当前位置:文档之家› 2018年CMOS图像传感器行业分析报告

2018年CMOS图像传感器行业分析报告

2018年CMOS图像传感器行业分析报告
2018年CMOS图像传感器行业分析报告

2018年CMOS图像传感器行业分析报告

2018年9月

目录

一、行业主管部门、监管体制、主要法律法规及政策 (3)

1、行业主管部门和监管体制 (3)

2、行业主要法律法规和政策 (3)

二、行业市场规模和发展前景 (5)

1、集成电路行业市场规模和发展前景 (5)

2、CMOS图像传感器行业市场规模和发展前景 (6)

(1)图像传感器行业概况 (6)

(2)行业市场规模和发展前景 (8)

(3)CMOS图像传感器行业技术发展趋势 (11)

三、进入行业的主要壁垒 (12)

1、技术壁垒 (12)

(1)设计工程壁垒 (12)

(2)可靠性壁垒 (13)

2、产业整合壁垒 (13)

3、客户壁垒 (13)

4、资金和规模壁垒 (14)

5、人才壁垒 (14)

四、影响行业发展的因素 (15)

1、有利因素 (15)

(1)国家产业政策的支持 (15)

(2)市场需求持续增长 (15)

(3)我国集成电路产业链日趋成熟 (16)

2、不利因素 (16)

CMOS,Complementary Metal-Oxide-Semiconductor的简写,即互补型金属氧化物半导体,是一种电压控制的半导体放大器件,是大规模集成电路的基础单元

一、行业主管部门、监管体制、主要法律法规及政策

1、行业主管部门和监管体制

集成电路的行业主管部门是工信部。工信部负责制定行业产业政策、产业规划,组织制定行业技术政策、技术体制和技术标准,并对行业发展方向进行宏观调控。中国半导体行业协会是中国集成电路行业自律管理机构,主要负责产业及市场研究,对会员企业提供行业引导、咨询服务、行业自律管理以及代表会员企业向政府部门提出发展建议和意见等。

工信部和中国半导体行业协会构成了集成电路行业的管理体系,各集成电路企业在主管部门的产业宏观调控和行业协会自律规范约束下,面向市场自主经营,自主承担市场风险。

2、行业主要法律法规和政策

集成电路行业作为关系国家经济发展和国防安全的支柱行业,国家给予了高度重视和大力支持。2010年以来中国集成电路行业主要政策措施如下表所示:

日本硅材料产业发展现状

引言 目前伴随着国内代工行业的兴起,在产业链的前端材料行业,大直径硅片的国产化迫在眉睫。为了国内半导体产业做到自主可控,我们必须发展大直径硅片材料产业。 日本在半导体材料方面的全球份额占比很高,最近发生的日本禁止向韩国出口半导体材料事件,导致韩国半导体行业不得不转向其他渠道解决难题,这从侧面反映了日本作为半导体材 料的大国,一举一动都会牵扯到全行业产业链的神经。 中国的硅材料产业:起了大早,未赶上班车 在国际贸易冲突频发的今天,半导体已经成为了“重灾区”。广为人知的有两个事件导火索, 一个是中兴事件,一个是华为风波。还有一例就是日本禁止向韩国出口半导体材料举措。2019年200mm硅片需求显著下降,而300mm硅片需求却维持坚挺,月需求量超过600万片。 我国大硅片主要依赖进口。因为我们的大硅片产业还处于一个起步阶段。1997年中国拉制成 功直径300mm硅单晶棒,大硅片研发项目启动时间并未比国外晚太多。后期研发由于产业 投入不足,市场环境尚未形成。 目前,国内近100万片的月需求量主要依赖进口。张果虎形象的比喻说,“中国的300mm硅 材料,起了大早,未赶上班车。” 中国正在全力发展大硅片产业,如何突破并形成产业竞争力,如何掌握“杀手锏”?日本的经 验值得我们参考和研究。 日本大硅片的现状 半导体硅材料起步于欧美,日本起步落后于欧美,但今天实现了反超,并取得绝对领先地位,占据全球60%以上份额。2019年全球半导体市场下降,日本信越等却维持良好营收和利润增长。 日本的半导体材料核心企业主要有两家:信越Shinetsu和胜高SUMCO。信越的主要产品是 在PVC、硅片、电子功能材料三个领域,并占据全球第一的市场份额。其中硅片为信越化学 的一个事业部业务。胜高SUMCO是由Mistsubishi M. Silicon、SumitomoSiTix、KomatsuElec.等多家公司合并而成。 全球300mm硅片出货量最大的是信越,其次是胜高。两家的月出货量合计超过350万片,远远超出第三家Globalwafer的月出货量90万片。日本这两家300mm硅片出货量占全球比例达到55%,占据主导地位近20年。(来源:SEMI数据)

