当前位置:文档之家› 遥感影像图像灰度直方图显示、图像增强和图像融合

遥感影像图像灰度直方图显示、图像增强和图像融合

遥感影像图像灰度直方图显示、图像增强和图像融合
遥感影像图像灰度直方图显示、图像增强和图像融合

《遥感概论》第三次作业

----图像灰度直方图显示、图像增强和图像融合一、图像灰度直方图的显示

(1)打开测试数据

打开图像Can-tmr.img 波段调为7-4-3

(2)快速统计quick stats

在图像上右键选择quick stats…显示图像灰度直方图

(3)选择带统计的波段

选择 select plot 中band3,band4,band6,可以显示第三波段、第四波段或第六波段的直方图。

(4)直方图显示结果

注:clear plot功能:清除上次显示的波段直方图

显示波段直方图:例如band3:

Band4

Band6

二、图像增强

1、图像增强---线性变换的操作步骤

(1)打开测试图像

打开图像Can-tmr.img 波段调为7-4-3

a,快速线性变换

选择Enhance—[image] linear 或[image] linear 0-255或[image] linear 2%,实现图像拉伸,图像的线性变换。

例如:选择 [Image] linear

选择[image] linear 0-255

选择[image] linear 2%,恢复图像

B,用户自定义线性变换

Enhance—interactive stretching ---

分别调节R—G—B, apply(一般均调节R-G-B明显图像部分至正态分布),自定义线

性变换,使图像增强,效果更好

(1)打开测试图像

a、快速实现图像均衡: enhance ---image equalization

结果为

增强图像(同上自定义线性变换的调节)

3、图像增强---直方图匹配的操作

(1)打开数据图像

Ch10-ch11/enhance/tm20090327和object20080802

(2)直方图匹配操作

1)依次输入待匹配的两幅图

选择Enhance—histogram matching…,再选择display #2(即系统默认的),OK,

3)匹配后的结果

三、图像融合

(1)准备工作

找到图像数据Ch10—ch11/ fusion/spot-pan-20m和spot-pan-10m (2)依次打开待融合的图像

Ch10—ch11/ fusion/spot-pan-20m和spot-pan-10m

选择Transform—image sharpening –color normalized

(4)确定高空间分辨率图像

选择display #1,再点击OK。再选择band 1,点击OK ,再choose保存文件(为1)

图像,点击OK.

(5)输出融合结果(设置相应参数) 打开保存的融合图像1 (6)查看融合结果

遥感图像融合方法比较

1 绪论 1.1研究目的及意义 20世纪90年代中后期以后,搭载许多新型传感器的卫星相继升空,使得同一地区的遥感数据影像数目不断增多。如何有效地利用这些不同时相、不同传感器、不同分辨率的遥感数据便成为了遥感工作者研究的瓶颈问题,然而解决这一问题的关键技术就是遥感影像数据融合。 遥感数据融合就是对多个遥感器的图像数据和其他信息的处理过程,它着重于把那些在空间或时间上冗余或互补的多源数据,按一定法则(算法)进行处理,获得比单一数据更精确、更丰富的信息,生成一幅具有新的空间、波谱和时间特征的合成图像。 遥感是不同空间、时间、波谱、辐射分辨率提供电磁波谱不同谱段的数据。由于成像原理不同和技术条件的限制,任何一个单一遥感器的遥感数据都不能全面的反映目标对象的特征,也就是有一定的应用范围和局限性。各类非遥感数据也有它自身的特点和局限性。影像数据融合技术能够实现数据之间的优势互补,也能实现遥感数据与地理数据的有机结合。数据融合技术是一门新兴的技术,具有十分广阔的应用前景。所以,研究遥感影像数据融合方法是非常必要的。 1.2研究现状及发展的趋势 1.2.1研究现状 20世纪美国学者提出“多传感器信息融合”的概念认为在多源遥感影像数据中能够提取出比单一遥感影像更丰富、更有效、更可靠的信息。之后由于军事方面的要求,使得遥感影像数据融合技术得到了很大的发展,美、英,德等国家已经研制出了实用的遥感数据融合处理的系统和软件,同时进行了商业应用。 1)、融合结构 融合的结构可分为两类:集中式和分布式。集中式融合结构:各传感器的观测数据直接被送到中心,进行融合处理,用于关联、跟踪、识别等。分布式融合结构:每个传感器独立完成关联、识别、跟踪,然后由融合中心完成配准、多源关联的融合。 2)、融合的层次 图像融合可分为:像元级融合、特征级融合和决策级融合。 像元级融合是最低级的信息融合,可以在像素或分辨单位上进行,又叫做数据级融合。它是对空间配准的遥感影像数据直接融合,然后对融合的数据进行特征提取和属性说明。 特征级融合是由各个数据源中提取特征信息进行综合分析和处理的过程,是中间层次的融合。特征级融合分为目标状态信息融合和目标特征融合。 决策级融合是在信息表示的最高层次上进行融合处理。首先将不同传感器观测同一目标获得的数据进行预处理、特征提取、识别,以建立对所观测目标的初步理论,然后通过相关处理、决策级融合判别,最终获得联合推断结果,从而为决策提供依据。

