当前位置:文档之家› 激光加工技术存在的问题及未来发展展望

激光加工技术存在的问题及未来发展展望

激光加工技术存在的问题及未来发展展望
激光加工技术存在的问题及未来发展展望

激光加工技术存在的问题及

未来发展展望

-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

激光加工技术存在的问题及未来发展展望一、国外激光加工技术及发展动态

以德国、美国、日本、俄罗斯为代表的少数发达国家,目前主导和控制着全球激光技术和产业的发展方向。

其中,德国Trumpf、Rofin-Sinar公司在高功率工业激光器上称雄天下;美国IPG公司的光纤激光器引领世界激光产业发展方向。欧美主要国家在大型制造产业,如机械、汽车、航空、造船、电子等行业中,基本完成了用激光加工工艺对传统工艺的更新换代,进入“光加工”时代。

经过几十年的发展,激光技术开辟了广阔的应用天地,应用领域涵盖通信、材料加工、准分子光刻及数据存储等9个主要类别。根据国外统计资料表明,2013年全世界总的激光销售超过1000亿元。其中全球激光器市场销售额较2013年增长6.0%,达到93.34亿美元。美国市场借助出口方面的出色表现有所增长;欧洲凭借德国的出口增长仅维持收支平衡;亚洲市场,东盟国家的增长抵消了中国的经济放缓以及日本的零增长。

二、国内激光产业发展现状

1.国内激光产业整体格局

国内激光企业主要分布在湖北、北京、江苏、上海及深圳等地,已基本形成以上述省市为主体的华中、环渤海、长三角、珠三角四大激光产业基地,其中有一定规模的企业约300家。

2014年我国激光产业链产值约为800亿元。主要包括:激光加工装备产业达到350亿元(其中,用于切割、打标和焊接的高功率激光设备占据了67%的市场份额);激光加工在重工业、电子工业、轻工业、军用、医疗等行业的应用达到450亿元。预计在今后三年,我国激光产业平均行业复合成长率将不低于20%。

我国激光加工产业可以分为四个比较大产业带,珠江三角洲、长江三角洲、华中地区和环渤海地区。这四个产业带侧重点不同,珠三角以中小功率激光加工机为主,长三角以大功率激光切割焊接设备为主,环渤海以大功率激光

熔覆和全固态激光为主,以武汉为首的华中地区则覆盖了大、中、小激光加工设备。这四大产业带中,以华中地区尤其是武汉最具代表性,中国“光谷”的称号便是有力的证明。武汉地区可以说见证了中国激光加工产业从无到有、从弱到强的整个历程,是中国激光产业发展的缩影

2.国内激光产业重点单位

激光技术在我国经过40多年发展,有了较为雄厚的技术基础,锻炼培养了一支素质较高的队伍。以中科院四大光机所及各部委所属研究机构和一批大学为代表,形成了我国激光器系统技术研究开发的重要力量,如华中科技大学、清华大学、北京工业大学等16个科研院所。在部分激光器研究开发的核心技术上,形成了5个国家级的激光技术研究中心,10多个研究机构。

我国激光产业骨干企业有:武汉——华工激光、楚天激光、团结激光、金运激光、锐科激光;深圳——大族激光、光韵达激光、光大激光、联赢激光;北京——大恒激光、11所;华东——上海团结普林玛、南京东方等。我国激光行业的八大激光上市公司分别为华工科技、大族激光、金运激光、光韵达、福晶科技、新松机器人、利达光电及上海新南洋。

三、激光加工的优势

激光加工属于无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性及高熔点的材料。激光加工柔性大主要用于切割、表面处理、焊接、打标和打孔等。激光表面处理包括激光相变硬化、激光熔敷、激光表面合金化和激光表面熔凝等。

激光加工技术主要有以下独特的优点:

①使用激光加工,生产效率高,质量可靠,经济效益。

②可以通过透明介质对密闭容器内的工件进行各种加工;在恶劣环境或其他人难以接近的地方,可用机器人进行激光加工。

③激光加工过程中无“刀具”磨损,无“切削力”作用于工件。

④可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性及高熔点的材料。

⑤激光束易于导向、聚焦实现作各方向变换,极易与数控系统配合、对复杂工件进行加工,因此它是一种极为灵活的加工方法。

⑥无接触加工,对工件无直接冲击,因此无机械变形,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。

⑦激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有或影响极小,因此,其热影响区小,工件热变形小,后续加工量小。

⑧激光束的发散角可<1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时,大功率激光器的连续输出功率又可达千瓦至10kW量级,因而激光既适于精密微细加工,又适于大型材料加工。激光束容易控制,易于与精密机械、精密测量技术和电子计算机相结合,实现加工的高度自动化和达到很高的加工精度。

激光加工技术已在众多领域得到广泛应用,随着激光加工技术、设备、工艺研究的不断深进,将具有更广阔的应用远景。由于加工过程中输入工件的热量小,所以热影响区和热变形小;加工效率高,易于实现自动化。

四、存在主要问题及发展思路

1.面向专业领域的中高端激光加工成套装备和配套技术不能满足行业需求

随着我国制造业企业技术改造力度加大,近年来数控激光切割、焊接成套装备市场异常活跃,年需求可达到1000台以上。但国内市场缺乏满足行业需求的国产中高端激光装备产品,同时在与国外产品进行配套服务时,配套技术也达不到客户需求,如武钢冷轧生产线进口十多台德国激光拼焊、硅钢刻痕大型装备,配套的激光装备技术和激光焊接工艺无法满足武钢规模化不停机生产要求。在与东风、三环锻压等省内行业龙头企业的配套上,也存在类似问题。2.产业链各环节之间的合作融合不够

制约激光产业发展中的某些核心技术,如激光装备所需的控制软件、生产光纤激光器必需的特种光纤等,由于缺乏与数控相关企业、光电子相关企业之间的技术协作,导致技术一直难以取得突破,制约了激光产业核心竞争力的提