中国CMOS图像传感器行业研究-行业发展概况

中国CMOS图像传感器行业研究-行业发展概况 (一)行业发展概况 1、集成电路行业 2010年以来,以智能手机、平板电脑为代表的新兴消费电子市场的兴起,以及汽车电子、工业控制、仪器仪表、智能照明、智能家居等物联网市场的快速发展,带动整个半导体行业规模迅速增长。2017年,全球半导体行业整体销售额达到4,122亿美元,同比增长21.63%,增速创七年来新高。 数据来源:全球半导体贸易协会(WSTS)

根据全球半导体贸易协会(WSTS)预测,2018年全球半导体市场规模将达到4,512亿美元,同比增长9.5%。 数据来源:全球半导体贸易协会(WSTS)

2、CMOS图像传感器行业 (1)图像传感器行业概况 图像传感器为物联网感知层众多传感器中最重要的一种核心传感器。图像传感器主要采用感光单元阵列和辅助控制电路获取对象景物的亮度和色彩信号,并通过复杂的信号处理和图像处理技术输出数字化的图像信息。图像传感器中的感光单元一般采用感光二极管(Photodiode)实现光电信号的转换。感光二极管在接受光线照射之后能够产生电流信号,电流的强度与光照的强度成正比例关系。每个感光单元对应图像传感器中的一个像元,像元也被称为像素单元(Pixel)。 图像传感器主要分为CCD图像传感器和CMOS图像传感器两大类。CCD和CMOS 都是利用感光二极管进行光电转换,将图像转换为数字信号,但二者在感光二极管的周边信号处理电路和感光单元产生的电信号的处理方式不同。 CCD和CMOS的感光元件在接受光照之后直接输出的电信号都是模拟信号。在CCD传感器中,每一个感光元件都不对此作进一步的处理,而是将它直接输出到下一个感光元件的存储单元,结合该元件生成的模拟信号后再输出给第三个感光元件,依次类推,直到结合最后一个感光元件的信号才能形成统一的输出。由于感光元件生成的电信号非常微弱,无法直接进行模数转换工作,因此这些输出数据必须做统一的放大处理。由于CCD本身无法将模拟信号直接转换为数字信号,因此还需要一个专门的模数转换芯片进行处理,最终以数字图像矩阵的形式输出给专门的图像处

中国传感器市场研究报告

A.中国传感器整体市场规模分析与预测 中国“十三五”规划中正式启动了“中国制造2025”战略,力争到2025年由“制造业大国”成长为“制造业强国”。传感器与制造业息息相关,“中国制造2025”对传感器产品的智能化、信息化、网络化方向发展提出更高要求。MIR预计中国传感器市场必将获得更快的增长。(见表1、图1) 表1:中国传感器市场规模增长预期 图1:2013-2018年中国传感器市场规模 由MIR统计结果可以看出:2013-2014年,中国传感器市场一直在平稳增长。在2015年,由于中国工业大环境不景气,传感器市场增速有所放缓。但MIR预计随着“中国制造2025”战略的实施,传感器市场并将有所回温。 B.中国传感器整体市场分析-行业应用 根据MIR的统计结果显示,接近80%的传感器应用于OEM行业,在项目型行业和科研院所有20%左右的应用。(见表2)

表2:2015年中国传感器产品市场整体规模-行业 C.中国传感器整体市场分析-供应商 根据MIR的统计结果显示,外资品牌尤其是日系品牌占据了中国传感器市场的绝大部分市场份额。(见表3)

表3:2015年中国传感器产品市场整体规模供应商

D. 中国传感器整体市场分析-产品 根据MIR对中国传感器市场的调研结果来看,2015年中国传感器市场的产品中,编码器、光电传感器、光纤传感器依然是传感器市场的主流产品,占据了55%的市场份额。(见表4、图2) 表4:2015年中国传感器产品市场整体规模-产品 图2:2015年中国传感器产品市场整体规模-产品 E.产品市场细分 E1.编码器市场分析 中国编码器市场规中,HEIDENHAIN、TAMAGAWA以及禹衡占据了超过50%的市场份额。

