当前位置:文档之家› 指数函数习题集精彩编辑精讲

指数函数习题集精彩编辑精讲

指数函数习题集精彩编辑精讲
指数函数习题集精彩编辑精讲

指数函数

指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小

例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x

f c 的大小关系是_____.

分析:先求b c ,的值再比较大小,要注意x

x

b c ,的取值是否在同一单调区间内.

解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =.

∴函数()f x 在(]1-,

∞上递减,在[)1+,∞上递增. 若0x ≥,则3

21x

x ≥≥,∴(3)(2)x x f f ≥;

若0x <,则321x

x

<<,∴(3)(2)x

x

f f >.

综上可得(3)(2)x

x

f f ≥,即()()x

x

f c f b ≥.

评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2

321(25)

(25)x

x a a a a -++>++,则x 的取值范围是___________.

分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2

2

25(1)441a a a ++=++>≥,

∴函数2(25)x

y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x >

.∴x 的取值范围是14??

+ ???

,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题

例3 求函数y =

解:由题意可得2

16

0x --≥,即261x -≤,

∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-,

∞.

令2

6

x t -=,则y =

又∵2x ≤,∴20x -≤. ∴2

061x -<≤,即01t <≤.

∴011t -<≤,即01y <≤.

∴函数的值域是[)01,

. 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响. 4.最值问题 例4 函数221(01)x

x y a

a a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______.

分析:令x

t a =可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围.

解:令x

t a =,则0t >,函数221x

x y a

a =+-可化为2(1)2y t =+-,其对称轴为1t =-.

∴当1a >时,∵[]11x ∈-,,

1x a a a ≤≤,即1

t a a

≤≤. ∴当t a =时,2

max (1)214y a =+-=. 解得3a =或5a =-(舍去);

当01a <<时,∵[]11x ∈-,,

∴1x a a a ≤≤

,即1

a t a

≤≤, ∴ 1t a =时,2

max 11214y a ??

=+-= ???

解得13a =

或15a =-(舍去),∴a 的值是3或1

3

. 评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等. 5.解指数方程 例5 解方程2

23

380x x +--=.

解:原方程可化为2

9(3)80390x x

?-?-=,令3(0)x

t t =>,上述方程可化为2

98090t t --=,解得9t =或

19

t =-(舍去)

,∴39x

=,∴2x =,经检验原方程的解是2x =. 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题

例6 为了得到函数935x

y =?+的图象,可以把函数3x

y =的图象( ).

A .向左平移9个单位长度,再向上平移5个单位长度

B .向右平移9个单位长度,再向下平移5个单位长度

C .向左平移2个单位长度,再向上平移5个单位长度

D .向右平移2个单位长度,再向下平移5个单位长度

分析:注意先将函数935x

y =?+转化为2

35x t +=+,再利用图象的平移规律进行判断.

解:∵2

9353

5x x y +=?+=+,∴把函数3x y =的图象向左平移2个单位长度,再向上平移5个单位长度,可得

到函数935x

y =?+的图象,故选(C ).

评注:用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等. 习题

1、比较下列各组数的大小:

(1)若 ,比较 与 ; (2)若 ,比较 与 ; (3)若 ,比较

与 ;

(4)若 ,且 ,比较a 与b ; (5)若

,且

,比较a 与b .

分析:设 均为正数,则 ,即比较两个正数的大小,可比较它们的商与1的大小.掌握指

数函数的图象规律,还要掌握底的变化对图象形状的影响.这主要有两方面:其一是对 ;

.用语言叙述即在y 轴右侧,底越大其图象越远离x 轴;在y 轴左侧,底越大,其图

象越接近x 轴.这部分内容即本题(2),(3)所说的内容.其二是当底均大于1时,底越大,其图象越接近y 轴;当底均小于1时,底越小,其图象越接近y 轴.一个便于记忆的方法是:若以离1远者为底,则其图象接近y 轴.当然这是指底数均大于1或均小于1.这部分内容即本题(4)与(5).

解:(1)由 ,故 ,此时函数 为减函数.由 ,故 .

(2)由,故.又,故.从而.

