当前位置:文档之家› 同相、反相比例放大电路仿真实验

同相、反相比例放大电路仿真实验

同相、反相比例放大电路仿真实验
同相、反相比例放大电路仿真实验

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

反相比例运算电路

西安建筑科技大学华清学院课程设计(论文) 课程名称:模拟电子线路电课程设计 题目:反相比例运算电路 院(系):机械电子工程系 专业班级:电子信息科学与技术0902 姓名:谢宏龙 学号:0906030216 指导教师:高树理 2011年7 月8 日

摘要 本设计主要通过Multisim软件实现了对模拟电子基础中的集成运电路的设计和模拟。小组成员分别对由集成运放电路组成的反相运算放大电路和同相运算放大电路进行设计。设计主要内容包括:由集成运算放大电路组成的反相比例运算放大电路跟随器的输出波形的观察和比较,求出它的电压放大倍数,电阻的分析和比较,共模输入电压的比较分析,构成同相比例运算放大电路的原理和特性的介绍,通过对同相和反相比例运算放大电路的比较得出一些结论。在本设计中,不仅包括实验所要求的内容,而且对由集成运算放大电路构成的同相放大电路和由集成运放构成的反相比例运算放大电路原理和作用作了比较详细的的说明,这样能够使大家更好的对其组成的电路能够更好的了解,同时也使人们了解到了其的应用以及功能所在,以便更合理的应用它们。 关键字Multisim,反相运算放大器,同相运算放大器,

目录 1绪论 (2) 2M u l t i s i m的简介 (3) 3集成运算放大器电路的介绍和特性 (3) 3.1介绍 (3) 3.2特性 (3) 4由集成运算短路构成的反相比例运算电路的设计 (4) 4.1电路图设计 (4) 4.2反相比例运算电路波形的观察 (4) 4.3 由集成运算短路构成的反相比例运算电路特性 (5) 5 由集成运算短路构成的同相比例运算电路的特性和原理 (5) 5.1原理 (5) 5.2特性 (6) 6反相比例运算电路和同相电路的对比 (6) 7课设的体会与心得 (6) 8结束语 (7)

反向比例运算电路

反向比例运算电路 (1)电路的组成 图—1 反向比例运算电路的组成如图—1所示。由图可见,输入电压u i 通过电阻R 1加在运放的反向输入端。R f 是沟通输出和输入的通道,是电路的反馈网络。 同向输入端所接的电阻R P 为电路的平衡电阻,该电阻等于从运放的同向输入端 往外看除源以后的等效电阻,为了保证运放电路工作在平衡的状态下,同相输入端的电阻应该取 R P =R 1//R f (2)电压放大倍数

图-2 理想运算放大器组成的反相比例运算电路见图-2,显然是一个电压并联负反馈电路。 在输入信号作用下,输入端有电流i I、i′I、 i f 。 根据虚断的特性有i'I≈0 于是i I≈i f 根据虚短的特性,有u+ ≈ u- 所以 放大倍数A u为 (3)反向比例运算电路的输入电阻 为了保证运放电路工作在平衡的状态下,同相输入端的电阻应该取 R P =R1//R f (4)由于反向比例运算电路具有虚地的特点。所以共模输入电压为 反相比例运算电路由于具有“虚地”的特点,运放的同相输入端和反相输入端均为0电位,所以反相比例运算电路的共模输入电压等于0。 结论: 1. 电路是深度电压并联负反馈电路,理想情况下,反相输入端“虚地”,共模输入电压低。 2. 实现了反相比例运算。|Au| 取决于电阻 R f和 R1之比。U0与 U i反相, | Au | 可大于1、等于 1 或小于 1 。 3. 电路的输入电阻不高,输出电阻很低。 4. 虽然理想运放的输入电阻为无穷大,由于引入并联负反馈后,电路的输入电阻减少了,变成R 1 ,要提高反向比例运算放大器的输入电阻,需加大电阻 R 1的值。R 1 的值越大,R f 的值也必需加大,电路的噪声也加大,稳定性越差。 f o 1 I R u R u - ≈ 1 I I I I i R i u i u R= - = =