2018年多晶硅行业深度研究报告

2018年多晶硅行业深度研究报告

本期内容提要: 我国多晶硅产业砥砺前行,持续推进进口替代。硅材料分无机硅和有机硅,无机硅多为单质硅,包括多晶硅、单晶硅和非晶硅三类,多晶硅经区熔或直拉可生产单晶硅,半导体和光伏是其下游两大应用领域。我国多晶硅产业经历2006年之前的依赖进口,2011年的国外产能倾销,2014年的“双反”,国内产能竞争力逐步增强。2017年,我国产量24.20万吨,占全球55%,由于需求量大,进口14.10万吨,占表观消费量37%,近年呈小幅下降趋势。 国内多晶硅产能投放加速,全球供需仍处紧平衡。至2017年,全球万吨级多晶硅产能不足20家,TOP10产能38万吨;我国有效产能27.6万吨,集中度较高。未来多晶硅扩产集中于国内,中能/新特/永祥/大全合计新增约13万吨,基本与进口量相当,国外仅OCI扩产1.32万吨。我们分三种情形对测算未来需求,认为在80-90元/Kg价格区间内供需将处紧平衡。 成本与品质成为企业竞争关键,国内产能成本优势明显,无惧价格下降压力。多晶硅生产流程相对封闭,成本主要受能源(43%)、原材料(27%)和折旧(22%)影响,决定了新产能具备一定后发优势,包括:选择低电价降低能源成本;优选装臵及工艺降低单耗及能耗;资产投资下降降低折旧。国内龙头已位于全球成本曲线左侧,通威和大全现金和生产成本目前分别在46和59元/Kg左右,处领先水平,新增产能还将进一步下降。我们认为受平价上网影响,多晶硅价格大幅反弹概率较小。我们以行业降本增效路径测算现金和生产成本有望分别降至 3.1和3.9万元/吨,该水平下即使价格降至70元/Kg,企业仍有35%的毛利率。 海外龙头景气差异较大,欧美产能有望逐步被国内先进产能替代。我国多晶硅主要进口国及地区有韩国(45%)、德国(30%)、美国+台湾(15%)。我们对海外龙头进行了分析。OCI 2017年收购马来西亚工厂,并规划1.32万吨扩产,近年来多晶硅业绩持续提升。OCI马来西亚产能有成本优势,年初与隆基签订合同,品质得到认可,加之关税较低,我们认为OCI仍有竞争力。瓦克近年来多晶硅利润下滑明显,由于德国产能投产较早,美国产能不太稳定,我们认为其在光伏级市场市占率有下滑预期。REC是硅烷流化床工艺代表,生产成本低但折旧成本高,整体产能不具备竞争优势,加之我国对美“双反”关税较高,业绩呈下滑趋势。 投资建议:我们长期看好光伏发展,虽当前处调整期,但多晶硅环节格局已较为清晰,具有成本和品质优势的龙头机会明显,建议关注A股通威股份;H股新特能源;美股大全新能源。 风险因素:国内产能投产不及预期; 市场竞争加剧; 贸易摩擦; 原材料价格波动; 政策风险等。

传感器产业未来格局分析重点

传感器产业未来格局分析 传感器技术是现代科技的前沿技术,传感器产业也是国内外公认的具有发展前途的高技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。我国自动化方面的专家呼吁:目前复杂系统越来越复杂,自动化已经陷入低谷,其主要原因之一是传感技术的落后,一方面表现为传感器在感知信息方面的落后;另一方面也表现为传感器自身在智能化和网络化方面的技术落后。分析仪器产业迫切需要新型传感器。分析仪器是我国科技、经济和社会持续发展的基础,无论在工业过程控制、设施农业、生物医学、环境控制、食品安全乃至航空航天、国防工程等领域,均迫切需要各类新型传感器作为信息摄取源的小型化、专用化、简用化、家庭化(甚至个人化)的新一代分析仪器,实现更灵敏、更准确、更快速、更可靠地实时检测,以迅速改变我国分析仪器的落后状况。而技术推动是加速传感器技术发展的保证和机遇。几十年来,以微电子技术为基础,促进了传感器技术的发展。未来10~20年,传统硅技术将进入成熟期(预测为2014年~2017年)。届时,直径300mm硅晶片将大量用于生产,使得硅的低成本制造技术和硅的应用技术将得到空前的发展,这无疑将为研制生产微型传感器、智能传感器等新型传感器提供技术保障。从总体发展看,传统硅技术将一直延续到2047年(即晶体管发明100周年)才趋于饱和(即达到芯片特征尺寸的极限)和衰退。而当前微电子技术仍将依循“等缩比原理”和“摩尔定律”两条基础规律走下去,在尽力逼近传统硅技术极限中,不断扩展硅的跨学科横向应用(如MEMS等)和突破“非稳态物理器件”(量子、分子器件),而上述微电子技术发展中的两大方向正是当前乃至未来20年传感器技术的主要发展方向。同时,多学科、多种高新技术的交叉融合,推动了新一代传感器的诞生与发展。例如:当前我国正在重点开发的MEMS(微电子与微机械的结合)、MOMES(MEMS与微光学的结合)、智能传感器(MEMS与CPU、信息控制技术的结合)、生物化学传感器(MEMS与生物技术、电化学的结合)等以及今后将大力开发的网络化传感器(MEMS网络技术的结合)、纳米传感器(纳米技术与传感技术的结合)均是多学科、多种学科技术交叉融合的新一代传感 器。 (1)传感器产业化发展模式要加速形成从传感器研究开发到大生产一条龙的产业化发展模式,走自主创新和国际合作相结合的跨越式发展道路,使我国成为世界传感器的生产大国。 (2)传感器产品结构向全面、协调、持续发展。产品品种要向高技术、高附加值倾斜,尤其要填补“空白”品种。 (3)企业生产规模(年生产能力)向规模经济或适宜规模经济发展。量大面广的通用传感器的生产规模将以年亿只计,一些中档传感器的生产规模将以年产1000万只(含以上)计;而一些高档传感器和专用传感器的生产规模将以年产几十万只~几百万只 计。 (4)生产格局向专业化发展。专业化生产的内涵为: 1.生产传感器门类少而精; 2.专门生产某一应用领域需要的某一类传感器系列产品,以获得较高的市场占有率; 3.各传感器企业的专业化合作生产。 5.传感器大生产技术向自动化发展。传感器的门类、品种繁多,所用的敏感材料各异,决定了传感器制造技术的多样性和复杂性。综观当前传感器工艺线的概况,多数工艺已实现单机自动化,但距离生产过程全自动化尚存在诸多困难,有待今后广泛采用