(3)由,因,故.又,故.从而.

(4)应有.因若,则.又,故,这样.又因,故.从而,这与已知矛盾.

(5)应有.因若,则.又,故,这样有.又因,

且,故.从而,这与已知矛盾.

小结:比较通常借助相应函数的单调性、奇偶性、图象来求解.

2、(1)指数函数①②满足不等式,则它们的图象是( ).

分析:此题应首先根据底数的范围判断图象的升降性,再根据两个底数的大小比较判断对应的曲线.

解:由 可知①②应为两条递减的曲线,故只可能是

,进而再判断①②与

的对应关系,此时判断的方法很多,不妨选特殊点法,令 ,①②对

应的函数值分别为 和

,由

可知应选

.

(2)曲线

分别是指数函数 ,

图象,则 与1的大小关系是 ( ).

(

分析:首先可以根据指数函数单调性,确定 ,在 轴右侧令 ,对应的函数

值由小到大依次为

,故应选

.

小结:这种类型题目是比较典型的数形结合的题目,第(1)题是由数到形的转化,第(2)题则是由图到数的翻译,它的主要目的是提高学生识图,用图的意识. 求最值

3 求下列函数的定义域与值域.

(1)y =2

3

1-x ; (2)y =4x +2x+1+1.

解:(1)∵x-3≠0,∴y =2

3

1-x 的定义域为{x |x ∈R 且x ≠3}.又∵3

1

-x ≠0,∴231

-x ≠1,

∴y =23

1-x 的值域为{y |y>0且y ≠1}.

(2)y =4x +2x+1+1的定义域为R.∵2x >0,∴y =4x +2x+1+1=(2x )2+2·2x +1=(2x +1)2>1. ∴y =4x +2x+1+1的值域为{y |y>1}.

4 已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x 的最大值和最小值 解:设t=3x ,因为-1≤x ≤2,所以93

1

≤≤t ,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。 5、设

,求函数

的最大值和最小值.

分析:注意到 ,设 ,则原来的函数成为 ,利用闭区间

上二次函数的值域的求法,可求得函数的最值. 解:设

,由

知,

,函数成为 , ,对称轴 ,故函

数最小值为 ,因端点 较 距对称轴 远,故函数的最大值为

6(9分)已知函数)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值.

.解:

)1(122>-+=a a a y x x , 换元为)1

(122a t a

t t y <<-+=,对称轴为1-=t .

当1>a ,a t =,即x =1时取最大值,略

解得 a =3 (a = -5舍去)

7.已知函数 (

) (1)求 的最小值; (2)若

,求

取值范

围.

.解:(1) , 当 即 时, 有最小值

(2) ,解得

当 时,

时,

8(10分)(1)已知m x f x +-=

1

32

)(是奇函数,求常数m 的值;

(2)画出函数

|13|-=x y 的图象,并利用图象回答:k 为何值时,方程|3X-1|=k 无

解?有一解?有两解?

解: (1)常数m =1

(2)当k <0时,直线y =k 与函数

|13|-=x y 的图象无交点,即方程无解;

当k =0或k ≥1时, 直线y =k 与函数

|13|-=x

y 的图象有唯一的交点,所以方程有一解;

当0

|13|-=x y 的图象有两个不同交点,所以方程有两解。

9.若函数 是奇函数,求 的值. .解:

为奇函数,

即 ,

则 ,

10. 已知9x -10.3x +9≤0,求函数y=(

41)x-1-4·(2

1)x

+2的最大值和最小值 解:由已知得(3x )2-10·3x +9≤0 得(3x -9)(3x -1)≤0 ∴1≤3x ≤9 故0≤x ≤2

而y=(

41)x-1-4·(21)x +2= 4·(21)2x -4·(2

1

)x +2 令t=(2

1

)x (141≤≤t )

则y=f (t )=4t 2-4t+2=4(t-2

1

)2+1

当t=2

1

即x=1时,y min =1

当t=1即x=0时,y max =2

11.已知 ,求函数 的值域.

