的CM520-8分配一个私有IP地址、在vpn建立后,各个台站监测数据自动传输到监测中心并自动生成数据文件并存入数据库;监测中心通过远程设置各台站数字采集器的工作状态和参数,监测各台站数据的接收情况及运行情况,实现了对各台站的统一管理;并且为地震前兆监测数据资源共享搭建了平台。vpn隧道保证了数据的安全性和可靠性,监测中心的工作人员随时对收集到的测震数据进行分析整理等。 三.主要功能简介 中心监控,震波采集当厦门才茂路由器C M 520-8与中心端VPN Router成功建立vpn后,中心端可以与下端测震设备实现点到点的通讯。 如下图:

地震监测业务管理平台系统

地震监测业务管理平台系统 地震监测业务管理平台 地震监测业务管理平台实现的总体目标, 就是对各类型的监测台站、地 震台网及各种监测业务进行统一平台管理, 实现运维管理、 观测业务、 观测数据信息服务的统一管理和直观化展示, 从而使管理者可以对信息进行直观、方便、快捷的管理, 真正实现规范化统一管理的目 标。系统依托网络平台为基础, 建成标准统一、功能完善、安全可靠的地震监测业务管理平台, 提供日常中心台站运维管理、观测 业务、观测数据一站式管理。 完全符合国家数字测震台网数据、国家十五前兆数 据等行业数据规范; 兼容国内外标准数据流服务、前兆十五数据通讯协 议; 与数字地震台网系统 J OPE NS 、 国家前兆十 五数据库 系统等友好、无逢对接; 兼容多种行业主流地震监测设备管理功能; 引进了地震台站监控单元概念,实现智能化、自动 化、分布式监控及管理台站观 测设备。 地震监测运维管理平台 (PC 客户端/移动手机客户端) 坊钓贯 视幔益控 心” 众” *a 富`心也 ,还 ," '" .舫.盗.邕.拧.., , .".. .".. .... - ... 丸宜.. "田 ,的 0 凇. , " " " (') (') (') (') (') (') (') (') , .. -· - .... 可 震 , . 霉 惆龟 ... ·- " 亏 " = ,_r _-_,, ., 一星 竺 .J 二 t 二 .字 . 一 · 餐[纳兆]台站俸效故霞 2小时卿 鲨 l!I 电 瀑 O 限 安中心小零 测震 鲨震 酌兆 胃[粕亢 l 台站.败放障 正寓 2 小射躺 ,, 瑾纣小掌 正霄 胃[鹤兆]台站簪咬故赡 2小时晌 O 渴享实翰中字 胃(纳和 台站网 Ill 断开 江霄 2 小厨鹤 0 厥置l 弓叠 断开 畏[倡震]臼贴网络断升 mm 2小射鹃 O 石良小孝 断开 胃[剽震]台站网络断开 2小呵粕 0 云蕾村委 胃[奄瀑l 台站电瀑断开 正寓 2 小射麟l O 扈喟I 弓委 嘶开 O J\一幅筐掌佼 正霄 : @ O :; >;- :.' ?. O 巳 只 专业地震监测系统平台

地震监测仪

酒泉职业技术学院课程设计 2012 级机电一体化专业 题目:地震检测仪 毕业时间:2015年6月 学生姓名:陈其帅 指导教师:朱良学 班级:12机电(1)班 2014年6月30日

摘要:地震预警在地震多发国家和地区得到了充分的重视和发展,日本、美国、墨西哥、土耳其、罗马尼亚、台湾等国家和地区都积极发展地震预警系统,其中日本、墨西哥、土耳其的地震预警系统已经投入运行;美国、台湾正在进行地震预警相关研究和测试。我国十五期间数字观测网络项目大大提高了地震台密度,为在部分地区开展地震预警示范应用提供了研究实验条件,也为今后进一步建设全国性的地震预警系统打下了基础,但我国地震预警系统的相关标准、评估方法体系方面工作基础薄弱,因此本分做一个简单的地震检测。 关键词:自动报警;提前预测;烈度速报 一、原理 灾难性的地震是地下岩浆旋转上升对地壳产生巨大作用力引起的,由于万有摩擦力的作用,旋转的岩浆会带动地面物质同时旋转,也就是说,旋转的岩浆会产生旋转引力场,旋转引力场会带动其它物质一同旋转,只是这种作用力很小,我们无法觉察,由于本仪器转动的阻力很小,所以地下岩浆的旋转会带动它一同旋转。 二、装置介绍 将两块磁铁以下图的形式用软棉线吊在饮料桶中,使其可以向任何方向转动。在正常情况下,磁铁面向南北,两边向下吊的铜丝是垂直向下的,临震前在震源的上方,磁铁在垂直磁场作用下会发生上下转动,或在震源的附近,磁铁在水平磁场的作用下会左右转动,不论是哪种情况,简单说起来就是在磁场中悬挂一个固定有线圈的重物。当发生地震时,地面带动设备中产生磁场的磁铁一起震动,而线圈却因为悬挂重物的惯性保持基本静止。这时线圈因为切割磁力线产生了感应电流,采集这个信号,再做一些滤波和阻尼处理,就可以得到有意义的信息。我的地震仪采用了一个低阻抗的半成品检测器,自带阻尼功能,这是设备的系统原理框图。运动传感器向下吊的铜丝就会与下面横放的铜丝接触,报警器就会报警。如图1.

地震勘探基础知识

1. 有关地震勘探的一些基本概念 1.1 地震勘探是勘探石油的有效方法 勘探石油的方法和技术,按其勘探手段划分,可分为地质法、物探法和钻探法三种基本类型。 地球物理勘探法(物探法)运用物理学的原理和方法,即利用地壳中岩石的物理性质(如岩石的弹性、密度、磁性和电性)上的差异来研究地球,了解地下岩层的起伏情况和组成情况,从而达到寻找储油构造以勘探石油的一种勘探方法。 依据研究对象的不同,物探法主要分为以下几种: ?地震勘探(利用岩石的弹性差异) ?重力勘探(利用岩石的密度差异) ?磁法勘探(利用岩石的磁性差异) ?电法勘探(利用岩石的电性差异) 在石油勘探中,最经济的方法是物探法。首先用物探法对工区的含油气远景作出评价,为钻探提供探井井位。然后钻探法通过实际钻进,以对物探法进行验证。如果构造含油,又可根据物探资料和探边井计算出含油面积和地质储量。 在我国,陆上是广大的地表松散沉积(如松辽平原、华北平原等)和沙漠覆盖区(如塔什拉玛干大沙漠),海上是被辽阔的海水所覆盖的“一片汪洋”,已看不到岩层的地面露头的出露。而钻井法成本高、效率低。如何解决这些地区的地质构造和地质储量问题呢?在这时就充分显示了物探法应用的威力。 在各种物探方法中,地震勘探具有精度高的突出优点,而其它物探方法都不可能象地震勘探那样详细而准确地了解地下由浅至深一整套地层的构造特点。因此,地震勘探已成为石油勘探中一种最有效的方法。 1.2 地震勘探基本原理 地震勘探是利用人工激发地震波的方法引起地壳的振动,并用仪器把来自地下各个地层分界面的反射波引起地面上各点的振动情况记录下来。利用记录下来的数据,对其进行过处理分析,从而推断地下地质构造和地层岩性的特点。 地震勘探查明地下地质构造特点的原理并不难理解。利用声波反射现象可测定障碍物离开声源的距离,是我们都知道的物理原则。 其计算公式为:

相关主题
文本预览
相关文档 最新文档