升。同时,在制造业与服务业加速融合发展的大环境下,我省激光产业需要扩宽思路,加大与现代服务业、文化创意产业的融合。虽然团结激光、楚天激光已经在这方面开展了有益的尝试,但这种不局限于现有市场和产品,主动谋求协作融合的思维方式尚未成为全行业的共识。

3.发展思路

以激光应用为先导,以激光器件为核心,以集成装备为主体,以国际合作提升水平,着力解决发展中长期存在的核心器件瓶颈和关键技术难题,推动科技资源高效配置与综合集成,促进产业链的上下延伸,促进激光产业各细分领域之间、激光与其他产业的融合发展,促进产学研协同创新,打造以大型激光加工设备系统集成企业为龙头,以中小型激光生产企业群为支撑,以功能器件生产企业群和公共技术等服务平台为配套的激光制造装备企业集群。围绕激光产业持续发展,聚焦新一代核心激光器、高端激光制造装备、激光加工应用三大方向,策划、攻克一批能够形成显著增长点的重大项目,建立重大产业化项目协同创新推进机制,及时研究解决项目前期及建设实施中的重大问题。

五、未来发展方向

1.激光器技术发展

继传统的气体、固体激光器之后,光纤激光器、半导体激光器、碟片激光器等新型激光器发展迅速。总体而言,全球激光技术的主要趋势是向高功率、高光束质量、高可靠性、高智能化和低成本方向发展。高功率射频板条CO2激光器、轴快流CO2激光器、千瓦内低成本大功率YAG激光器、碟片固体激光器、半导体激光器、光纤激光器、全固化可见光及倍频紫外激光器,皮秒、飞秒激光器。

(1)高功率工业光纤激光器高功率光纤激光器是第三代固体激光器。在激光加工领域,光纤激光器有逐步替代传统YAG、部分CO2激光器的趋势。目前商用光纤激光器输出功率连续功率已上升到数千瓦,以至50kW。

重点研发实用型1~4kW光纤激光器,攻克10kW光纤激光器产业化技术。

①高功率光纤激光器用大芯径掺镱光纤,为高功率光纤激光器及其核心光纤器件提供配套。

②10kW高功率工业光纤激光器工程化和产品化,以满足船舶、汽车、军工及能源等行业对厚钢板进行激光切割、激光焊接等的迫切需求。

③2~4kW连续光纤激光器,满足焊接、切割应用需求。

(2)高功率半导体固态激光器高功率半导体固态激光器是第四代固体激光器。半导体激光器结构紧凑,寿命期限可达到10000h,电光转换效率高达30%~40%。德国Laserline公司、DILAS公司实用化半导体激光器达到8kW。

发展激光增益光纤、激光薄片晶体、激光非线性频率转换晶体、激光用石英玻璃等激光材料,以及高功率镜片、传输光纤、切割头、焊接头、半导体激光泵浦源等激光器件。配套精密机械零件加工、激光电源、激光光学元件及数控系统等单元核心器件。

激光加工技术存在的问题及未来发展展望

激光加工技术存在的问题及未来发展展望一、国外激光加工技术及发展动态 以德国、美国、日本、俄罗斯为代表的少数发达国家,目前主导和控制着全球激光技术和产业的发展方向。 其中,德国Trumpf、Rofin-Sinar公司在高功率工业激光器上称雄天下;美国IPG公司的光纤激光器引领世界激光产业发展方向。欧美主要国家在大型制造产业,如机械、汽车、航空、造船、电子等行业中,基本完成了用激光加工工艺对传统工艺的更新换代,进入“光加工”时代。 经过几十年的发展,激光技术开辟了广阔的应用天地,应用领域涵盖通信、材料加工、准分子光刻及数据存储等9个主要类别。根据国外统计资料表明,2013年全世界总的激光销售超过1000亿元。其中全球激光器市场销售额较2013年增长6.0%,达到93.34亿美元。美国市场借助出口方面的出色表现有所增长;欧洲凭借德国的出口增长仅维持收支平衡;亚洲市场,东盟国家的增长抵消了中国的经济放缓以及日本的零增长。 二、国内激光产业发展现状 1.国内激光产业整体格局 国内激光企业主要分布在湖北、北京、江苏、上海及深圳等地,已基本形成以上述省市为主体的华中、环渤海、长三角、珠三角四大激光产业基地,其中有一定规模的企业约300家。 2014年我国激光产业链产值约为800亿元。主要包括:激光加工装备产业达到350亿元(其中,用于切割、打标和焊接的高功率激光设备占据了67%的市场份额);激光加工在重工业、电子工业、轻工业、军用、医疗等行业的应用达到450亿元。预计在今后三年,我国激光产业平均行业复合成长率将不低于20%。 我国激光加工产业可以分为四个比较大产业带,珠江三角洲、长江三角洲、华中地区和环渤海地区。这四个产业带侧重点不同,珠三角以中小功率激光加工机为主,长三角以大功率激光切割焊接设备为主,环渤海以大功率激光熔覆和全固态激光为主,以武汉为首的华中地区则覆盖了大、中、小激光加工设备。这四

激光加工技术的原理及应用

激光加工技术 摘要 激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔及微加工等的一种加工新技术,涉及到光、机、电、材料及检测等多门学科。由于激光加工热影响区域小,光束方向性好,几乎可以加工任何材料。常用来进行选择性加工,精密加工。由于激光加工的特殊特点,其发展前景广阔,目前已广泛应用于激光焊接、激光切割、表面改性、激光打标、切削加工,快速成形,激光钻孔和基板划片,半导体处理等。 关键词:原理、应用﹑新技术、精密加工、 引言 激光是本世纪的重大发明之一,具有巨大的技术潜力。专家们认为,现在是电子技术的全胜时期,其主角是计算机,下一代将是光技术时代,其主角是激光。激光因具有单色性、相干性和平行性三大特点,特别适用于材料加工。激光加工是激光应用最有发展前途的领域,国外已开发出20多种激光加工技术。激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工。激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。 激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。