数字图像处理实验报告

实验一灰度图像直方图统计 一、实验目的 掌握灰度图像直方图的概念和计算方法,了解直方图的作用和用途。提高学生编程能力,巩固所学知识。 二、实验内容和要求 (1)用Photoshop显示、了解图像平均明暗度和对比度等信息; (2)用MatLab读取和显示一幅灰度图像; (3)用MatLab编写直方图统计的程序。 三、实验步骤 1. 使用Photoshop显示直方图: 1)点击文件→打开,打开一幅图像; 2)对图像做增强处理,例如选择图像→调整→自动对比度对图像进行灰度拉伸,观察图像进行对比度增强前后的视觉变化。 3)利用统计灰度图像直方图的程序分别针对灰度拉伸前后的灰度图像绘制其灰度直方图,观察其前后的直方图变化。 2.用MatLab读取和显示一幅灰度图像; 3. 绘制图像的灰度直方图; function Display_Histogram()

Input=imread('timg.jpg'); figure(100); imshow(uint8(Input)); title('原始图像'); Input_Image=rgb2gray(Input); figure(200); imshow(uint8(Input_Image)); title('灰度图像'); sum=0; His_Image=zeros(1,256); [m,n]=size(Input_Image); for k=0:255 for I=1:m for j=1:n if Input_Image(I,j)==k His_Image(k+1)=His_Image(k+1)+1; end end end end figure(300); plot(His_Image); title('图像的灰度直方图'); 4.显示图像的灰度直方图。

matlab图像处理图像灰度变换直方图变换

附录1 课程实验报告格式 每个实验项目包括:1)设计思路,2)程序代码,3)实验结果,4)实验中出现的问题及解决方法。 实验一:直方图灰度变换 A:读入灰度图像‘debye1.tif’,采用交互式操作,用improfile绘制一条线段的灰度值。 imread('rice.tif'); imshow('rice.tif'),title('rice.tif'); improfile,title('主对角线上灰度值')

B:读入RGB图像‘flowers.tif’,显示所选线段上红、绿、蓝颜色分量的分布imread('flowers.tif'); imshow('flowers.tif'),title('flowers.tif'); improfile,title('主对角线红绿蓝分量') C:图像灰度变化 f=imread('rice.png'); imhist(f,256); %显示其直方图 g1=imadjust(f,[0 1],[1 0]); %灰度转换,实现明暗转换(负片图像) figure,imshow(g1)%将0.5到0.75的灰度级扩展到范围[0 1] g2=imadjust(f,[0.5 0.75],[0 1]); figure,imshow(g2) 图像灰度变换处理实例: g=imread('me.jpg'); imshow(g),title('原始图片'); h=log(1+double(g)); %对输入图像对数映射变换 h=mat2gray(h); %将矩阵h转换为灰度图片

h=im2uint8(h); %将灰度图转换为8位图 imshow(h),title('转换后的8位图'); 运行后的结果: 实验二:直方图变换 A:直方图显示 I=imread('cameraman.tif'); %读取图像 subplot(1,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(1,2,2),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题运行结果如下:

实验-直方图统计及亮度调整概要

实验 2.直方图统计及亮度调整 一、实验目的 了解并掌握直方图统计方法以及分段线性拉伸、直方图均衡等亮度调整算法, 通过观察对这些运算建立感性认识。 二、实验内容 1. 观察各类图像的直方图; 2. 操作 LUT 灰度对照表,进行分段线性拉伸; 3. 采用直方图均衡方法对低对比度的图像进行对比度增强。 三、基本原理 1.直方图的定义 图象的灰度直方图是一个函数, 表示数字图象中每一灰度级与该灰度级出现的频数 (即具有这一灰度级的象素数目间的对应关系: P b N b M ( ( = M 为一幅图象所包含的象素总数; N (b 为图象中灰度值为 b 的象素总数。通常,以灰度值 b 为横坐标, N (b 为纵坐标。直方图是图象中象素灰度值的一阶概率分布密度的一种近似。 2.对比度增强 对比度增强又称为点运算,逐点改变输入图象的每一象素的灰度,而各象素的位置不改变, 一般用来拓宽图象的灰度范围。

(1灰度变换法(LUT 对照 典型的对比度拉伸灰度变换关系如图 1所示,其对应关系如下: g f f a f a g a f b f b g b f L a b = ≤< -+≤< -+≤

图 1. 典型的对比度拉伸灰度变换关系 可见,输出和输入图象之间各点的灰度是按照一定的映射关系相联系的,这种映射关系在计算机中则是通过一个查照表(look-up table,即 LUT 实现的。通过 LUT 对照改变了图象中不同灰度特性趋于的对比度或反差(contrast ,达到改善视觉效果的目的。 (2 直方图均衡 直方图均衡(histogram equalization就是通过点运算使输入图像的灰度分布较为均匀, 使图像具有较好的视觉效果。设 r , s 分别为原图和新图的灰度, ?r (r , ?s (s 分别为原图及新图的概率密度函数,则均衡变换为原图像的累积分布函数: s T r r r r ==?( ?( 0 对于离散图像,均衡转换公式为: ∑∑=====k j j k j j r k k n M L r P r T s 0max 0 ( ( 其中, L max 指图像中的最大灰度值(对于灰度图像就是 255。 四、实验步骤 (一 Matlab 的 demo 演示