同相比例放大器的原理与检测方法

同相比例放大器的原理与检测方法 集成运算放大器按其技术指标可分为通用型、高速型、高阻型、低功耗型、大功率型、高精度型等;按其内部电路可分为双极型(由晶体管组成)和单极型(由场效应管组成);按每一集成片中运算放大器的数目可分为单运放、双运放和四运放。 通常是根据实际要求来选用运算放大器。如测量放大器的输入信号微弱,它的第一级应选用高输入电阻、高共模抑制比、高开环电压放大倍数、低失调电压及低温度漂移的运算放大器。选好后,根据管脚图和符号图联结外部电路,包括电源、外接偏置电阻、消震电路及凋零电路等。 1、同相放大器的几种电路形式和特点 图1 同相放大电路、电压跟随器电路 上图a电路为同相放大器的典型电路形式。输入信号进入放大器的同相端,输出信号与输入信号同相位,电路的电压放大倍数=1+R2/R3,放大量大小取决于R2与R3的比值。R1的选取值为R2/R3的并联值(若忽略两输入端微弱偏置电流不一致对放大精度的影响和取同值电阻的方便性,实际电路中,也可以使R1=R3)。该电路当R2短接或R3开路时,输出信号与输入信号的相位一致且大小相等,因而a电路可进一步“进化”为b、c电路。 b、c为电压跟随器电路,输出电压完全跟踪于输入电路的幅度与相位,故电压放大倍数为1,虽无电压放大倍数,但有一定的电流输出能力。电路起到了阻抗变换作用,提升电路的带负载能力,将一个高阻抗信号源转换成为一个低阻抗信号源。减弱信号输入回路高阻抗和输出回路低阻抗的相互影响,又起到对输入、输入回路的隔离和缓冲作用。只要求输出正极性信号时,也可以采用单电源供电。 a、b、c等电路,也在故障检测电路中,被用于模拟信号的放大、基准电压信号的处理等。

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩: .

. 一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图3.2.1所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图3.2.1电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图3.2.1 共射极单管放大器

同相比例和反相比例放大器-成考

同相比例和反相比例 一、反相比例运算放大电路 反相输入放大电路如图1所示,信号电压通过电阻R 1加至运放的反相输入端,输出电压v o 通过反馈电阻R f 反馈到运放的反相输入端,构成电压并联负反馈放大电路。R ¢为平衡电阻应满足R ¢= R 1//R f 。 利用虚短和虚断的概念进行分析,v I=0,v N=0,i I =0,则 即 ∴ 该电路实现反相比例运算。 反相放大电路有如下特点 1.运放两个输入端电压相等并等于0,故没有共模输入信号,这样对运放的共模抑制比没有特殊要求。 2.v N= v P ,而v P=0,反相端N 没有真正接地,故称虚地点。 3.电路在深度负反馈条件下,电路的输入电阻为R 1,输出电阻近似为零。 二、同相比例运算电路 图 1 反相比例运算电路

同相输入放大电路如图1所示,信号电压通过电阻 R S加到运放的同相输入端,输出电压v o通过电阻R1 和R f反馈到运放的反相输入端,构成电压串联负反馈放 大电路。 根据虚短、虚断的概念有v N=v P=v S,i1=i f 于是求得 所以该电路实现同相比例运算。 同相比例运算电路的特点如下 1.输入电阻很高,输出电阻很低。 2.由于v N=v P=v S,电路不存在虚地,且运放存在共模输入信号,因此要求运放有较高的共模抑制比。 三、加法运算电路 图1所示为实现两个输入电压v S1、v S2的反 相加法电路,该电路属于多输入的电压并联负反馈 电路。由于电路存在虚短,运放的净输入电压v I= 0,反相端为虚地。利用v I=0,v N=0和反相端输入 电流i I=0的概念,则有 或 图1 同相比例运算电路 图1 加法运算电路

反相比例运算电路仿真分析.doc

1 反相比例运算电路 1.1 综述 反相比例运算电路实际上是深度的电压并联负反馈电路。在理想情况下,反相输入端的电位等于零,称为“虚地”。因此加在集成运放输入端的共模电压很小。 输出电压与输入电压的幅值成正比,但相位相反,因此,电路实现了反相比例运算。比例系数的数值决定于电阻RF与R1之比,而与集成运放内部各项参数无关。只要RF 和R1的阻值比较准确和稳定,即可得到准确额比例运算关系。比例系数的数值可以大于或等于1,也可以小于1。 由于引入了深度电压并联负反馈,因此电路的输入电阻不高,而输出电阻很低。1.2 工作原理 1.2.1 原理图说明 图1.2.1.1 反相比例运算电路 如图所示,输入电压V1经电阻R1接到集成运放的反相输入端,运放的同相输入端经电阻R2接地。输出电压经反馈电阻RF引回到反相输入端。 集成运放的反相输入端和同相输入端,实际上是运放内部输入级两个差分对管的基极。为使差分放大电路的参数保持对称,应使两个差分对管基极对地的电阻尽量一致,以免静态基流流过这两个电阻时,在运放输入端产生附加的偏差电压。因此,通常选择R2的阻值为R2=R1∥RF 经过分析可知,反相比例运算电路中反馈的组态是电压并联负反馈。由于集成运放