正文 1﹑激光加工技术的原理及其特点 1.1激光加工的起源 早期的激光加工由于功率较小,大多用于打小孔和微型焊接。到20世纪70年代,随着大功率二氧化碳激光器、高重复频率钇铝石榴石激光器的出现,以及对激光加工机理和工艺的深入研究,激光加工技术有了很大进展,使用范围随之扩大。数千瓦的激光加工机已用于各种材料的高速切割、深熔焊接和材料热处理等方面。各种专用的激光加工设备竞相出现,并与光电跟踪、计算机数字控制、工业机器人等技术相结合,大大提高了激光加工机的自动化水平和使用功能。 1.2激光加工的原理 激光加工是以激光为热源对工件进行热加工。 激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。 从激光器输出的高强度激光经过透镜聚焦到工件上,其焦点处的功率密度高达107~1012瓦/厘米2,温度高达1万摄氏度以上,任何材料都会瞬时熔化、气化。激光加工就是利用这种光能的热效应对材料进行焊接、打孔和切割等加工的。通常用于加工的激光器主要是固体激光器(图1)和气体激光器(图2)。使用二氧化碳气体激光器切割时,一般在光束出口处装有喷嘴,用于喷吹氧、氮等辅助气体,以提高切割速度和切口质量。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。

激光加工技术的现状及国内外发展趋势

激光加工技术的现状及国内外发展趋势——激光英才网 作为20世纪科学技术发展的主要标志和现代信息社会光电子技术的支柱之一,激光技术和激光产业的发展受到世界先进国家的高度重视。 激光加工是国外激光应用中最大的项目,也是对传统产业改造的重要手段,主要是kW 级到10kW级CO2激光器和百瓦到千瓦级Y AG激光器实现对各种材料的切割、焊接、打孔、刻划和热处理等。 激光加工应用领域中,CO2激光器以切割和焊接应用最广,分别占到70%和20%,表面处理则不到10%。而Y AG激光器的应用是以焊接、标记(50%)和切割(15%)为主。在美国和欧洲CO2激光器占到了70~80%。我国激光加工中以切割为主的占10%,其中98%以上的CO2激光器,功率在1.5kW~2kW范围内,而以热处理为主的约占15%,大多数是进行激光处理汽车发动机的汽缸套。这项技术的经济性和社会效益都很高,故有很大的市场前景。 在汽车工业中,激光加工技术充分发挥了其先进、快速、灵活地加工特点。如在汽车样机和小批量生产中大量使用三维激光切割机,不仅节省了样板及工装设备,还大大缩短了生产准备周期;激光束在高硬度材料和复杂而弯曲的表面打小孔,速度快而不产生破损;激光焊接在汽车工业中已成为标准工艺,日本Toyota已将激光用于车身面板的焊接,将不同厚度和不同表面涂敷的金属板焊接在一起,然后再进行冲压。虽然激光热处理在国外不如焊接和切割普遍,但在汽车工业中仍应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理。在工业发达国家,激光加工技术和计算机数控技术及柔性制造技术相结合,派生出激光快速成形技术。该项技术不仅可以快速制造模型,而且还可以直接由金属粉末熔融,制造出金属模具。 到了80年代,Y AG激光器在焊接、切割、打孔和标记等方面发挥了越来越大作用。通常认为Y AG激光器切割可以得到好的切割质量和高的切割精度,但在切割速度上受到限制。随着Y AG激光器输出功率和光束质量的提高而被突破。Y AG激光器已开始挤进kw级CO2激光器切割市场。Y AG激光器特别适合焊接不允许热变形和焊接污染的微型器件,如锂电池、心脏起搏器、密封继电器等。Y AG激光器打孔已发展成为最大的激光加工应用。 目前,国外激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。激光打

激光微技术

1987 年美国科学家提出了微机电系统(MEMS)发展计划,这标志着人类对微机械的研究进入到一个新的时代。目前,应用于微机械的制造技术主要有半导体加工技术、微光刻电铸模造(LIGA)工艺、超精密机械加工技术以及特种微加工技术等。其中,特种微加工方法是通过加工能量的直接作用,实现小至逐个分子或原子的去除加工。特种加工是利用电能、热能、光能、声能、化学能等能量形式进行加工的,常用的方法有:电火花加工、超声波加工、电子束加工、离子束加工、电解加工等等。近年来发展起来一种可实现微小加工的新方法:光成型法,包括立体光刻工艺、光掩膜层工艺等。其中利用激光进行微加工显示出巨大的应用潜力和诱人的发展前景。 2 常用激光微加工技术 激光微加工技术具有非接触、有选择性加工、热影响区域小、高精度与高重复率、高的零件尺寸与形状的加工柔性等优点[1]。实际上,激光微加工技术最大的特点是“直写”加工,简化了工艺,实现了微型机械的快速成型制造。此外,该方法没有诸如腐蚀等方法带来的环境污染问题,可谓“绿色制造”。在微机械制造中采用的激光微加工技术有两类:1) 材料去除微加工技术,如激光直写微加工、激光LIGA 等;2)材料堆积微加工技术,如激光微细立体光刻、激光辅助沉积、激光选区烧结等。 2.1 激光直写技术 准分子激光波长短、聚焦光斑直径小、功率密度高,非常适合于微加工和半导体材料加工。在准分子激光微加工系统中,大多采用掩膜投影加工,也可以不用掩膜,直接利用聚焦光斑刻蚀工件,将准分子激光技术与数控技术相结合,综合激光光束扫描与X-Y 工作台的相对运动以及Z 方向的微进给,可以直接在基体材料上扫描刻写出微细图形,或加工出三维微细结构[2]。图1 为准分子激光加工出来的微型齿轮,最小齿轮直径为50mm。目前采用准分子激光直写方式可加工出线宽为数微米的高深宽比微细结构。另外,利用准分子激光采取类似快速成型(RP)制造技术,采用逐层扫描的方式进行三维微加工的研究也已取得较好结果[3]。 2.2 激光LIGA 技术