灰度图像直方图统计

1.灰度图像直方图统计实习报告 一、实习目的 在学习灰度图像直方图的概念、计算方法、性质和相关应用的基础上,应用Photoshop软件和编写灰度直方图统计程序,能初步掌握图像文件格式读写与图像数据处理,提高学生兴趣和编程能力,巩固所学知识。 二、实习内容 1.实习数据 E:\ 数字图像处理\实习一\Lena.raw 2.利用Photoshop显示图像的灰度直方图,从直方图上了解图像平均明暗度和对比度等信息。 3.要求利用C或C++语言编写灰度图像直方图统计的程序。 三、实习步骤 1.使用Photoshop显示直方图。 (1)点击“文件”-->“打开”,打开一幅图像,此处选取“lena.raw”; (2)点击“图像”-->“直方图”,显示图像的直方图;

(3)对图像做增强处理,例如选择“图像”-->“调整”-->“自动对比度”对图像进行灰度拉伸,然后再显示直方图,观察它的变化。 2.用C或C++编写显示直方图的程序。 具体代码如下: #include "stdio.h" #include "windows.h" void main() { FILE *fp; //文件类指针

fp=fopen("lena.raw","rb"); //打开二进制文件 if (fp==NULL) { printf("文件已损坏,请重新打开。 \n"); } else printf("文件已打开,已经生成.txt文档,请查看。\n"); BYTE PIXEL[512*512]; fread(PIXEL,1,512*512,fp);//二进制文件读取 fclose(fp);//关闭文件 int HistogramStat[256]; for(int i=0;i<256;i++) HistogramStat[i]=0;//赋初值 for (i=0;i<512*512;i++) { int a=PIXEL[i]; HistogramStat[a]++; } //统计像素个数 fp=fopen("灰度直方图.txt","rb"); fprintf(fp,"图像灰度,像素个数\n"); for (i=0;i<256;i++) { if (HistogramStat[i]!=0) fprintf(fp,"%5d,%5d\n",i,HistogramStat[i]); } fprintf(fp,"像素个数为0的已被省略。");//输出内容 } 四、思考题 1灰度直方图可以反映出一幅图像的哪些特性? 答:(1)表征了图像的一维信息。只反映图像中像素不同灰度出现的次数,而未反映像素所在的位置。即丢失了像素的位置信息。 (2)与图像之间的关系式多对一的映射关系。一幅图像唯一确定出与之对应的直方图,但不同的图像可能有相同的直方图。 (3)一幅图像可分为多个子区域,子图直方图之和为整图的直方图。 2灰度直方图有何用途?编程实现一种灰度直方图应用的程序。 答:(1)用于判断图像量化是否恰当。 (2)用于确定图像的二值化阈值。 (3)计算图像中物体的面积。 (4)计算图像信息量H(熵)。 3在本次实习的基础上,试编写直方图均衡的程序。 五、实习心得体会

遥感影像融合处理方法

遥感影像融合处理方法 摘要:本文介绍了遥感影像数据融合技术,并给出了融合的一些基本理论、融合处理一般步骤以及常用融合处理方法,最后简要描述了融合评价的方式方法等。 关键词:遥感影像融合融合评价 1、前言 将高分辨率的全色遥感影像和低分辨率的多光谱遥感影像进行融合,获得色彩信息丰富且分辨率高的遥感融合影像的过程,成为遥感影像融合。全色影像一般具有较高空间分辨率,多光谱影像光谱信息较丰富,为提高多光谱影像的空间分辨率,可以将全色影像融合进多光谱影像。通过影像融合既可以提高多光谱影像空间分辨率,又能保留其多光谱特性。 2、遥感影像融合一般步骤 遥感影像信息融合一般流程主要分为两个阶段:图像预处理,图像融合变换。 图像预处理主要包括:几何校正及影像配准。几何校正主要在于去除透视收缩、阴影等地形因素以及卫星扰动、天气变化、大气散射等随机因素对成像结果一致性的影响;影像配准的目的在于消除由不同传感器得到的影像在拍摄角度、时相及分辨率等方面的差异。 3 常用融合方式 3.1 IHS融合 IHS(亮度I、色度H、饱和度S)变换就是将影像从RGB彩色空间变换到IHS空间来实现影像融合的一种方法。由光学、热红外和雷达(微波)等方式得到的不同波段遥感数据,合成的RGB颜色空间是一个对物体颜色属性描述系统,而IHS色度空间提取出物体的亮度、色度、饱和度,它们分别对应每个波段的平均辐射强度、数据向量和的方向及其等量数据的大小。RGB颜色空间和IHS 色度空间有着精确的转换关系。IHS变换法只能用三个波段的多光谱影像融合和全色影像融合。 3.2 小波融合 小波变换,基于遥感影像的频域分析进行的,由于同一地区不同类型的影像,低频部分差别不大,而高频部分相差很大,通过小波变换对变换区实现分频,在分频基础上进行遥感影像的融合,常用于雷达影像SAR与TM影像的融合。

高分辨率遥感图像融合方法的比较正式

包头师范学院 本科学年论文 论文题目:高分辨率遥融图像融合方法比较院系:资源与环境学院 专业:地理信息系统 学号:0912430022 姓名:郭殿繁 指导教师:同丽嘎 撰写学年:2010 至2011 学年 二零一零年十二月