的开环差模增益很高,因此容易满足深度负反馈的条件,故可以认为集成运放工作在线性区。所以,可以利用理想运放工作在线性区时“虚短”和“虚断”的特点来分析反相比例运算电路的输出输入关系。 由于“虚断”,U +=0 又因“虚短”,可得 U - =U + =0 由于 I -=0 , 则由图可见 I I =I F 即(U I -U - )/R1=(U—U )/RF 上式中U - =0,由此可求得反相比例运算电路的输出电压与输入电压的关系为 U 0=-RF·U I /R1 1.2.2 元件表 元件名称大小数量 集成运算放大器741 1 直流电源1V 1 电阻 6.8K 1 10K 1 20K 1 1.3 仿真结果分析 图1.3.1 仿真分析结果图 由于输入电压为1V,所以根据公式可得输出电压为-1.997,符合理论。

同相比例运算放大器输入电阻的分析

渤海大学 本科毕业论文 题目同相比例运算放大器输入电阻的分析完成人姓名王雷 主修专业物理学教育 所在院(系) 物理系 入学年度 2003年 完成日期 2007年5月21日 指导教师李弋

同相比例运算放大器输入电阻的分析 王雷渤海大学物理系 摘要:同相比例运算放大器,引入了电压串联负反馈,当运放具有理想特性时,输入电阻应为无限大,但当运放特性不理想时,输入电阻为一个有限值。为了计算同相比例运算放大器的输入电阻,我首先研究了集成运放电路的内部结构,并以长尾式差分放大电路为例进行了分析。因为同相比例运算放大器引入了电压串联负反馈,所以我又研究了一些和反馈有关的知识。最后推导了同相比例运算放大器输入电阻的精确表达式,并指出有关文献中的输入电阻的几种表达形式均是精确式在不同条件下的近似值。 关键词:运算放大器;同相比例;输入电阻;差分放大电路;反馈

Analysis of Input Resistor of Non-inverting Operational Amplifier Wang lei Department of Physics, BoHai University Abstract:Non-inverting operational amplifier, has introduced the negative feedback of the voltage series. when operational amplifier has an ideal characteristic, input resistor should be an infinity, but when the characteristic is not ideal enough, input resistor should be a finite value. In order to calculate the input resistor of non-inverting operational, firstly I have studied the inner structure of the operational amplifier’s circuit and taken a long-tailed pair differential amplifier as an example to analyze. Because non-inverting operational amplifer has introduced the negative feedback of the voltage series, therefore I have studied some relevent knowledge about feedback. In the end the accurate expression of input resistor of non-inverting operational amplifier is deduced in the paper. It is pointed out that some expressions of input resistor in the relative references are all approximate to the accurate expression under different proximal conditions. Key words: operational amplifier ; non-inverting style ; input resistor differential amplifier ; feedback

比例放大器的设计

151 实验三 比例放大电路的设计 一.实验目的 1.掌握集成运放线性应用电路的设计方法。 2.掌握电路的安装、调试与电路性能指标的测试方法。 二.预习要求 1.根据给出的指标,设计电路并计算电路的有关参数。 2.画出标有元件值的电路图,制定出实验方案,选择实验仪器设备。 3.写出预习报告 三. 比例放大电路的特点、设计与调试 (一).反相比例放大电路 1.反相比例放大电路的特点 U 由运算放大器组成的反相比例放大电 U o 路如图1所示。 根据集成运算放大器的基本原理,反 相比例放大电路的闭环特性为: 闭环电压增益: 1 R R A f uf -= (1) 图1 反相比例放大器 输入电阻 1R R if = (2) 输出电阻 01≈+= uo o of KA R R (3) 其中: A uo 为运放的开环电压增益,f R R R K +=11 环路带宽 f uo o f R R A BW BW 1? ?= (4) 其中:BW o 为运放的开环带宽。 最佳反馈电阻 K R R R o id f 2?= = 2) 1(uf o id A R R -? (5) 上式中:R id 为运放的差模输入电阻,R o 为运放的输出电阻。 平衡电阻 f P R R R //1= (6) 从以上公式可以看出,由运算放大器组成的反相输入比例放大电路具有以下特性: (1)在深度负反馈的情况下工作时,电路的放大倍数仅由外接电阻R 1和 R f 的值决定。 (2)由于同相端接地,故反相端的电位为“虚地”,因此,对前级信号源来说,其负载不是运放本身的输入电阻,而是电路的闭环输入电阻R 1。由于R if = R 1,因此反相比例放大电

反比例放大电路

反比例放大电路 一、实验目的: 1、了解常用电子仪器:示波器、函数信号发生器、直流稳压 电源等的主要特性指标、性能及正确的使用方法。 2、学会自己设计正向反向比例放大电路 3、掌握示波器的基本调整方法和工作模式。 4、了解Multism软件的使用,学会绘制简单的电路图。 5、了解运算放大器的工作原理 二、实验环境 仪器:双踪示波器、函数信号发生器、数字万用表、电路实验箱; 电子元件:电环电阻、集成运算放大器ua741; 软件:Multisim软件; 三、实验原理 集成运算放大器ua741构造图如下: 1、5脚:失调调零端 2:反向输入端(V-) 3:同相输入端(V+) 4:负电源端(-Vee) 6:输出(OUT) 7:正电源端(+Vcc) 8:空 4 3 2 1