解:由 得 ,即 ,解之得 ,于是

,即 ,故所求函数的值域为

12. (9分)求函数

2

222

++-=x x y 的定义域,值域和单调区间

定义域为R 值域(0,8〕。(3)在(-∞, 1〕上是增函数 在〔1,+∞)上是减函数。 13 求函数y =2

3231+-??

?

??x x 的单调区间.

分析 这是复合函数求单调区间的问题

可设y =u

?

?

? ??31,u =x 2-3x+2,其中y =u

?

?

?

??31为减函数

∴u =x 2-3x+2的减区间就是原函数的增区间(即减减→增) u =x 2-3x+2的增区间就是原函数的减区间(即减、增→减)

解:设y =u

?

?

?

??31,u =x 2-3x+2,y 关于u 递减,

当x ∈(-∞,

2

3

)时,u 为减函数, ∴y 关于x 为增函数;当x ∈[2

3

,+∞)时,u 为增函数,y 关于x 为减函数.

14 已知函数f(x)=1

1

+-x x a a (a>0且a ≠1).

(1)求f(x)的定义域和值域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性. 解:(1)易得f(x)的定义域为{x |x ∈R }.

设y =1

1+-x x a a ,解得a x =-11-+y y ①∵a x >0当且仅当-11-+y y >0时,方程①有解.解-11-+y y >0得-1

∴f(x)的值域为{y |-1<y <1}.

(2)∵f(-x)=11+---x x a a =

x

x

a a +-11=-f(x)且定义域为R ,∴f(x)是奇函数.

(3)f(x)=12)1(+-+x x a a =1-1

2

+x a .

1°当a>1时,∵a x +1为增函数,且a x +1>0.

∴12+x a 为减函数,从而f(x)=1-12

+x a =1

1+-x x a a 为增函数.2°当0

15、已知函数f (x )=a -

1

22

+x

(a ∈R ), (1) 求证:对任何a ∈R ,f (x )为增函数. (2) 若f (x )为奇函数时,求a 的值。 (1)证明:设x 1<x 2

f (x 2)-f (x 1)=)

21)(21()

22(22

112x x x x ++->0

故对任何a ∈R ,f (x )为增函数. (2)x R ∈Q

,又f (x )为奇函数

(0)0f ∴= 得到10a -=。即1a =

16、定义在R 上的奇函数)(x f 有最小正周期为2,且)1,0(∈x 时,1

42)(+=

x x x f

(1)求)(x f 在[-1,1]上的解析式;(2)判断)(x f 在(0,1)上的单调性; (3)当λ为何值时,方程)(x f =λ在]1,1[-∈x 上有实数解. 解(1)∵x ∈R 上的奇函数 ∴

0)0(=f

又∵2为最小正周期 ∴0)1()1()12()1(=-=-=-=f f f f 设x ∈(-1,0),则-x ∈(0,1),)(1

421

4

2)(x f x f x

x x

x -=+=

+=---

∴1

42)(+-=x x x f

(2)设0

)

14)(14()

22()22()()(21122212221++-+-=

-++x x x x x x x x x x f x f

=0)

14)(14()21)(22(2

12121>++--+x

x x x x x ∴在(0,1)上为减函数。

(3)∵)(x f 在(0,1)上为减函数。

∴)0()()1(f x f f << 即)2

1,52()(∈x f 同理)(x f 在(-1,0)时,)5

2,21()(--∈x f 又0)1()0()1(===-f f f ∴当)2

1

,52()52,21(?--

∈λ或0=λ时 λ=)(x f 在[-1,1]内有实数解。

?????

????∈+∈∈+-

=(0,1) x 142{-1,0,1}

x 0 (-1,0) x 1

42)(x x x x

x f

函数y =a |x |(a>1)的图像是( )

分析 本题主要考查指数函数的图像和性质、函数奇偶性的函数图像,以及数形结合思想和分类讨论思想. 解法1:(分类讨论):

去绝对值,可得y =???

??<≥).0()1(),0(x a

x a x

x

又a>1,由指数函数图像易知,应选B.

解法2:因为y =a |x |是偶函数,又a>1,所以当x ≥0时,y =a x 是增函数;x <0时,y =a -x 是减函数. ∴应选B.