摘要:目前,遥感中高分辨率全色遥感影像和低空间分辨率的多光谱遥感影像融合是影像融合技术应用的主流。本文通过对遥感影像四种融合方法的研究,并且用呼和浩特市快鸟影像图像融合举例,加深对四种融合方法的理解和理论应用,最后通过截取呼和浩特市快鸟影像的原始多波段彩色影像和原始高分辨率全色波段影像的一部分进行四种融合方法来进行精度的比较,以ENVI4.7软件作为平台,最终得出,Gram-Schmidt变换效果最好,HSV变换融合效果最差。 关键词:图像融合;PCA变换;Gram-Schmidt变换;Brovey变换;HSV变换;精度比较 Abstract: At present, the remote sensing high resolution full-color remote sensing image and low spatial resolution multi-spectral remote sensing image fusion is image fusion technology application of mainstream. This article through to four kinds of remote sensing image fusion method with the principle and analysis, and in Hohhot, fast image image fusion for example, the bird to deepen the understanding of four fusion method and theory, and finally by intercepting the original image Hohhot fast bird multichannel color image and primitive high-resolution full-color band image on the part of four fusion method for precision compared to ENVI4.7 software as a platform to finally arrive, the best effect, Schmidt transform - the worst. Fusion result transformation HSV. Key words: image fusion, PCA transform; Schmidt transform; the - Brovey transform; HSV transform; Precision;

实验2(A) 灰度图像直方图统计与均衡化

实验2 灰度图像直方图统计与均衡化 一、 实验目的 1. 学习灰度图像直方图的概念、计算方法、性质和相关应用。 2. 利用VC++编写灰度图像直方图统计程序。 3. 掌握灰度直方图的概念及其计算方法; 4. 熟练掌握直力图均衡化和直方图规定化的计算过程; 5. 熟练掌握空域滤波中常用的平滑和锐化滤波器; 6. 掌握色彩直方图的概念和计算方法 7. 利用VC++程序进行图像增强。 二、 实验原理 灰度直方图是灰度级的函数,描述的是图像中每种灰度级像素的个数,反映图像中每种灰度出现的频率。 i i v n n = (0.1) 式中,n 是图像总的像素个数;n i 是图像中具有第i 个灰度级的像素个数;v i 是第i 个灰度级出现的频率。 依据定义,若图像具有L 级灰度,通常L =256,即8位灰度级,则大小为M ?N 的灰度图像f (x , y )的灰度直方图hist[0, …, L -1]可用如下步骤计算获得: ① 初始化,hist[k ]=0 ; k =0, 1, …, L -1。 ② 按像素扫描图像,对灰度级中的每个灰度值,统计图像中具有该灰度值的像素个数。 (),;0,1,,1;0,1,,1hist f x y x M y N ++=-=-???? (0.2) 3. 直方图归一化。 ()(),hist f x y M N ?????i i v n n = (0.3) 图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。图像增强技术主要有直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。本实验以直方图均衡化增强图像对比度的方法为主要内容,其他方法同学们可以在课后自行联系。

基于灰度直方图的图像分割阈值自适应选取方法

中北大学 毕业设计(论文)任务书 学院、系: 专业: 学生姓名:车永健学号: 设计(论文)题目:基于灰度直方图的图像分割阈值自适应选取方法 起迄日期: 2015年3月9日~2015年6月20日设计(论文)地点: 指导教师:郭晨霞 系主任: 发任务书日期:2015年 2 月25 日

任务书填写要求 1.毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在系的负责人审查、系领导签字后生效。此任务书应在毕业设计(论文)开始前一周内填好并发给学生; 2.任务书内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,不得随便涂改或潦草书写,禁止打印在其它纸上后剪贴; 3.任务书内填写的内容,必须和学生毕业设计(论文)完成的情况相一致,若有变更,应当经过所在专业及系主管领导审批后方可重新填写; 4.任务书内有关“学院、系”、“专业”等名称的填写,应写中文全称,不能写数字代码。学生的“学号”要写全号(如020*******,为10位数),不能只写最后2位或1位数字; 5.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年3月15日”或“2004-03-15”。

毕业设计(论文)任务书

毕业设计(论文)任务书 3.对毕业设计(论文)课题成果的要求〔包括毕业设计(论文)、图纸、实物样品等): 1、论文一份; 2、程序代码及图像结果; 3、英文翻译一份。 4.毕业设计(论文)课题工作进度计划: 起迄日期工作内容 2015年 3月 9 日~ 3 月20日 4 月 1 日~ 4月 20 日 4 月 21 日~ 5月 10 日 5 月 11 日~ 6月 15 日 6 月 16 日~ 6月 19 日查找资料,完成开题报告; 学习有关知识,方案确定,完成中期报告;完善算法并仿真验证; 撰写、修改、评阅毕业论文; 论文答辩 学生所在系审查意见: 系主任: 年月日

灰度直方图

1.灰度直方图 灰度直方图(histogram)是灰度级的函数,它表示图象中具有每种灰度级的象素的个数,反映图象中每种灰度出现的频率。如下图所示,灰度直方图的横坐标是灰度级,纵坐标是该灰度级出现的频率,是图象的最基本的统计特征。 从概率的观点来理解,灰度出现的频率可看作其出现的概率,这样直方图就对应于概率密度函数pdf(probability density function),而概率分布函数就是直方图的累积和,即概率密度函数的积分,如下图所示:

若直接从代表每种灰度的象素数目的直方图来观察,常用如下的表示: dr r dP r p dr r p r P r )()(, )()(0 = =?∑???===≈ ===== =k i i k k k k k r r n n r P n n r p n r n A dA r p dr dr r H A r P A dr r dA A r H r p dr r H A dr r H r A 00 0000255 00 )()()(1)(1 )(,/)()()() ()(, )()(,而概率分布函数,则概率密度的象素数为,灰度为若记象素总数为,时,在离散情况下,取概率密度象素总数一幅图象的总面积,或

灰度直方图的计算是很简单的,依据定义,若图象具有L(通常L=256, 即8位灰度级)级灰度,则大小为MxN的灰度图象f(x,y)的灰度直方图hist[0…L-1]可用如下计算获得: 1. 1.初始化 hist[k]=0 ; k=0,…,L-1 2. 2.统计 hist[f(x,y)]++ ; x, y =0,…,M-1, 0,…,N-1 3. 3.标准化 hist[f(x,y)]/=M*N 2.直方图均衡化 直方图均衡化是通过灰度变换将一幅图象转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。 设灰度变换s=f(r)为斜率有限的非减连续可微函数,它将输入图象A(x,y) 转换为输出图象B(x,y),输入图象的直方图为H A (r),输出图象的直方图为H B (s), 则它们的关系可由如下过程导出:

利用ENVI软件进行遥感图像的融合和增强实习报告

遥感图像处理实习报告 实验内容:影像融合与增强 班级:测绘1102班 学号:13 姓名: 指导老师:陈晓宁、黄远程、竞霞、史晓亮 西安科技大学 测绘科学与技术学院 二零一三年一月 实习三影像融合与增强

一、实习内容: 1.掌握ENVI中各种影像融合方法,并比较各方法的优缺点; 2.熟悉ENVI图像增强操作; 3.本实习的数据源为上节已经过校正的资源三号多光谱和全色影像。 二、实习目的: 1.了解和认识各种图像融合方法的原理、内容及要点; 2.熟悉、熟练操作ENVI软件中各种图像融合的方法、步骤并学会加以比较; 3.学习利用ENVI软件进行各种图像增强处理操作; 4.学会定性、定量分析比较图像融合的差异。 三、实习步骤: 1.图像融合: 三波段融合: HSV和Color Normalized (Brovey)变换: 1)从ENVI主菜单中,选择File → Open Image File,分别加载校正后的资源三号多光谱与全色影像到可用波段列表Available Bands List中; 2)选择多光谱3,2,1波段(可以根据需要选择)对应R,G,B,点击Load RGB将多光谱影像加载到显示窗口display#1; 3)在ENVI的主菜单选择Transform → Image Sharpening → HSV; 4)在Select Input RGB Input Bands对话框中,选择Display #1,然后点击OK。 5)从High Resolution Input File对话框中选择全色影像,点击OK。 6)从HSV Sharpening Parameters对话框中,选择重采样方法,并输入输出路径和文件名,点击OK。即可完成HSV变换融合;

绘制数字图像灰度直方图实验报告MATLAB实现

数字图像处理 实验报告 实验一绘制直方图 学号 姓名 日期

实验一绘制直方图 一、实验内容 1、编程绘制数字图像的直方图。 2、直方图均衡处理。 二、实验步骤 1、设计思想或者流程图。 灰度直方图是将数字图像的所有像素,按照灰度值的大小,统计其所出现的频度。通常,灰度直方图的横坐标表示灰度值,纵坐标为半个像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。 直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。从而达到清晰图像的目的。 2、源程序并附上注释。 clear all %一,图像的预处理,读入彩色图像将其灰度化 PS=imread('1.jpg');%读入JPG彩色图像文件 imshow(PS)%显示出来 title('输入的彩色JPG图像') imwrite(rgb2gray(PS),'PicSampleGray.bmp');%将彩色图片灰度化并保存 PS=rgb2gray(PS);%灰度化后的数据存入数组 %二,绘制直方图 [m,n]=size(PS);%测量图像尺寸参数 GP=zeros(1,256);%预创建存放灰度出现概率的向量for k=0:255 GP(k+1)=length(find(PS==k))/(m*n);%计算每级灰度出现的概率,将其存入GP中相应位置 end figure,bar(0:255,GP,'g')%绘制直方图 title('原图像直方图') xlabel('灰度值') ylabel('出现概率') %三,直方图均衡化 S1=zeros(1,256); for i=1:256 for j=1:i S1(i)=GP(j)+S1(i);%计算Sk end end S2=round((S1*256)+0.5);%将Sk归到相近级的灰度for i=1:256 GPeq(i)=sum(GP(find(S2==i)));%计算现有每个灰度级出现的概率