浅谈激光加工技术的发展及应用

浅谈激光加工技术的发展及应用 浅谈激光加工技术的发展及应用 【摘要】因为激光的加工技术的优点是生产的效率极高、加工的质量极好、适用的范围很广等,所以越来愈多的人希望在很多的领域中使用激光加工技术。本文介绍其相关的理论,重点论述其发展和应用。 【关键词】激光加工技术相关理论发展应用 一、前言 近年来重大的发明之一是激光技术。随着社会经济的快速发展,把激光器当成基础的激光加工的技术得到了快速发展。目前其正在被广泛应用在生产、通讯、医疗、军事及科研等多种领域。并且在这些领域都取得了非常好的经济与社会的效益,是我国未来经济的发展的关键。 二、激光加工技术相关理论 笔者认为,了解与应用激光加工技术需要对其相关理论深入的研究。以下笔者从其原理和特点来介绍激光加工技术。 (一)原理 激光加工能够获得极高的能量密度与极高的温度是因为采用的光学系统能够让激光聚焦成为一个非常小的光斑,在这样的高温下,每种坚硬的材料都会被瞬间熔化与气化,然后熔化物被气化而产生的蒸汽压力推动,以很高的速度喷射出来,从而实现了对工件加工的特种加工方法。 (二)特点 激光加工的技术对于加工工具与特殊环境没有要求,不会造成工具的磨损,易于使用自动控制来进行连续加工,且加工效率极高;同时激光的强度极高,聚焦后差不多能够熔化和气化全部的材料,所以能够加工所有硬度的金属与非金属的材料;加上激光加工是属于非接触的加工,及加工速度非常的快,工件没有受力与受热而产生变形;其还能聚焦成为极小的光斑(微米级),能够调节输出的功率,所以

可进行精密且细微的加工。这些均是激光加工优点。但由于其设备的投资比较大,及操作和维护技术要求比较高;且在精微加工的时候,重复的精度与表面的粗糙度难以保证等。这些缺点尽管在一定的程度上缩小了其应用规模,也限制了其发展,但是由于进一步的研究,越来越成熟的技术,激光加工技术有着非常广阔的发展前景。 三、激光加工技术的发展及应用 近年来,由于激光加工技术的快速发展,其被应用于许多的领域。以下是笔者从激光器与激光加工技术领域来介绍激光加工技术的发展,同时介绍目前激光加工技术的具体应用。 (一)激光加工技术的发展 了解激光加工技术的发展,就要研究激光器以及其应用的领域的变化。只有这样才能从根本上了解其发展。 迅速发展的激光器。我国研制出的第一台激光器是在1961年。通过几十年的努力,我国的激光器技术快速的发展起来了,从固体的激光器到气体的激光器,再到如今光纤的激光器、半导体的激光器与飞秒的激光器。光纤的激光器与传统激光器来比较,其优势是功率输出大,光束的质量较好,转换的效率较高,良好的柔性传输等。其在使用激光加工技术加工材料中有着极大的吸引力。现在应用于使用激光来打标、切割以及焊接。而飞秒的激光器则能够使超精微的加工可以实现。其在高技术的领域如微电子、光子学等应用的前景极宽广。同时半导体的激光器正在被直接用在焊接、热处理等方面。总之激光器的迅速发展导致了激光加工技术的快速发展。 广泛的应用领域。激光加工是在机械加工、力加工、火焰加工与电加工之后新产生的一种的加工技术,是借助激光束和物质相互作用的特性,对材料进行切割、焊接、表面处理、打孔以及微加工的综合性技术。激光焊接广泛应用在汽车的零件、密封的器件等多种要求焊接无污染与无变形的器件。激光切割主要应用在汽车的行业、航天的工业等领域。而激光打孔则应用在汽车的制造、化工等产业。广泛的应用领域也使得激光加工技术快速发展。 (二)激光加工技术的应用 激光加工技术在我国的许多领域里占据着重要的位置,以下是笔

材料先进加工技术

1. 快速凝固 快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。 2. 半固态成型 半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings 教授等首先提出了半固态加工技术,打破了传统的枝晶凝固式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压) 3. 无模成型 为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。 4.超塑性成型技术 超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。 5. 金属粉末材料成型加工 粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。 6. 陶瓷胶态成型 20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。 7. 激光快速成型 激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组

激光加工技术要求

激光加工技术要求 1.加工件所用材料应严格按照我方要求采购,不应有以次充好等现 象发生。 2.应提供每个批次加工件所用材料的材质单。 3.每个批次加工件所用材料的表面不得有锈蚀点、氧化皮等缺陷。 4.每个批次加工件的平面度不应大于0.05%。 5.每个批次加工件所用材料的规格应满足图纸要求(尤其是厚度不 应小于图纸、要求厚度0.3mm)。 6.加工件的轮廓尺寸误差不得大于0.5mm。 7.加工件的穿孔直径误差不得大于0.2mm。 8.加工件的穿孔孔距误差不得大于0.4mm。 9.加工件的切口表面粗糙度应控制在Ra12.5—25μm(切缝一般不需 要再加工即可焊接等)。 10.加工件的切口表面垂直度应控制在2%。 11.加工件所有螺纹处要求激光划线“十”字标记;直径小于板厚的 光孔处要求激光划线“十”字标记;特殊要求标记处要求激光划线按图纸要求标记。 12.加工件所有划线标记处要清晰,但不要划线太深。 13.加工件划线标记处数量、穿孔处数量、特殊标记处数量应准确, 不应多做标记和漏划标记处。 14.每次交付加工件时要求有贵公司的质量检验报告单。

报价要求 1.每次报价应把该批次加工件的详细排版图使用电子邮件形式发至 我公司。 2.首次加工的加工件加工详细情况,贵公司应与我公司按图纸要求 共同协商加工。例如:图纸上哪些孔是按穿孔计算价格,哪些孔是按切割延米计算价格。 3.报价单应注明加工件的图号;板厚及外形尺寸;加工数量;净重; 切割长度;穿孔数量;标记出数量;材料损耗;加工每一项的单价、合计;材料单价、合计;总计价格等。 报价补充 1.如果报价按照每次加工数量排版的实际使用材料数量报价,那么 每个批次的加工件排版的余料、损耗等由贵公司按照当时的市场价格自行处理,并适当减少加工部分费用。 2.如果报价按照每件的材料价格和单件加工费用总和报价,那么每 个批次加工后的余料、损耗等由贵公司自行处理,并适当减少加工部分费用。 3.部分加工件中切割后剩余的材料还很整齐,还可以充分利用切割 其它零件,不应按废钢计算。只有切割后完全不能再利用的材料才能按废钢计算。