注意事项:在连接时8号端口不连,输入输出端(2、3端)需先接电阻再进行输入输出(并且接入的电阻阻值应该相等),正负电源接反就会爆炸!!! 设计电路图如下: 对照本图,运算放大器放大倍数为-Rf/R1(反比例)。 通常将运放视为理想运放,即将运放的各项技术指标理想化,理想运放在线性应用时的两个重要特性:

虚短:因为理想运放的电压放大倍数很大,而运放工作在线性区,是一个线性放大电路,输出电压不超出线性范围(即有限值),所以,运算放大器同相输入端与反相输入端的电位十分接近相等。在运放供电电压为±15V时,输出的最大值一般在10~13V。所以运放两输入端的电压差,在1mV以下,近似两输入端短路。这一特性称为虚短,显然这不是真正的短路,只是分析电路时在允许误差范围之内的合理近似。 虚断:由于运放的输入电阻一般都在几百千欧以上,流入运放同相输入端和反相输入端中的电流十分微小,比外电路中的电流小几个数量级,流入运放的电流往往可以忽略,这相当运放的输入端开路,这一特性称为虚断。显然,运放的输入端不能真正开路。 运用“虚短”、“虚断”这两个概念,在分析运放线性应用电路时,可以简化应用电路的分析过程。运算放大器构成的运算电路均要求输入与输出之间满足一定的函数关系,因此均可应用这两条结论。如果运放不在线性区工作,也就没有“虚短”、“虚断”的特性。如果测量运放两输入端的电位,达到几毫伏以上,往往该运放不在线性区工作,或者已经损坏。

仿真实验四 共射极放大电路分析

仿真实验四 共射极放大电路分析 一、实验目的: (1)认真理解和掌握含三极管的非线性电路的特点 (2)使用Multisim 验证三极管的等效小信号模型 二、实验原理及实例 小信号分析法是分析非线性电阻电路的主要方法之一。在非线性电路中,同时有直流电压0U 和随时间变化变化的输入信号源s u t () 的作用。如果在任何时刻都有0U >s u t () ,则可以采用小信号分析法。 具体步骤如下: (1)画放大电路的小信号等效电路。 (2)估算be r 。为此,还要求得静态电流eq I (3)求电压增益V A 。 (4)计算输入、输出电阻o ,R R i 三、仿真实验设计 如下图所示求该电路的电压增益。 (1)当电路中只有直流电流作用时,求出静态工作点

2120.0454m 250800.0036312 1.104BE B C B CE C V I A K I I A V R I V ββ-= =Ω ====-= (2)画出该电路的小信号等效电路

计算相关参数: 26200(180)7730.0454 3.63 be r =++=Ω+ ()155.24770.63b C E V b BE i b be o C i R R A i R R R r R R k β=-=-=≈Ω ≈=Ω 对其仿真得: 由仿真结果可得67.56m 154.03435.23u O V i V V A V V = == 验证输入与输出的波形关系 :

可得到输入波形与输出波形为反向,所以-154.03V A = 测量输入、输出电阻的阻值: i 435771.30.435263.552824.40.0225i i O o V V R I mA V V R Io mA = ==Ω===Ω

单管放大电路仿真实验报告

? 单管放大电路仿真实验报告 一、实验目的 1、 掌握放大电路支流工作点的调整与测量方法。 2、掌握放大电流主要性能指标的测量方法。 3、了解支流工作点对放大电路动态特性的影响。 4、掌握发射极负反馈电阻对放大电路性能的影响。 5、了解信号源内阻Rs 对放大电路频带(上限截止频率f H )的影响。 二、实验电路与实验原理图

2、直流通路 VCC 12V 将基极偏置电路用戴维南定理等效成电压源,得到支流通路。开路电压:V BB = V CC*R B2/(R B1 + R B2) 电源内阻:R B = R B1 // R B2 三、实验内容 1、静态工作点的调整 ※预习计算

直流工作点的调整 I CQ =1.0mA 时 3.3c R C CQ V R I V ==, 1.95BQ E CQ BE V R I V V ≈+= 12 '11 75.4//55.4CC BQ B CQ BQ B W B B V V R K I V R R R R K β-= =Ω +=-=Ω -7.5C CEQ CC BQ R BE V V V V V V =-+= I CQ =2.0mA 时 6.6c R C CQ V R I V ==, 3.15BQ E CQ BE V R I V V ≈+= 12 ' 1140.8, //20.8CC BQ B CQ BQ B W B B V V R K I V R R R R K β-= =Ω+=-=Ω -3C CEQ CC BQ R BE V V V V V V =-+= 由此可以得到扫描参数时的大致范围 要求:调节RW ,在ICQ=1mA 和2mA 时,测量VCEQ 的值,并记录RB1的值。 操作:对R W 进行参数扫描,通过观察Rc 上的电压变化 可以得到 CQ I ( c CQ c U I R = ), Uc 可以通过V (Vcc )-V(4)得到,从而可以在扫描参数设备时通过跟踪Uc 得到CQ I 为一 定值时对应的V CEQ 以及相应的R W 。 仿真结果(设备参数扫描):