实验-数字图像的直方图统计

实验二数字图像的直方图统计 一、实验目的 1.了解对灰度图像进行直方图统计的基本原理; 2.掌握用VC编程实现直方图统计的方法; 3.在微机上调试程序; 5. 分析数字图像直方图的特点。 二、实验原理 图像的直方图 图像的(灰度统计)直方图是一个一维的离散函数。它的定义为: 设s k为图像f(x,y)的第k级灰度值,n k是f(x,y)中具有灰度值s k的象素的个数,n是图像象素总数,则: p s(s k)= n k/n k=0,1, ,L-1 称为图像f(x,y)的直方图。 这里p s(s k)代表原始图中第k个灰度级的出现概率。以n k为自变量,以p s(s k)为函数,得到的曲线就是图像的直方图,在实际中常常直接将对第k个灰度级的统计值n k作为图像的直方图。 它提供了原图灰度值的分布情况,也可以说给出了一幅图所有灰度值的整体描述。 对灰度图像进行直方图统计的程序流程图如图2-1所示。 图2-1 灰度图像直方图统计流程 三、实验前准备 1.预习本实验中关于数字图像直方图统计的有关内容; 2. 预习VC中添加对话框的步骤和方法; 3.了解本实验的目的和实验内容。 四、实验内容 1.在实验一的基础上读入并显示一幅数字图像; 2.编写对灰度图像进行直方图统计的程序,并将结果显示在屏幕上。 五、实验报告要求 1.总结对灰度图像进行直方图统计的过程,比较不同的图像其直方图特性;

2.对实验结果进行分析。 六、参考步骤和程序 在实验一的基础上,进行如下操作: 1、点击ResourceView,右键点击Dialog,选Insert Dialog 在属性对话框中将ID改为 ID_HIST,对话框名称改为“直方图” 2、在工具栏中点“插入”-“新建类”,输入类名,并选Base Class为CDialog,Dialog ID为 ID_HIST。这样就将对话框和类联系起来了,在该对话框中拖入一Edit控件,将其ID 设为IDC_HISTSHOW; 3、快捷键“Ctrl+W”,出现MFC ClassWizard对话框,在Messages栏中分别选 WM_INITDIALOG和WM_Paint,再点击“Add Function”,即将对话框初始化和画图函数加入对话框类之中。 4、在Hist.h文件“public:”下面输入如下变量定义: LONG m_lCount[256]; char* m_lpDIBBits; LONG m_lWidth; LONG m_lHeight; int m_iIsDraging; CDlgIntensity(CWnd* pParent = NULL); 5、打开Hist.cpp程序,在CHist::OnInitDialog()函数中“// TODO: Add extra initialization here” 前将如下代码拷贝进去: unsigned char* lpSrc; LONG i; LONG j; 6、在“// TODO: Add extra initialization here”后将如下代码拷贝进去: CWnd* pWnd=GetDlgItem(IDC_HISTSHOW); pWnd->GetClientRect(m_MouseRect); pWnd->ClientToScreen(&m_MouseRect); CRect rect; GetClientRect(rect); ClientToScreen(&rect); m_MouseRect.top-=rect.top; m_MouseRect.left-=rect.left; m_MouseRect.top+=25; m_MouseRect.left+=10; m_MouseRect.bottom=m_MouseRect.top+255; m_MouseRect.right=m_MouseRect.left+256; for(i=0;i<256;i++) { m_lCount[i]=0;

实验五 遥感图像的融合

实验五遥感图像的融合 一、实验目的和要求 1.理解遥感图像的融合处理方法和原理; 2.掌握遥感图像的融合处理,即分辨率融合处理。 二、设备与数据 设备:影像处理系统软件 数据:TM SPOT 数据 三、实验内容 多光谱数据与高分辨率全色数据的融合。 分辨率融合是遥感信息复合的一个主要方法,它使得融合后的遥感图象既具有较好的空间分辨率,又具有多光谱特征,从而达到增强图象质量的目的。 注意:在调出了分辨率融合对话框后,关键是选择融合方法,定义重采样的方法。 四、方法与步骤 融合方法有很多,典型的有HSV、Brovey、PC、CN、SFIM、Gram-Schmidt 等。ENVI 里除了SFIM 以外,上面列举的都有。 HSV 可进行RGB 图像到HSV 色度空间的变换,用高分辨率的图像代替颜色亮度值波段,自动用最近邻、双线性或三次卷积技术将色度和饱和度重采样到高分辨率像元尺寸,然后再将图像变换回RGB 色度空间。输出的RGB 图像的像元将与高分辨率数据的像元大小相同。 打开ENVI,在主菜单中打开数据文件LC81200362016120LGN00_MTL 选择File>data manage,任意选择3个波段组合,查看效果

打开分辨率为30和15的图像

下图分别是分辨率为30、15的,可以看到图像清晰度明显发生改变,分辨率越高,图像越清晰

下面进行融合 点击工具栏中的Image Sharpening>Gram-Schmidt Pan Sharpening,在对话框中点击Spectral Subset…改变其波段 选择如下图所示的三个波段