激光加工技术

激光加工技术 班级:学号: 摘要:作为20世纪科学技术发展的主要标志和现代信息社会光电子技术的支柱之一,激光技术和激光产业的发展受到世界先进国家的高度重视。本文论述了激光加工技术的主要内容,以及它的加工原理、特点及其应用。 关键词:激光技术特点应用 1.引言 激光技术是20世纪60年代初发展起来的一门新兴科学,在材料加工方面,已逐步形成一种崭新的加工方法——激光加工(Lasser Beam Machining 简称LBM)。由于激光加工不需要加工工具、而且加工速度快、表面变形小,可以加工各种材料,已经在生产实践中愈来愈多地显示了它的优越性,所以很受人们重视。 激光技术在我国经过30多年的发展,取得了上千项科技成果,许多已用于生产实践,激光加工设备产量平均每年以20%的速度增长,为传统产业的技术改造、提高产品质量解决了许多问题,如激光毛化纤技术正在宝钢、本钢等大型钢厂推广,将改变我国汽车覆盖件的钢板完全依赖进口的状态,激光标记机与激光焊接机的质量、功能、价格符合国内目前市场的需求,市场占有率达90%以上。 2.激光技术研究的主要内容 (1)激光加工用大功率CO2和固体激光器及准分子激光器的引进机型研究,提高国产机水平;同时开发和研制专用配套的激光加工机床,提高激光器产品在生产线上稳定运行的周期,力争在国内建立较全面的加工用激光器的生产基地。 (2)建立激光加工设备参数的检测手段,并进行方法研究。 (3)激光切割技术研究。 (4)激光焊接技术研究。 (5)激光表面处理技术研究。

(6)激光加工光束质量及加工外围装置研究。 (7)择优支持2~3个国家级加工技术研究中心,开展激光加工工艺技术研究,重点是材料表面改性和热处理方面的研究和推广应用;开展激光快速成形技术的应用研究,拓宽激光应用领域。 3激光加工的原理和特点 3.1.加工原理和特点 1)聚集后,光能转化为热能,几乎可以熔化、气化任何材料。例如耐热合金、陶瓷、石英、金刚石等硬脆材料都能加工。 2)激光光斑大小可以聚集到微米级,输出功率可以调节,因此可用以精密微细加工。 3)加工所用工具是激光束,是非接触加工,所以没有明显的机械力,没有工具损耗问题。加工速度快、热影响区小,容易实现加工过程自动化。还能通过透明体进行加工,如对真空管内部进行焊接加工等。 4)和电子束加工等比较起来,激光加工装置比较简单,不要求复杂的抽真空装置。5)激光加工是一种瞬时、局部熔化、气化的热加工,影响因素很多,因此,精微加工时,精度,尤其是重复精度和表面粗糙度不易保证,必须进行反复试验,寻找合理的参数,才能达到一定的加工要求。由于光的反射作用,对于表面光泽或透明材料的加工,必须预先进行色化或打毛处理,使更多的光能被吸收后转化为热能用于加工。 6)加工中产生的金属气体及火星等飞溅物,要注意通风抽走,操作者应戴防护眼镜。 4.激光技术的应用 激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为:(1)激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统。

激光加工技术发展的研究

激光加工技术发展的探究 摘要:激光加工是将激光束照射到工件的外表,以激光的高能量来切除、熔化质料以及转变物体外表性能。由于激光束的能量和光束的移动速率均可调治,因此激光加工可应用于任意层面和领域上。本文分别从激光加工技术的原理及其应用综合品评了激光加工较传统加工技术的良好性,说明其在制造行业中不行替换的作用.结合我国激光加工制造现状与国际的差距,对我国激光加工业发展做了良好的预测.在阐发外国研究动向的基础上,指出激光制造技术的发展趋向,将重点定位在微结构、微刻蚀、微工具以及多功效性微技术、微工程的研究与开发上。可以预测,三维微纳尺度的激光微制造技术必将成为新世纪的主流制造技术。 关键词:激光加工激光制造体系技术发展 1.前言 激光的研究及其在各个领域的应用得到了迅速的发展。其高相干性在高细密丈量、物质结构阐发、信息存储及通讯等领域得到了普遍应用。激光的高单色性,可在光化学领域对一些相距很近的能级作选择引发,进行重金属的同位素疏散;激光的高偏向性和高亮度可普遍应用于加工制造业(大到航天器、飞机、汽车工业,小到微电子、信息、生物细胞疏散等微技术)。随着激光器件、新型受激辐射光源,以及相应工艺的不停改造与优化,尤其是近20年来,激光制造技术已渗透到诸多高新技术领域和产业,并开始取代或革新某些传统的加工行业。 2.正文 激光制造技术包括两方面的内容,一是制造激光光源的技术,二是使用激光作为工具的制造技术。前者为制造业提供性能优良、稳固可靠的激光器以及加工体系,后者使用前者进行各种加工和制造,为激光体系的不停发展提供广阔的应用空间。两者是激光制造技术中不可或缺的部分,不行偏废。激光制造技术具有许多传统制造技术所没有的优点,是一种切合可持续发展战略的绿色制造技术。比如,质料浪费少,在大规模生产中制造资本低;凭据生产流程进行编程控制(自动化),在大规模制造中生产屈从高;可靠近或到达“冷”加工状态,实现通例技术不能实验的高细密制造;对加工工具的顺应性强,且不受电磁干扰,对制造工具和生产情况的要求低;噪声低,不孕育发生任何有害的射线与剩余,生产历程对情况的污染小等等。因此,为顺应21世纪高新技术的产业化、满足宏观与微观制造的需要,研究和开发高性能光源势在必行。现在正在积极研制超紫外、超短脉冲、超大功率、高光束质量等特性的激光,尤其是能顺应微制造技术要求的激光光源更是倍受关注,并已形成国际性竞争。可以