比例放大器设计

实验三 比例放大电路的设计 一.实验目的 1.掌握集成运放线性应用电路的设计方法。 2.掌握电路的安装、调试与电路性能指标的测试方法。 二.预习要求 1.根据给出的指标,设计电路并计算电路的有关参数。 2.画出标有元件值的电路图,制定出实验方案,选择实验仪器设备。 3.写出预习报告 三. 比例放大电路的特点、设计与调试 (一).反相比例放大电路 1.反相比例放大电路的特点 U 由运算放大器组成的反相比例放大电 U o 路如图1所示。 根据集成运算放大器的基本原理,反 相比例放大电路的闭环特性为: 闭环电压增益: 1R R A f uf -= (1) 图1 反相比例放大器 输入电阻 1R R if = (2) 输出电阻 01≈+= uo o of KA R R (3) 其中: A uo 为运放的开环电压增益,f R R R K +=11 环路带宽 f uo o f R R A BW BW 1? ?= (4) 其中:BW o 为运放的开环带宽。 最佳反馈电阻 K R R R o id f 2?==2 )1(uf o id A R R -? (5) 上式中:R id 为运放的差模输入电阻,R o 为运放的输出电阻。 平衡电阻 f P R R R //1= (6) 从以上公式可以看出,由运算放大器组成的反相输入比例放大电路具有以下特性: (1)在深度负反馈的情况下工作时,电路的放大倍数仅由外接电阻R 1和 R f 的值决定。 (2)由于同相端接地,故反相端的电位为“虚地”,因此,对前级信号源来说,其负载不是运放本身的输入电阻,而是电路的闭环输入电阻R 1。由于R if = R 1,因此反相比例放大电

实验六、集成运算放大器虚拟仿真

实验六、集成运算放大器虚拟仿真 实验目的: 1、掌握用集成运算放大器组成的比例、加法、积分电路的特点及性能,掌握比例、积分电路的测试和分析方法; 2、掌握基于集成运算放大器的过零比较电路的特点。 实验内容: 1、反相比例放大器比例运算验证。 反相比例放大器输出电压 思考:1)调整负载R4对比例运算的影响。 对放大倍数不影响 2)调整输入信号对比例运算的影响。 没有影响 3)调整R1和R2对比例运算的影响。 随比例的增大,放大倍数增大相应的倍数 2、用3554AM 设计一个加法器。设计要求: 满足123(2)o u u u =-+,输入信号1u ,2u 都是频率为1KHZ 的正弦信号,幅度分别为100mV 和200mV ,观察输出是否满足要求。 电路图:

通过观察波形及其电压表的读数,可得所设计的电路与要求相符 3、用3554AM设计一个反相积分器。设计要求: 1)时间常数为2ms,输入信号为方波,频率为1KHZ,幅度为6V,观察输出信号的波形和幅度。 2)改变积分器的时间常数,使之增大或者减小,观察输出波形幅度的变化及失真情况。 增大时间常数为20ms后的波形

减小时间常数为0.2ms是的波形 由上可知积分器的时间常数T增大时输出幅值减小,T减小时输出波形失真。 思考:1)反相运算电路中反馈电阻的变化对运算器的闭环电压增益有何影响。 减小输出端的直流漂移 2)实际应用中,积分器的误差与哪些因素有关。 积分器在主回路上是延迟,反馈上是超调;本身电路与电阻和电容密切相关,对系统有修正的影响,如配置微分环节可克服超调 4、用运放741设计一个过零比较电路。设计要求: 稳压管选用1Z6.2,输入信号为幅值为1V,频率为500HZ的正弦波,通过示波器观察过零比较电路输出波形。 电路图: 波形图:

放大电路实验操作和multisim仿真(20200705152859)