学习指数函数定义的两个注意点

指数函数施我们学习的基本函数之一,对于指数函数的学习,概念非常重要,因此一定要弄懂指数函数的定义。 指数函数的定义: 函数

)10(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数定义域是R 。

注意点1:为什么要规定01a a >≠且呢? ①若0a

=,则当0x >时,0x a =;当当0x <时,x a 无意义.

②若0a <,则对于x 的某些数值,可使x

a 无意义. 如x

)2(-,这时对于14x =

,1

2

x =,…等等,在实数范围内函数值不存在.

③若1a =,则对于任何x R ∈,1x

a

=,是一个常量,没有研究的必要性.

为了避免上述各种情况,所以规定01a a >≠且。在规定以后,对于任何x R ∈,x

a 都有意义,且0x

a >. 因

此指数函数的定义域是R ,值域是(0,)+∞ 。

注意点2:函数

x y 32?=是指数函数吗?

指数函数的解析式

x y a =中,x a 的系数是1.

有些函数貌似指数函数,实际上却不是,如

x y a k =+ (01a a >≠且,k Z ∈);有些函数看起来不像指数函

数,实际上却是,如x

y a -= (01a a >≠且),因为它可以化为1x

y a ??

= ?

??

,其中

10a >,且1

1a

≠。 以上两点在学习中经常会碰到,希望大家在学习中能引起注意,真正理解指数函数的定义。

【高中数学题型归纳】2.5指数与指数函数

第五节 指数与指数函数 考纲解读 1. 了解指数函数模型的实际背景. 2. 理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算及性质. 3. 理解指数函数的概念和单调性,掌握指数函数图象通过的特殊点. 4. 认识到指数函数是一类重要的函数模型. 命题趋势探究 指数函数是中学数学中基本初等函数之一,这部分内容在高考中处于重要的地位.高考中往往以基础知识为主,主要考查指数函数的性质及应用,一般以选择题和填空题的形式出现,例如数值的计算、函数值的求法、数值大小的比较等,但有时也与函数的基本性质、二次函数、方程、不等式、导数等内容结合起来编制综合题.近几年高考中有加强考查的趋势. 知识点精讲 一、指数的运算性质 当a >0,b >0时,有 (1)a m a n =a m +n (m ,n ∈R ); (2)m m n n a a a -=( m ,n ∈R) (3)(a m )n =a mn (m ,n ∈R ); (4)(ab )m =a m b m (m ∈R ); (5)p p a a -=1 (p ∈Q ) (6)m m n n a a =(m ,n ∈N +) 二、指数函数 (1)一般地,形如y =a x (a >0且a ≠1)的函数叫做指数函数; (2)指数函数y =a x (a >0y =a x a >1 00 y =1?x =0 y >1?x <0 (5)01?x >0 题型归纳及思路提示 题型23 指数运算及指数方程、指数不等式 思路提示 利用指数的运算性质解题.对于形如()f x a b =,()f x a b >,()f x a b <的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如a 2x +B a x +C =0或a 2x +Ba x +C ≥0(≤0)的形式,可借助换元法转化二次方程或二次不等式求解. 一、指数运算 例2.48化简并求值.

指数函数经典例题和课后习题

指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =1 2+x 与y =2 2+x . ⑵y =12 -x 与y =2 2 -x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)1241++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

函数概念与基本初等函数第四讲指数函数对数函数幂函数答案

专题二函数概念与基本初等函数I 第四讲指数函数、对数函数、幂函数答案部分2019 年 1. 解析由题意知,m 太阳 E E 太阳 ,将数据代入,可得lg 太阳10.1 m lg E 天狼星天狼星 2 , E 天狼星 所以 E .故选A. 太阳 10 10.1 E 天狼星 sin xx , x[ n,n ], 2.解析因为cos x x f x 2 sin x x f x sin x x xcos x x 2 2

所 cos x x 所以f x为 [ n,n ]上的奇函数,因此排除A; n 0 ,因此排除B,C; sin n n f n 又 又 cos n n 2 1 n 2 故选D.3.解析:由函数y ,y log x 1 ,单调性相反,且函数 x 1 log a