先进激光加工技术与装备

先进激光加工技术与装备 摘要:随着我国经济和社会建设的全面进步,对各种先进技术有了更大的需求,其中,激光加工技术对于我国的科技发展有着至关重要的影响。信息产业中需要 利用激光对半导体硅片材料进行加工,制成所需的芯片。而因为激光加工技术的 不足,使得我国在相关领域的发展受到了较大的限制,这些问题的产生,与我国 在激光加工技术和装备研发方面的落后有直接关系。信息社会的建设,激光加工 技术是最基本的技术保障方式,对相关技术以及装备的研究,需要重视。 关键词:硅片;激光加工技术;装备 中国是一个制造业大国,在很多工业生产领域,都占据了世界第一的位置,但同时,也暴露 出我国很多产业大而不强的问题。一些核心技术与世界先进水平存在较大差距,以激光加工 技术为例,就是一个非常好的证明。近段时间来,我国通信产业面临着巨大的经营压力,最 主要的原因就是芯片的保障难以充分实现。在半导体产业中光刻机的缺失,使得我国相关企 业的巨大被动。解决这些问题已经不只是企业自身的问题,更关系到国家的发展战略,基于此,其研究的现实价值和深远影响得以体现。 1.激光加工技术概述 激光在当前的科技和工业领域具有非常广泛的用途,尤其是激光加工技术,在当前的现 代化建设过程中有着极为重要的影响,包括对社会进步产生巨大影响的信息产业,也需要将 激光加工技术加以充分利用。就目前来说,先进的激光加工技术代表着一个国家最重要的核 心科技能力,特别是半导体加工中必须通过光刻机完成对硅片的处理,到目前为止已经达到 几纳米的加工数量级。没有如此尖端的激光加工技术,就只能将相关的加工需求进行外包, 在核心科技方面会受制于其他国家的技术限制。 激光加工技术主要利用激光束对被加工物进行处理,通过激光与这些物质间存在的作用,对材料完成加工处理。这些材料可以是金属也可以是非金属,激光加工技术都可以有很好的 适应性。其加工方式通常包括几种,即:切割、表面处理、打孔、焊接、微加工等。这一方 面利用了激光可以在微小区域产生巨大热量的原理,这些热量可以融化被加工物质,实现切 割等目的;另一方面,激光具有良好的单色性和直线传播的优势,能够在加工物体表面进行 蚀刻等操作,使得很多极高精度的加工均采用激光加工技术。从目前来看,激光加工技术已 经充分用在电子、航空、机械制造等重要领域,并对整个加工技术的优化有非常突出的促进 作用。 2.先进激光加工技术与装备研究 与传统加工技术相比,先进的激光加工技术可以在加工精度和工作质量和稳定性方面有 着非常突出的表现。这些先进的技术与相应的装备融合,可以对加工能力产生巨大的影响。 本文以光刻机技术及其装备为例,系统探究先进激光加工技术的相关内容,有一定的借鉴价 值和参考意义。 2.1光刻机技术 现代光学工业中,激光加工技术是最为核心的内容,而其最高技术成就的代表就是光刻机。光刻机之所以享有如此声誉,不仅在于其应用领域的重要性,同时也表现在其制造难度上,截至目前,整个世界范围内仅几家企业具备研发制造能力,而光刻机的单台售价甚至达

激光加工专业技术有哪些【详情】

激光加工技术有哪些【详情】

————————————————————————————————作者:————————————————————————————————日期:

激光加工技术有哪些 内容来源网络,由深圳机械展收集整理! 更多激光加工设备技术展示,就在深圳机械展! 激光加工技术是利用激光束与物质相互作用的特性,对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔及微加工等的一门加工技术。激光加工作为先进制造技术已广泛应用于汽车、电子、电器、航空、冶金、机械制造等国民经济重要部门,对提高产品质量、劳动生产率、自动化、无污染、减少材料消耗等起到愈来愈重要的作用。 激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为以下9个方面: 1.激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统; 2.激光加工工艺。包括焊接、表面处理、打孔、打标、微调等各种加工工艺; 3.激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器; 4.激光切割:汽车行业、计算机、电气机壳、木刀模业、各种金属零件和特殊材料的切割、圆形锯片、压克力、弹簧垫片、2mm以下的电子机件用铜板、一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷青铜、电木板、薄铝合金、石英玻璃、硅橡胶、1mm以下氧化铝陶瓷片、航天工业使用的钛合金等等。使用激光器有YAG激光器和CO2激光器; 5.激光打标:在各种材料和几乎所有行业均得到广泛应用,使用的激光器有YAG激光器、CO2激光器和半导体泵浦激光器; 6.激光打孔:激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。激光打孔的迅速发展,主要体打孔用YAG激光器的平均输出功率已由400w提高到了800w至1000w。国内比较成熟的激光打孔的应用是在人造金刚石和天然金刚石拉丝模的生产及钟表和仪表的宝石轴承、飞机叶片、多层印刷线路板等行业的生产中。使用的激光器多以YAG激光器、CO2激光器为主,也有一些准分子激光器、同位素激光器和半导体泵浦激光器; 7.激光热处理:在汽车工业中应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理,同时在航空航天、机床行业和其它机械行业也应用广泛。我国的激光热处理应用远比国外广泛得多。使用的激光器多以YAG激光器,CO2激光器为主; 8.激光快速成型:将激光加工技术和计算机数控技术及柔性制造技术相结合而形成,多用于模具和模型行业。使用的激光器多以YAG激光器、CO2激光器为主; 9.激光涂敷:在航空航天、模具及机电行业应用广泛。使用的激光器多以大功率YAG激光器、CO2激光器为主。 激光加工为工业制造提供了一个清洁无污染的环境及生产过程,而这也是当下激光加工的优势。 技术特性