三种图像融合方法实际操作与分析

摘要:介绍了遥感影像三种常用的图像融合方式。进行实验,对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像,简要分析比较三种图像融合方式的各自特点,择出本次实验的最佳融合方式。 关键字:遥感影像;图像融合;主成分变换;乘积变换;比值变换;ERDAS IMAGINE 1. 引言 由于技术条件的限制和工作原理的不同,任何来自单一传感器的信息都只能反映目标的某一个或几个方面的特征,而不能反应出全部特征。因此,与单源遥感影像数据相比,多源遥感影像数据既具有重要的互补性,也存在冗余性。为了能更准确地识别目标,必须把各具特色的多源遥感数据相互结合起来,利用融合技术,针对性地去除无用信息,消除冗余,大幅度减少数据处理量,提高数据处理效率;同时,必须将海量多源数据中的有用信息集中起来,融合在一起,从多源数据中提取比单源数据更丰富、更可靠、更有用的信息,进行各种信息特征的互补,发挥各自的优势,充分发挥遥感技术的作用。[1] 在多源遥感图像融合中,针对同一对象不同的融合方法可以得到不同的融合结果,即可以得到不同的融合图像。高空间分辨率遥感影像和高光谱遥感影像的融合旨在生成具有高空间分辨率和高光谱分辨率特性的遥感影像,融合方法的选择取决于融合影像的应用,但迄今还没有普适的融合算法能够满足所有的应用目的,这也意味着融合影像质量评价应该与具体应用相联系。[2] 此次融合操作实验是用三种不同的融合方式(主成分变换融合,乘积变换融合,比值变换融合),对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多

光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像。 2. 源文件 1 、 imagerycolor.tif ,SPOT图像,分辨率10米,有红、绿、两个红外共四个波段。 2 、imagery-5m.tif ,SPOT图像,分辨率5米。 3. 软件选择 在常用的四种遥感图像处理软件中,PCI适合用于影像制图,ENVI在针对像元处理的信息提取中功能最强大,ER Mapper对于处理高分辨率影像效果较好,而ERDAS IMAGINE的数据融合效果最好。[3] ERDAS IMAGINE是美国Leica公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具。 2012年5月1日,鹰图发布最新版本的ERDAS IMAGINE,所有ERDAS 2011软件用户都可以从官方网站上下载最新版本 ERDAS IMAGINE 11.0.5. 新版本包括之前2011服务包的一些改变。相比之前的版本,新版本增加了更多ERDAS IMAGINE和GeoMedia之间的在线联接、提供了更为丰富的图像和GIS产品。用户使用一个单一的产品,就可以轻易地把两个产品结合起来构建一个更大、更清

四、灰度直方图是数字图像处理的重要工作。请简述灰度直方图规定化

四、灰度直方图是数字图像处理的重要工作。请简述灰度直方图规定化、均衡化的基本原理。并以分辨率为5*4,图像的深度6bit 的图像为例,自举例说明直方图均衡化的计算过程。 解答: 数字图像的直方图是作为图像每一个灰度级的统计概率分布"它提供了图像灰度分布的概貌,直方图增强技术正是利用修改给定图像直方图的方法来增强图像的,最后得到的图像增强程度取决于我们所采用的直方图。令变量r 和s 分别代表图像增强前后的像素灰度级,相应灰度级分布的概率密度分别为()r P r 和()s P s 。 为讨论方便,假设像素灰度值已经归一化在区间[0,1],在灰度级坐标中r=0表示黑,r=1表示白。对区间[0,1]内任一个r 值按变换函数: s = T(r) (1) 进行变换,T (r )满足两个条件:(1)单值单调递增函数;(2) 0≤T (r )≤1。 条件(1)使灰度级保持从黑到白的次序,条件(2)保证映射变换后像素灰度值在允许的范围内。从s 到r 的反变换为:1()r T s -=,0≤s ≤1。 (2) 同样,规定变量s 也满足条件(1)和(2)。由概率理论知,若()r P r 和变换函数s = T(r) 已知,1()r T s -=是单值单调增加函数,则有: 1() ()[P () ]s r r T s dr P s r ds -== (3) 直方图增强技术就是通过变换函数T (r )控制图像灰度级的概率密度函数而改变图像的外貌。 对于连续图像,变换函数为: ()(),01r r s T r P r dr r ==≤≤? (4) 此式右边为累积分布函数(CDF ),由该式对r 求导有: ()r ds P r dr = (5) 代入(3)得到: 1()1 ()[() ]1,01() r r T s r P s P r s P r -===≤≤ (6) 这说明,在变换后变量s 在定义域内, ()s P s 是均匀概率密度。在图像增强意义上,这 相当于像素的动态范围增加。 对于离散图像,灰度级k r 的概率值为: (),01,0,1,2, (1) r k k n P r r k L n = ≤≤=- (7) 其中,n 表示图像中像素的总数,k n 是在图像中出现这种灰度级的次数,L 表示灰度级