1 a 图像恒 a x 2 2 1 可各满足要求的图象为D.故选D.过 ,0 2 2010-2018 年 1 1. D【解析】c log 1 y log x 为增函数, 3 log 5,因为 3 5 3 7 所以 log 5 log 3 3 log 3 1. 3 2 因为函数 1 x 1 1 1 0 y ()为减函数,所以()()1,故c a b,故选D. 3 4 2. B【解析】当x 0时,因为

ex 4 ex 4 x 0 ,所以此时 x e e f (x) x 2 1 0 ,故排除A. D; 1 又f (1) e 2 e ,故排除C,选B. 3. B【解析】解法一设所求函数图象上任一点的坐标为(x, y),则其关于直线x 1的对称 点的坐标为(2 x, y) ,由对称性知点(2 x, y) 在函数f (x) ln x 的图象上,所以y ln(2 x) ,故选B. 解法二由题意知,对称轴上的点(1, 0) 即在函数y ln x 的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验, 排除A, 2(1 x) ,0 x 2知,f (x) 在(0,1) 上单调递增,在(1, 2) 上

高考数学-指数函数图像和性质及经典例题

高考数学-指数函数图像和性质及经典例题 【基础知识回顾】 一、指数公式部分 有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. 正数的分数指数幂的意义 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 二、指数函数 1.指数函数的概念:一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 1.在同一坐标系中画出下列函数的图象: (1)x )31(y = (2)x )2 1 (y = (3)x 2y = (4)x 3y = (5)x 5y =

【指数函数性质应用经典例题】 例1.设a 是实数, 2 ()()21 x f x a x R =- ∈+,试证明:对于任意,()a f x 在R 上为增函数. 证明:设1212,,x x R x x ∈<,则 12()()f x f x -12 22()()2121 x x a a =- --++ 21222121 x x = - ++ 121 22(22)(21)(21) x x x x -=++, 由于指数函数2x y =在R 上是增函数, 且12x x <, 所以1222x x < 即1 2220x x -<, 又由20x >, 得1 1 20x +>,2120x +>, ∴12()()0f x f x -< 即12()()f x f x <, 所以,对于任意,()a f x 在R 上为增函数. 例2.已知函数2 ()1 x x f x a x -=+ +(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根.

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

第2章第5讲 指数与指数函数

第5讲 指数与指数函数 基础知识整合 一、指数及指数运算 1.根式的概念 根式的概念 符号表示 备注 如果□ 01x n =a ,那么x 叫做a 的n 次方根 — n >1且n ∈N * 当n 为奇数时,正数的n 次方根是一个□ 02正数,负数的n 次方根是一个□ 03负数 n a 零的n 次方根是零 当n 为偶数时,正数的n 次方根有□04两个,它们互为□ 05相反数 ±n a (a >0) 负数没有偶次方 根 2.分数指数幂 (1)a m n =□ n a m (a >0,m ,n ∈N *,n >1); (2)a -m n =□ 071 a m n =□ 1 n a m (a >0,m ,n ∈N *,n >1); (3)0的正分数指数幂等于0,0的负分数指数幂没有意义. 3.有理数指数幂的运算性质 (1)a r ·a s =a r +s (a >0,r ,s ∈Q ); (2)(a r )s =a rs (a >0,r ,s ∈Q ); (3)(ab )r =a r b r (a >0,b >0,r ∈Q ). 二、指数函数及其性质 1.指数函数的概念 函数□ 09y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数. 说明:形如y =ka x ,y =a x +k (k ∈R 且k ≠0,a >0且a ≠1)的函数叫做指数型函数.