激光加工技术应用领域研究(通用版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 激光加工技术应用领域研究(通 用版)

激光加工技术应用领域研究(通用版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 激光加工技术作为一项高新技术一直是国家重点支持和推动的,在国家制定中长期发展规划时,也将激光加工列为关键支撑技术,这就给激光加工技术应用带来前所未有的发展机遇。本文就对激光加工技术的在快速制造应用领域进行简单的探讨。 激光快速制造技术弥补了激光烧结工艺中的不足。现代激光技术的应用,采用了专门研发的、申请了专利保护的激光照射方案,使用了标准钢材粉末为原料的技术,获得了巨大的成功,可制造出无收缩的、几乎是百分之百密实的零部件。现在,在使用正品原材料的情况下可以制作大型的零件,如强力冷却的模具型芯。所用材料的特性与大批量生产时所用的钢材相同,使制造出来的零件满足了大批量生产的条件。铝合金铸造厂采用这种工艺技术为汽车生产厂制造铝合金材料的压铸模具。 激光快速制造技术是一种“常规的”生产制造工艺,它使得所有可以焊接的金属材料,如不锈钢、耐热钢和调质钢,按照一层层焊接

激光加工技术题目及答案

1、从激光束的特性分析,为什么激光束可以用来进行激光与物质的相互作用? 答:(1)方向性好:发散角小、聚焦光斑小,聚焦能量密度高。 (2)单色性好: 为精密度仪器测量和激励某些化学反应等科学实验提供了极为有利的手段。 (3)亮度极高:能量密度高。 (4)相关性好:获得高的相关光强,从激光器发出的光就可以步调一致地向同一方向传播,可以用透镜把它们会聚到一点上,把能量高度集中起来。 总之,激光能量不仅在空间上高度集中,同时在时间上也可高度集中,因而可以在一瞬间产生出巨大的光热,可广泛应用于材料加工、医疗、激光武器等领域。 2、什么是焦深,焦深的计算及影响因素? 答:光轴上其点的光强降低至激光焦点处的光强一半时,该点至焦点的距离称为光束的聚焦深度。光束的聚焦深度与入射激光波长和透镜焦距的平方成正比,与w12成反比,因此要获得较大的聚焦深度,就要选长聚焦透镜,例如在深孔激光加工以及厚板的激光切割和焊接中,要减少锥度,均需要较大的聚焦深度。 3、对于金属材料影响材料吸收率的因素有哪些?在目前激光表面淬火中常对工件进行黑化处理,为什么? 答:波长、温度、材料表面状态 波长越短,金属对激光的吸收率就越高 温度越高,金属对激光的吸收率就越高 材料表面越粗糙,反射率越低,吸收率越大。 提高材料对激光的吸收率 4、简述激光模式对激光加工的影响,并举出2个它们的应用领域? 答:基模光束的优点是发散角小,能量集中,缺点是功率不大,且能量分布不均。 应用:激光切割、打孔、焊接等。 高阶模的优点是输出功率大,能量分布较为均匀,缺点是发散厉害。应用:激光淬火(相变硬化)、金属表面处理等。 5、试叙述激光相变硬化的主要机制。 答:当采用激光扫描零件表面,其激光能量被零件表面吸收后迅速达到极高的温度,此时工件内部仍处于冷态,随着激光束离开零件表面,由于热传导作用,表面能量迅速向内部传递,使表层以极高的冷却速度冷却,故可进行自身淬火,实现工件表面相变硬化。 6、激光淬火区横截面为什么是月牙形?在此月牙形区相变硬化有什么特点? 特点:A,B部位硬化,C部位硬化不够 原因:A,B部位接近材料内部,热传导速率大,可以高于临界冷却速度的速度冷却,因此可充分硬化,而C部位热传导速率小,不能以高于临界冷却速度的速度冷却,因此硬化不够。

激光加工技术-教学基本要求

高等职业教育激光加工技术专业教学基本要求 专业名称激光加工技术 专业代码580114 招生对象 普通高中毕业生、中职毕业生 学制与学历 三年制,专科 就业面向 本专业覆盖激光加工技术等职业领域的岗位群。 1.毕业生可适应的初始职业岗位有: (1)激光加工设备制造企业的各加工工种岗位、激光加工设备装配、调试、使用、维护、维修等岗位; (2)光电设备、机电设备及相关成套设备的安装、调试、使用与维护。 2.毕业生在获得一定工作经验(进修)后发展职业岗位有: (1) 激光及数控加工设备制造企业的产品营销、生产管理、技术管理、质量控制等企业管理岗位群; (2) 升迁的职业岗位及预计平均获得的时间为三年。 培养目标与规格 一、培养目标 本专业培养德、智、体、美、劳全面发展,适应现代制造业需要,主要面向激光加工设备制造和使用行业,培养从事大功率激光加工设备操作及维护,小功率激光加工设备组装、调试及售后服务等岗位,兼顾光电设备、机电设备及相关成套设备的安装、调试、使用、数控加工设备操作等岗位的高端技能型专门人才。 激光加工设备装配调试、操作使用、销售及售后服务各工种岗位主要包括激光美容仪、激光打标机、激光雕刻机、激光焊接机、激光切割机等设备的生产制造、销售服务、使用维护等岗位构成本专业毕业生初始就业岗位群。 毕业生经过三年左右的工作经验累积或进修,可升迁至激光及数控加工设备制造企业的生产管理(计划员、统计员、调度员、采购员、对外协作员等)、技术管理(工艺师、工装夹具设计师等)、质量控制(对产品质量的控制、检验、分析)、产品营销等企业管理岗位群。 二、培养规格 本专业的职业核心能力主要有: 在掌握激光加工设备本体的装配与调试工艺的基础上,重点掌握激光器光路装置的装配与调试工艺。