图像的直方图是图像的重要统计特征

图像的直方图是图像的重要统计特征,它可以认为是图像灰度密度函数的近似。直方图虽然不能直接反映出图像内容,但对它进行分析可以得出图像的一些有用特征,这些特征能反映出图像的特点。当图像对比度较小时,它的灰度直方图只在灰度轴上较小的一段区间上非零,较暗的图像由于较多的像素灰度值低,因此它的直方图的主体出现在低值灰度区间上,其在高值灰度区间上的幅度较小或为零,而较亮的图像情况正好相反。通常一幅均匀量化的自然图像的灰度直方图在低值灰度区间上频率较大,这样的图像较暗区域中的细节常常看不清楚。为使图像变清晰,可以通过变换使图像的灰度动态范围变大,并且让灰度频率较小的灰度级经变换后,其频率变得大一些,使变换后的图像灰度直方图在较大的动态范围内趋于均化。事实证明,通过图像直方图修改进行图像增强是一种有效的方法。 均匀量化的自然图像的灰度直方图通常在低值灰度区间上频率较大,使得图像中较暗区域中的细节常常看不清楚。为了使图像清晰,可将图像的灰度范围拉开,并且让灰度频率较小的灰度级变大,即让灰度直方图在较大的动态范围内趋于一致。 前面介绍的直方图均衡化处理方法从实验效果看还是很不错的,从实现算法上也可以看出其优点主要在于能自动整幅图像的对比度,但具体的增强效果也因此不易控制,只能得到全局均衡化处理的直方图。在科研和工程应用中往往要根据不同的要求得到特定形状的直方图分布以有选择的对某灰度范围进行局部的对比度增强,此时可以采用对直方图的规定化处理,通过选择合适的规定化函数取得期望的效果。 a=imread('花.jpg'); subplot(2,2,1); imshow(a); title('原始图像'); subplot(2,2,2); a=rgb2gray(a); imhist(a); title('原始图像直方图'); subplot(2,2,3);

遥感图像融合质量评价方法

遥感图像融合质量评价方法 武坚李崇伟王积武李相全 (68011部队甘肃兰州 730020) 摘要:图像融合可为摄影测量与遥感提供高质量的遥感融合图像。遥感融合图像质量如何是图像使用者关心的一个重要问题。本文运用主观评价、客观评价、几何质量等三种评价方法对融合后的遥感图像的质量展开讨论。实践表明这些评价方法能够保证融合后图像高质量地应用于摄影测量与遥感生产。 关键词:主观评价客观评价几何质量质量评价 1.前言 摄影测量与遥感[1]是以数字影像为基础,来确定被摄物体的形状、大小、空间位置及其性质。遥感图像是摄影测量与遥感最原始、最基本的资料。高质量的遥感图像是完成摄影测量与遥感的基础。遥感影像融合[2]是将多传感器、多时相、多光谱和多分辨率影像的各自局部优势信息整合处理,以提供高分辨率、多光谱的单一图像,解决遥感影像解译过程中信息不足的问题。由此看出,图像融合可以为摄影测量与遥感提供高质量的遥感影像。 2.图像融合的评价方法 当前对融合后图像的质量评价主要是主观目视与统计相关信息参数相结合的办法,即:利用目视效果和信息熵、清晰度、平均梯度、偏差指数、均方根误差等参数统计分析,而对融合后图像的几何量测性则关注较少。对于摄影测量与遥感应用,几何精度是一个很重要的因素。本文结合摄影测量与遥感应用角度,来对分析融合后图像的质量做出评价。 站在通用图像处理角度,目前大多数对影像质量评价分为主观评价和客观评价,并结合起来使用。主观评价是通过目视观察进行分析,客观评价是利用图像的统计参数进行判定。严格意义上讲,融合图像的主客观评价应该是一致的,即图像的统计参数特征应该符合人眼的目视感觉。但由于遥感图像融合具有特殊性,它不仅仅要求提高融合图像的空间分辨率,而且要尽可能制约[2]。因此,对遥感融合图像的质量评价,应综合考虑空间细节的增强和光谱保持原始图像的光谱特征。此外,这两个要求在很大程度上是不太相容,相互信息的保持两个方面,利用图像的统计参数结合目视观察来分析与评价。 对于摄影测量与遥感而言,影像的几何质量(影像的可量测性)是很重要的一个因素,它将决定融合图像能否达到数字地形图生产的精度限差[4]。因此,从主观、客观、几何质量等三个方面对做出质量评价可以保证融合后图像高质量地应用于摄影测量与遥感生产。

数字图像实验报告二图像的灰度变换与直方图均衡

实验二图像的灰度变换与直方图均衡 一、实验目的 1.理解图像灰度变换与直方图均衡的定义; 2.掌握图像灰度变换与直方图均衡化的方法; 3.学会利用matlab编程实现灰度变换和直方图均衡的方法。 二、实验内容 1. 利用matlab语言直接编程实现图像的对比度调整; 2. 利用matlab语言编程实现图像的反转; 3. 利用matlab语言直接编程实现图像的二值化; 4. 利用matlab语言直接编程实现图像的直方图均衡化处理。 三、实验步骤 (一)利用matlab语言直接编程实现图像的对比度调整 实验代码如下: A=imread('E:\实验报告\数字图像处理实验报告\数字图像实验报告二通信五班韩奇20110803520\lena.jpg'); I=double(A); J=I*0.5+40; A1=uint8(J); figure(1);subplot(1,2,1),imshow(A); subplot(1,2,2),imshow(A1); J=I*1+40; A1=uint8(J); figure(2);subplot(1,2,1),imshow(A); subplot(1,2,2),imshow(A1); J=I*3+40; A1=uint8(J); figure(3);subplot(1,2,1),imshow(A); subplot(1,2,2),imshow(A1); J=exp(I); A1=uint8(J); figure(4);subplot(1,2,1),imshow(A);

subplot(1,2,2),imshow(A1); 生成图像如下:

相关主题
文本预览
相关文档 最新文档