2.指数函数的图象和性质 底数 a >1 00时,恒有y >1; 当x <0时,恒有00时,恒有01 函数在定义域R 上为增函数 函数在定义域R 上为减函数 1.(n a )n =a (n ∈N *且n >1). 2.n a n =??? ?? a ,n 为奇数且n >1,|a |=??? a ,a ≥0,-a ,a <0, n 为偶数且n >1. 3.底数对函数y =a x (a >0,且a ≠1)的函数值的影响如图(a 1>a 2>a 3>a 4),不论是a >1,还是00,且a ≠1时,函数y =a x 与函数y =? ?? ?? 1a x 的图象关于y 轴对称. 1.化简[(-2)6] 12 -(-1)0的结果为( ) A .-9 B .7 C .-10 D .9

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

第四讲 指数函数

§2.2.1 分数指数幂(1) 【教学目标】 1.理解n 次方根及根式的概念; 2.掌握n 次根式的性质,并能运用它进行化简,求值; 3.提高观察、抽象的能力. 【课前导学】 1.如果2x a =,则x 称为a 的 ; 如果3x a =,则x 称为a 的 . 2. 如果*(1,)n x a n n N =>∈,则x 称为a 的 ;0的n 次实数方根等于 . 3. 若n 是奇数,则a 的n 次实数方根记作n a ; 若0>a 则为 数,若o a <则为 数;若n 是偶数,且0>a ,则a 的n 次实数方根为 ;负数没有 次实数方根. 4. 式子n a ()1,n n N * >∈叫 ,n 叫 ,a 叫 ; n = . 5. 若n = ;若n = . 【例题讲解】 例1.求下列各式的值: (1)2 (2)3 (3 (4 *变式:解下列方程(1)3216x =-; (2)422240x x --=

例2.设-3

§2.2.1 分数指数幂(2) 【教学目标】 1.能熟练地进行分数指数幂与根式的互化; 2.熟练地掌握有理指数幂的运算法则,并能进行运算和化简. 3.会对根式、分数指数幂进行互化; 4.培养学生用联系观点看问题. 【课前导学】 1.正数的分数指数幂的意义: (1)正数的正分数指数幂的意义是m n a = ()0,,,1a m n N n *>∈>; (2)正数的负分数指数幂的意义m n a -= ()0,,,1a m n N n *>∈>. 2.分数指数幂的运算性质: 即()1r s a a = ()0,,a r s Q >∈, ()()2s r a = ()0,,a r s Q >∈, ()()3r ab = ()0,0,a b r Q >>∈. 3.有理数指数幂的运算性质对无理数指数幂 指数幂同样适用. 4. 0的正分数指数幂等于 . 【例题讲解】 例1.求值(1) 12100, (2)23 8, (3)()32 9-, (4) 34 181- ?? ??? . 例2.用分数指数幂表示下列各式(0)a >: (1)a ;(2 ;(3.

必修一指数函数各种题型大全最新版

指数函数 【知识点梳理】 要点一、指数函数的概念: 函数y=ax(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?, 1 2x y =,31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x ==???时,在实数范围 内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点二、指数函数的图象及性质:

要点诠释: (1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1)①x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2, 3, (), ()2 3 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>,>, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() ()

公众号:数学研讨 专题二 函数概念与基本初等函数 第四讲指数函数对数函数幂函数答案

专题二 函数概念与基本初等函数Ⅰ 第四讲 指数函数、对数函数、幂函数 答案部分 2019年 1. 解析 由题意知,lg 2E m m E 5 -=太阳太阳天狼星天狼星,将数据代入,可得lg 10.1E E =太阳天狼星 , 所以 10.1 10E E =太阳天狼星 .故选A. 2.解析 因为()2 sin cos x x f x x x +=+,π[]πx ∈-,, 所以()()()22 sin sin cos cos x x x x f x f x x x x x --+-= ==--++, 所以()f x 为[ππ]-,上的奇函数,因此排除A ; 又()22 sin πππ π0cos ππ1π f +==>+-+,因此排除B ,C ; 故选D . 3.解析:由函数1x y a = ,1log 2a y x ??=+ ???,单调性相反,且函数1log 2a y x ? ?=+ ??? 图像恒 过1 ,02?? ??? 可各满足要求的图象为D .故选D . 2010-2018年 1.D 【解析】1 33 1 log log 55 c ==,因为3log y x =为增函数, 所以33 37 log 5log log 312 >>=. 因为函数1()4x y =为减函数,所以10311()()144<=,故c a b >>,故选D . 2.B 【解析】当0