实验一单级放大电路的设计与仿真 一、实验目的 1、掌握放大电路的静态工作点的调整和测试方法。  2、掌握放大电路的动态参数的测试方法。  3 、观察静态工作点的选择对输出波形及电压放大倍数的影响。  二、实验原理 当三极管工作在放大区时具有电流放大作用,只有给放大电路中的三级管提供合适的静 态工作点才能保证三极管工作在放大区,如果静态工作点不适合,输出波形则会产生非线性失真——饱和失真和截止失真,而不能正常放大。  当静态工作点设置在合适的位置时,即保证三极管在交流信号的整个周期均工作在放大 区时,三极管有电流放大特性,通过适当的外接电路,可实现电压放大。表征放大电路放大 特性的交流参数有电压放大倍数,输入电阻,输出电阻。  由于电路中有电抗元件电容,另外三极管中的PN结有等效电容存在,因此,对于不同频率的输入交流信号,电路的电压放大倍数不同,电压放大倍数与频率的关系定义为频率特性,频率特性包括:幅频特性——即电压放大倍数的幅度与频率的关系;相频特性——即电压放大倍数的相位与频率的关系。  三、实验要求和实验步骤 (1)实验要求  1.设计一个分压偏置的单管电压放大电路,要求信号源频率2kHz(峰值5mV) ,负载 电阻3.9kΩ,电压增益大于50。  2.调节电路静态工作点,观察电路出现饱和失真和截止失真的输出信号波形,并测试 对应的静态工作点值。  3.调节电路静态工作点,要求输入信号峰值增大到10mV电路输出信号均不失真。在 此状态下测试:  ①电路静态工作点值;  ②三极管的输入、输出特性曲线和β、 r be 、r ce值; ③电路的输入电阻、输出电阻和电压增益;  ④电路的频率响应曲线和f L、f H值。

基本放大电路仿真实验

实验报告四 一、实验目的 1、通过仿真电路掌握单管共射电路的静态分析和动态分析; 2、通过对共射电路的仿真实验,分析静态工作点队对电路输出的影响; 二、实验内容 1.测量NPN管分压偏置电路的静态工作点并与估算值进行比较; 2.测量放大电路性能指标; 3.分析放大电路交流特性; 4.通过仿真测试理解单管共射放大电路静态工作点对电路输出的影响; 三、实验环境 计算机、MULTISIM仿真软件 四、实验电路 1.实验电路 1.1静态分析 静态工作点仿真结果: 从仿真结果可知:

544127 = 1.7991.1690.63=5.21.16()=8.52BQ EQ BEQ BQ EQ BQ b b CC CQ C CEQ CC CQ c e V V V V V V V V V V V I A R R V V I mA R V V I R R V μ==-=-=--= =≈-+因此: 动态分析: 由仿真所得的数据可得: ip 421.405 ==-38.710.896 op v V A V = - 仿真波形: 1、

因此:ip i sp ip 10.642 = (1) 3.04814.13310.642 s V R R K K V V ≈?Ω≈Ω-- 2、oLp V 仿真 op V 仿真 因此:op oLp 836.417 =( 1)( 1)2 1.967421.691 o L V R R K K V -≈-?Ω≈Ω 放大电路交流仿真分析

3、通过仿真测试理解单管共射放大电路静态工作点对电路输出的影响; 在电路图中放入探针 从图中可以得出,此时:919 A ==42.521.6 V 打开示波器,图形显示: 从图中的显示数据可以知道,输出波形已有部分失真 ; 1、增大b R (增大至75K )

低频放大电路实验仿真

综合性、设计性实验报告电子技术实验(模拟部分) 学期:2015-2016(II) 班级:电卓141 姓名:陈雨歌 日期:2016.6.6

一.实验目的 (1)掌握正弦波振荡电路的起振条件和稳幅特性。 (2)掌握三极管构成的RC串并联正弦波振荡器的工作原理和调试方法。(3)掌握集成运放构成的RC桥式正弦波振荡电路的工作原理和调试方法。(4)加深理解功率放大电路的工作原理。 (5)掌握功率放大电路的调试及主要性能指标的测试方法。 (6)了解自举电路原理及其对改善OTL功率放大电路性能指标的作用。二.实验原理及测试方法 (一)正弦波振荡电路的构成 图一正弦波振荡电路原理框图 正弦波振荡器是一个没有输入信号的正反馈放大电路,电路框架如图一所示。正弦波振荡器由放大电路和反馈网络构成。放大电路可以由三极管构成,也可以是由集成运放构成。反馈网络能使振荡电路引入正反馈,同时,还具有选频、稳幅功能。 (二)正弦波振荡电路的振荡条件 (1)振幅条件|AF|=1; (2)相位条件φ a +φ f =2nπ,(n=0,1,2,...);

(3)起振和选频:起振条件|AF|>1;只对f=f 放大,衰减其他信号频率。 (4)稳幅:电路起振后,输出信号会越来越大,但由于放大器件的非线性,导致AF下降,当降到|AF|=1时,电路进入稳定状态。 (三)由三极管构成的RC串并联正弦波振荡器 图二 RC桥式正弦振荡电路 运行 Multisim12, 在绘图编辑器中选择集成运放、直流电源、二极管、电阻、电容, 创建 RC 桥式正弦波振荡电路.如图 1 所示, .在电路中, 运放741 和电阻R4,R3构成正常的反馈放大电路,R1,C1,R2,C2构成RC串并联选频网络同时又由该选频网络作为反馈网络形成正反馈环节,其R2, C2上的反馈电压作为输入代替放大器的输入信号,D1, D2起稳幅作用。电路的震荡频率为。调节RW到适当的大小(如65K),在示波器“XSC1”窗口中可观察到输出波形幅度从0逐渐增大开始震荡,并最终到幅值稳定的正弦震荡波形输出,如图二所示:

反相比例运算电路的误差分析

反相比例运算电路的误差分析 汤 洁 (甘肃建筑职业技术学院,甘肃 兰州 730050) 摘 要 本文以集成运算放大器的反相比例运算电路为例,从三个方面 讨论了集成运放几个主要参数对闭环电压放大倍数运算精度的影响,以 及这种影响与应用条件和外部参数的关系。 关键词 电子技术 集成运算放大器 反相比例运算电路 误差 在测试集成运算放大器的闭环电压放大倍数uf A 的实验中,我们常常会发现根据测试得出的闭环电压放大倍数与理论值总是存在着一定的误差,这是为什么呢?这是由于实际的集成运算放大器产品,尽管其性能参数可以做得越来越好,越来越接近理想运放,但是任何实际的运放性能不可能完全达到理想条件,其开环电压放大倍数uo A 、输入电阻id R 等都不可能为无穷大,而只能是有限值;其输出电阻o R 、失调电压io U 、失调电流io I 及输入偏置电流B I 等也不是真正为零,而是一些很小的确定值,这些因素都会产生输出误差,从而导致实际电路的输出与输入关系不完全符合理想条件下所推出来的表达式。本文以反相比例运算电路(图1所示)为例,从三个方面讨论几种主要因素对运算精度的影响,以及这种影响与应用条件和外部参数的关系。 1 开环电压放大倍数uo A 和输入电阻id R 为有限值的影响 反相比例运算电路在uo A 、id R 不是无穷大而其他参数均为理想时的电路如图2所示。由于∞≠uo A ,因此当0≠o U 时, -+≠U U ;∞≠id R 时,则必有0≠i I 。由 图可列出如下方程: )(-+-=U U A U uo o , 2R I U i =+ , 1 1R U U I i - -= , f o R U U I f -= - , id i R U U I + --= , i f I I I +=1 求解上述方程组可得出实际闭环电压放大倍数为:

仿真实验四 场效应管共源极放大电路

班级:姓名:学号:成绩: 1.画出左侧电路图的直流通路、交流通路和交流等效电路: 2. 估算放大电路的静态工作点:(已知β=100,r bb’=130Ω) 3. 电压放大倍数: 4. 输入电阻: 5. 输出电阻: 6. 阅读第四章中小信号传递函数分析法(第153页),自行设计小信号传递函数值分析电路: (以下问题请在阅读实验指导书第143页后完成) 7.Multisim中小信号传递函数分析法的英文表示什么?功能是什么? 8.Multisim中,除了用瞬态分析法测出输入与输出的关系曲线,还可以采用何种方法获得它们之间的关系? 9.如何在AC Analysis中增加需要的仿真变量?

班级:姓名:学号:成绩: (实验过程中请及时保存电路及报告至E盘,以免跳电或电脑死机,影响实验成绩) 一、仿真电路:注意修改电源的名称和参数、元器件的名称和参数、节点的名称) 二、静态工作点(两种方法任选一种) 方法一: 1. 输出变量设置: 2. 仿真结果: 方法二: 仿真结果 三、当输入电压信号有效值为7.07mV,频率为1kHZ的正弦波时,观察输入、输出波形(两种方法任选一种)方法1: 1. 参数设置: 2. 仿真结果: 方法2: 仿真结果: 四、放大电路的电压放大倍数、输入电阻及输出电阻 电压放大倍数: 输入电阻: 测量方法(可以用文字说明也可直接黏贴电路): 输出电阻: 测量方法(可以用文字说明也可直接黏贴电路): 五、放大电路的频率特性曲线,求出上、下限频率和带宽 方法: 参数设置: 仿真结果: 六、根据所设计的小信号传递函数模型,求出中频区电压增益、输入电阻、输出电阻

运算放大器基本电路

一:比例运算电路定义:将输入信号按比例放大的电路,称为比例运算电路。分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分)比例放大电路是集成运算放大电路的三种主要放大形式(1)反向比例电路输入信号加入反相输入端,电路如图(1)所示:输出特性:因为:,所以:从上式我们可以看出:Uo与Ui是比例关系,改变比例系数,即可改变Uo的数值。负号表示输出电压与输入电压极性相反。反向比例电路的特点: 一:比例运算电路 定义:将输入信号按比例放大的电路,称为比例运算电路。 分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分) 比例放大电路是集成运算放大电路的三种主要放大形式 (1)反向比例电路输入信号加入反相输入端,电路如图(1)所示: 输出特性:因为:, 所以: 从上式我们可以看出:Uo与Ui是比例关系,改变比例系数,即可改变Uo的数值。负号表示输出电压与输入电压极性相反。 反向比例电路的特点: (1)反向比例电路由于存在"虚地",因此它的共模输入电压为零.即:它对集成运放的共模抑制比要求低 (2)输入电阻低:r i=R1.因此对输入信号的负载能力有一定的要求. (2)同相比例电路 输入信号加入同相输入端,电路如图(2)所示: 输出特性:因为:(虚短但不是虚地);;