激光加工技术的应用与发展

激光加工技术的应用与发展 摘要:激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工等的一门技术。激光加工作为先进制造技术已广泛应用于汽车、电子、电器、航空、冶金、机械制造等国民经济重要部门,对提高产品质量、劳动生产率、自动化、无污染、减少材料消耗等起到愈来愈重要的作用。 关键词:加工原理、发展前景、强化处理、发展前景。 一激光加工的原理及其特点 1.激光加工的原理 激光加工利用高功率密度的激光束照射工件,使材料熔化气化而进行穿孔、切割和焊接等的特种加工。早期的激光加工由于功率较小,大多用于打小孔和微型焊接。数千瓦的激光加工机已用于各种材料的高速切割、深熔焊接和材料热处理等方面。各种专用的激光加工设备竞相出现,并与光电跟踪、计算机数字控制、工业机器人等技术相结合,大大提高了激光加工机的自动化水平和使用功能。 激光具有的宝贵特性决定了激光在加工领域存在的优势: ①由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。 ②它可以对多种金属、非金属加工,特别是可以加工高硬度、高

脆性、及高熔点的材料。 ③激光加工过程中无“刀具”磨损,无“切削力”作用于工件。 ④激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小。因此,其热影响区小,工件热变形小,后续加工量小。 ⑤它可以通过透明介质对密闭容器内的工件进行各种加工。 ⑥由于激光束易于导向、聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此是一种极为灵活的加工方法。 ⑦使用激光加工,生产效率高,质量可靠,经济效益好。虽然激光加工拥有许多优点,但不足之处也是很明显的。 二激光技术 用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。激光加工有许多优点:①激光功率密度大,工件吸收激光后温度迅速升高而熔化或汽化,即使熔点高、硬度大和质脆的材料(如陶瓷、金刚石等)也可用激光加工;②激光头与工件不接触,不存在加工工具磨损问题;③工件不受应力,不易污染;④可以对运动的工件或密封在玻璃壳内的材料加工;⑤激光束的发散角可小于1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时,大功率激光器的连续输出功率又可达千瓦至十千瓦量级,因而激光既适于精密微细加工,又适于大型材料加工;⑥激光束容易控制,易于与精密机械、精密测量技术和电子计算机相结合,实现加工的高度自动化和达到很高的加工精度;⑦在恶劣环境或其他人难以接近的地方,可用

激光切割工艺详解-共30页

激光切割工艺 发表于 2009-10-26 20:50 | 只看该作者发表的帖子 1# 本文章共4286字,分3页,当前第1页,快速翻页:123 激光切割工艺 激光切割的工艺参数 (1)光束横模 ① 基模又称为高斯模,是切割最理想的模式,主要出现在功率小于1kW的激光器。 ② 低阶模与基模比较接近,主要出现在1~2kW的中功率激光器。 ③ 多模是高阶模的混合,出现在功率大于3kW的激光器。

切割速度与横模及板厚的关系见图1。由图可以看出,300W的单模激光和500W的多模有同等的切割能力。但是,多模的聚焦性差,切割能力低,单模激光的切割能力优于多模。常用材料的单模激光切割工艺参数见表1,多模激光切割工艺参数见表2。 表1 常用材料的单模激光切割工艺参数 材料 厚度/mm 辅助气体 切割速度/cmmin-1 切缝宽度/mm 功率/W 低碳钢 3.0 O2 60 0.2 250 不锈钢 1.0 O2 150 0.1

40.0 O2 50 3.5 钛合金 10.0 O2 280 1.5 有机透明玻璃10.0 N2 80 0.7 氧化铝 1.0 O2 300 0.1 聚酯地毯

N2 260 0.5 棉织品(多层)15.0 N2 90 0.5 纸板 0.5 N2 300 0.4 波纹纸板 8.0 N2 300 0.4 石英玻璃 1.9

60 0.2 聚丙烯 5.5 N2 70 0.5 聚苯乙烯 3.2 N2 420 0.4 硬质聚氯乙烯7.0 N2 120 0.5 纤维增强塑料3.0 N2

0.3 木材(胶合板)18.0 N2 20 0.7 低碳钢 1.0 N2 450 - 500 3.0 N2 150 6.0 N2 50 1.2 O2

激光切割技术的原理及应用

激光切割技术的原理及应用 1. 激光切割技术简介 (2) 1.1激光切割技术概述 (2) 1.2激光切割技术的原理 (4) 1.3激光切割技术的发展历史 (5) 2.激光切割的特点 (6) 2.1激光切割的总体特点 (6) 2.2 CO2激光切割技术的特点 (7) 2.3半导体激光切割机 (8) 2.4光纤激光切割机 (8) 3. 激光切割技术的应用及发展前景 (10) 3.1激光切割技术的市场现状 (10) 3.2激光切割技术的应用 (12) 结论 (13)

激光切割技术的原理及应用 材料12A文修曜 摘要 激光加工技术是一种先进制造技术,而激光切割是激光加工应用领域的一部分,激光切割是当前世界上先进的切割工艺。由于它具备精密制造、柔性切割、异型加工、一次成形、速度快、效率高等优点,所以在工业生产中解决了许多常规方法无法解决的难题。激光能切割大多数金属材料和非金属材料。 Abstract The laser processing technology is a kind of advanced manufacturing technology, and laser cutting is part of the laser processing applications, laser cutting is the current advanced cutting technology in the world.Because it has flexible cutting, stone processing, precision manufacturing, a forming, fast speed, higher efficiency, so in industrial production solved many conventional methods cannot solve the problem.Can laser cutting most of the metal materials and nonmetal materials. 关键词:激光切割的原理;激光切割的分类及特点;激光切割技术的应用 1.激光切割技术简介 1.1激光切割技术概述 激光切割是激光加工行业中最重要的一项应用技术。它占整个激光加工业的70%以上。激光切割与其他切割方法相比,最大区别是它具有高速、高精度及高适应性的特点。同时还具有割缝细、热影响区小、切割面质量好、切割时无噪声、切割过程容易实现自动化控制等优点。激光切割板材时,不需要模具,可以替代

相关主题
文本预览
相关文档 最新文档