又1 (1)2=- >f e e ,故排除C ,选B . 3.B 【解析】解法一 设所求函数图象上任一点的坐标为(,)x y ,则其关于直线1x =的对称 点的坐标为(2,)x y -,由对称性知点(2,)x y -在函数()ln f x x =的图象上,所以 ln(2)y x =-,故选B . 解法二 由题意知,对称轴上的点(1,0)即在函数ln y x =的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A ,C ,D ,选B . 4.C 【解析】由2(1) ()(2) x f x x x -'= -,02x <<知,()f x 在(0,1)上单调递增,在(1,2)上 单调递减,排除A 、B ;又(2)ln(2)ln ()f x x x f x -=-+=, 所以()f x 的图象关于1x =对称,C 正确. 5.D 【解析】由2 280x x -->,得2x <-或4x >,设2 28u x x =--,则 (,2)x ∈-∞-,u 关于x 单调递减,(4,)x ∈+∞,u 关于x 单调递增,由对数函数的性 质,可知ln y u =单调递增,所以根据同增异减,可知单调递增区间为(4,)+∞.选D . 6.C 【解析】函数()f x 为奇函数,所以221 (log )(log 5)5 a f f =-=, 又222log 5log 4.1log 42>>=,0.8 122<<, 由题意,a b c >>,选C . 7.B 【解析】由11 ()3 ()(3())()33 x x x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln 33ln 30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选B . 8.A 【解析】对于A,令()e 2 x x g x -=?,1 1()e (22ln )e 2(1ln )022 x x x x x g x ---'=+=+>, 则()g x 在R 上单调递增,故()f x 具有M 性质,故选A . 9.D 【解析】设361 80310 M x N ==,两边取对数得, 361 36180803lg lg lg3lg10361lg38093.2810 x ==-=?-≈,

指数函数知识点总结

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函 数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 指数函数·例题解析

指数与指数函数

指数与指数函数 指数函数及其性质 (1)概念:函数y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数. (2)指数函数的图象与性质 a >1 00时,y >1; 当x <0时,01; 当x >0时,01)的值域是(0,+∞). ( ) 2.若函数f (x )=a x (a >0,且a ≠1)的图象经过? ?? ??2,13, 则f (-1)=( ) A.1 B.2 C. 3 D.3 3.某种产品的产量原来是a 件,在今后m 年内,计划使每年的产量比上一年增加p %,则该产品的产量y 随年数x 变化的函数解析式为( ) A.y =a (1+p %)x (0

C.y =a (1+xp %)(00,将 a 2 a ·3 a 2 表示成分数指数幂,其结果是( ) A.a 1 2 B.a 5 6 C.a 7 6 D.a 3 2 5. 已知函数f (x )=3x -? ?? ??13x ,则f (x )( ) A.是偶函数,且在R 上是增函数 B.是奇函数,且在R 上是增函数 C.是偶函数,且在R 上是减函数 D.是奇函数,且在R 上是减函数 6.设a =0.60.6 ,b =0.61.5 ,c =1.50.6 ,则a ,b ,c 的大小关系是( ) A.a 0,b >0). 【训练1】 化简下列各式: (1)[(0.0641 5)-2.5]2 3 - 3 338-π0; (2)56 a 1 3·b -2·(-3a -12b -1) ÷(4a 23·b -3 )1 2. 考点二 指数函数的图象及应用 【例2】 (1)(2019·镇海中学检测)不论a 为何值,函数y =(a -1)2x -a 2恒过定点,则这个定点的坐标是 ( )

(完整版)指数函数经典习题大全

指数函数习题 新泰一中闫辉 一、选择题 1.下列函数中指数函数的个数是 ( ). ①②③④ A.0个 B.1个 C.2个 D.3个 2.若,,则函数的图象一定在() A.第一、二、三象限 B.第一、三、四象限 C.第二、三、四象限 D.第一、二、四象限 3.已知,当其值域为时,的取值范围是()A. B. C. D. 4.若,,下列不等式成立的是() A. B. C. D. 5.已知且,,则是() A.奇函数 B.偶函数 C.非奇非偶函数 D.奇偶性与有关 6.函数()的图象是() 7.函数与的图象大致是( ).