所以: 改变R f/R1即可改变Uo的值,输入、输出电压的极性相同 同相比例电路的特点: (1)输入电阻高;(2)由于(电路的共模输入信号高),因此集成运放的共模抑制比要求高 (3)差动比例电路 输入信号分别加之反相输入端和同相输入端,电路图如图(3)所示: 它的输出电压为: 由此我们可以看出它实际完成的是:对输入两信号的差运算。二:和、差电路 (1)反相求和电路 它的电路图如图(1)所示:(输入端的个数可根据需要进行调整)其中电阻R'为: 它的输出电压与输入电压的关系为: 它可以模拟方程:。它的特点与反相比例电路相同。它可十

运算放大器的仿真实验

实 验 报 告 册 指导教师邱刚 课程名称模拟电子技术基础 实验名称集成运算放大器的设计 实验类型设计 学院名称电子与信息工程专业电子与信息工程

年级班级2011级电信3班学生姓名赵明贵 学号201107014314 成绩 2012年11月29日实验四集成运算放大器的设计 运算放大器应用电路的设计与制作 一.实验目的 1.掌握运算放大器和滤波电路的基本工作原理; 2.掌握运用运算放大器实现滤波电路的原理方法; 3.会用Multisim10对电路进行仿真分析; 二.实验内容 1.讲解运算放大器和滤波电路的基本工作原理; 2.讲解用运算放大器实现滤波电路的原理方法; 3.用Multisim10对二阶有源低通滤波电路进行仿真分析; 三.实验仪器 Multisim10软件;电阻若干,导线若干,线路板一块,ua741运放两个,万用表,实验箱。 四.实验原理 集成运算放大器是高增益的直流放大器。在它的输入端和输出端之间加上不同的反馈网络,就可以实现各种不同的电路功能。可实现放大功能及加、减、微分、积分、对数、乘、除等模拟运算及其他非线性变换功能;将正、负两种反

馈网络相结合,还可具有产生各种模拟信号的功能。 本实验着重以输入和输出之间施加线性负反馈网络后所具有的运算功能进行研究。理想运放在线性运用时具有以下重要特性: (1)理想运放的同相和反相输入端电流近似为零,即。 (2)理想运放在作线性放大时,两输入端电压近似相等,即:。 1.反相放大器 信号由反相端输入,电路如图3-1所示。在理想条件下,放大器的闭环增益。 增益要求确定之后,与的比值即确定,在选择其值时需注意:与不要过大,否则会引起较大的失调温漂;但也不要过小,否则无法满足输入阻抗的要求。一般取为几十千欧至几百千欧。 当时,放大器的输出电压等于其输入电压的负值。此时,它具有反相跟随的作用,称之为反相器。 2.同相放大器 信号由同相端输入,电路如图3-2所示。在理想条件下,放大器的闭环增益为 图3-1 反相放大器图3-2 同相放大器当为有限值时,放大器增益恒大于1。当→∞(或=0)时,同相

运算放大器详细的应用电路(很详细)

§8.1比 例运算电 路 8.1.1反相比例电路 1.基本电路 电压并联负反馈输入端虚短、虚断 特点: 反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低 输出电阻小,带负载能力强 要求放大倍数较大时,反馈电阻阻值高,稳定性差。 如果要求放大倍数100,R1=100K,Rf=10M 2. T型反馈网络(T型反馈网络的优点是什么?) 虚短、虚断

8.1.2同相比例电路 1.基本电路:电压串联负反馈 输入端虚短、虚断 特点: 输入电阻高,输出电阻小,带负载能力强 V-=V+=Vi,所以共模输入等于输入信号,对运放的共模抑制比要求高 2.电压跟随器 输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2加减运算电路 8.2.1求和电路 1.反相求和电路 2.

虚短、虚断 特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系 3.同相求和电路 4. 虚短、虚断 8.2.2单运放和差电路

8.2.3双运放和差电路 例1:设计一加减运算电路 设计一加减运算电路,使Vo=2Vi1+5Vi2-10Vi3 解:用双运放实现

如果选Rf1=Rf2=100K,且R4= 100K 则:R1=50K R2=20K R5=10K 平衡电阻R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K 例2:如图电路,求Avf,Ri 解: §8.3积分电路和微分电路 8.3.1积分电路 电容两端电压与电流的关系:

积分实验电路 积分电路的用途 将方波变为三角波(Vi:方波,频率500Hz,幅度1V)

相关主题
文本预览
相关文档 最新文档