8.当时,函数与的图象只可能是() 9.在下列图象中,二次函数与指数函数的图象只可能是() 10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ). A.2400元 B.900元 C.300元 D.3600元 二、填空题 1.比较大小: (1);(2) ______ 1;(3) ______ 2.若,则的取值范围为_________. 3.求函数的单调减区间为__________.

4.的反函数的定义域是__________. 5.函数的值域是__________ . 6.已知的定义域为 ,则的定义域为__________. 7.当时, ,则的取值范围是__________. 8.时,的图象过定点________ . 9.若 ,则函数的图象一定不在第_____象限. 10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________. 11.函数的最小值为____________. 12.函数的单调递增区间是____________. 13.已知关于的方程有两个实数解,则实数的取值范围是_________. 14.若函数(且)在区间上的最大值是14,那么等于 _________. 三、解答题 1.按从小到大排列下列各数: ,,,,,,, 2.设有两个函数与,要使(1);(2),求、的取值范围. 3.已知 ,试比较的大小. 4.若函数是奇函数,求的值. 5.已知,求函数的值域. 6.解方程:

计量经济学第四讲

第四节 非线性回归模型 前面讨论的线性回归模型 n i b x b x b b y i ki i i i ,,2,122110 =+++++=ε 其结构具有两个特点:(1)被解释变量y 是解释变量的线性函数,即关于解释变量线性;(2)被解释变量y 也是参数的线性函数,即关于参数线性。但是在现实经济问题的研究中,经济变量之间大多数是非线性关系,即模型为非线性回归模型。对非线性模型,通常将其转化成线性模型进行估计。本节将讨论非线性回归模型的参数估计方法以及非线性模型中参数的特定含义。 一、 可线性化模型 在非线性回归模型中,有一些模型经过适当的变量变换或函数变换就可以转化成线性回归模型,从而将非线性回归模型的参数估计问题转化成线性回归模型的参数估计,称这类模型为可线性化模型。在计量经济分析中经常使用的可线性化模型有: (一) 倒数变换模型(双曲函数模型) 模型如下: ε++=x b a y 1 ε++=x b a y 11 设: y y x x 11==* *或 即进行变量的倒数变换,就可以将其转化成线性回归模型,所以称该模型为倒数变换模型。

倒数变换模型有一个明显特征:随着x 的无限扩大,y 将趋近于极限值a(或1/a),即有一个渐近下限或上限。有些经济现象(如平均固定成本曲线、商品的成长曲线、菲得普斯曲线等)恰好有类似的变动规律,因此可以由倒数变换模型进行描述。 (二) 双对数模型(幂函数模型) 模型如下: ε++=x b a y ln ln 设: x x y y ln ln ==* * 则将其转换成线性回归模型: ε++=* *bx a y 对于双对数模型,因为有: 的增长速度 的增长速度x y x x y y x dx y dy x d y d b =??≈==////ln ln 因此,双对数模型中的回归系数b 恰好就是被解释变量y 关于解释变量x 的弹性。即当x 增长1%时y 的增长率。由于弹性是经济分析中的一个十分重要的指标(需求函数中的价格弹性、收入弹性、生产函数中的资金弹性、劳动弹性等),如果所研究的经济关系可以用双对数模型描述,则估计模型之后就可以直接利用系数b 进行弹性分析。因此,双对数模型是人们经常采用的一类非线性回归模型。 (三) 半对数模型 模型如下:

高一数学指数函数经典例题

高一数学 指数函数平移问题 ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象;向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象;向下平移a 个单位得到f (x )-a 的图象. 指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12 -=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练 指数函数① ② 满足不等式 ,则它们的图象是 ( ). 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--()

指数及指数函数知识点

指数函数 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . (二)分数指数幂 1.分数指数幂:()102 5 0a a a ==>()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a =45a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。

相关主题
文本预览
相关文档 最新文档