2020年半导体硅材料企业三年发展战略规划

2020年半导体硅材料企业三年发展战略规划 2020年7月

目录 一、公司发展战略 (3) 二、未来三年发展计划 (4) 1、发展目标 (4) 2、发展计划 (4) (1)技术开发与产品扩充计划 (4) (2)人才储备计划 (4) (3)市场开拓计划 (5) (4)完善公司治理计划 (5) (5)筹资计划 (6) 三、发展计划的假设条件及将面临的困难 (6) 1、发展计划所依据的假设条件 (6) 2、实现发展计划可能面临的困难 (7) 四、公司发展计划和公司现有业务的关系 (7)

公司将以IPO为契机,以公司发展战略为导向,通过募投项目的顺利实施,在巩固分立器件用硅研磨片行业地位的前提下,未来将加大产品深加工,提升半导体单晶硅抛光片的研发和制造能力,拓展高端分立器件和集成电路用硅材料市场,进一步深挖细分领域产品应用,开发新的增长点,推进公司主营业务持续、健康、快速发展。 一、公司发展战略 公司以推进中国半导体单晶硅材料国产化进程为企业使命,以成为世界先进的半导体硅材料制造商为愿景,始终秉承“品质中晶、美好生活”的经营理念,贯彻“追求技术创新,成就完美品质”的质量方针,以“MTCN”制造能力(Manufacture)、技术水平(Technology)、客户关系(Client relations)领先的内涵为战略指引,以质量为核心,以技术优势为依托,以市场为导向,有计划、有步骤、积极稳妥地实施公司规模化、特色化和品牌化的战略目标。公司借力首次公开发行并上市,进一步增强综合实力和核心竞争力,在巩固现有半导体硅产品行业地位的前提下,提升半导体单晶硅抛光片的研发和制造能力,抓住现有全球半导体产业转移和国家政策环境的机遇,实现产品深加工延伸,进一步拓展产品细分领域应用,丰富产品种类,提升产品质量,降低相关产品应用市场的进口依赖,开发新的业务增长点,实现新的利润增长。

CMOS图像传感器的研究进展_李继军.

. net 光学制造 1内蒙古工业大学理学院, 内蒙古呼和浩特 0100512北京师范大学遥感与 GIS 研究中心遥感科学国家重点实验室, 北京 10087! " 5 Li Jijun 1 Du Yungang 1Zhang Lihua 1, 2 Liu Quanlong 1Chen Jianrui 1 1School of Science, Inner Mongolia University of Technology , Hohhot, Inner Mongolia 010051, China, 2State Key Laboratory of Remote Sensing Science, Research Center of Remote Sensing &GIS, Beijing Normal University ,Beijing 100875, China #$$$$$$$$$$$% &’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ( 摘要 20世纪 90年代以来, 随着超大规模集成 (VLSI 技术的发展, CMOS 图像传感器显示出强劲的发展势头。简要介绍了 CMOS 图像传感器的结构及工作原理, 详细比较了 CMOS 图像传感器与 CCD 的性能特点, 讨论了 CMOS 图像传感器的关键技术问题,并给出了相应的解决途径,综述了 CMOS 图像传感器的国内外研 究现状, 最后对 CMOS 图像传感器的发展趋势进行了展望。 关键词光电子学; 传感器; CMOS 图像传感器; CCD ; 关键技术问题 Abstract

Since the 1990s, with the development of very large scale integration (VLSI,CMOS image sensors have been developed rapidly. The structure and working principle of CMOS image sensors are introduced. The performances between CMOS image sensor and CCD are compared in detail. The key technical problems of CMOS image sensors are discussed, and the related solving ways are given. The development situation of CMOS image sensors at home and abroad is reviewed, and the development trends of CMOS image sensors are prospected. Key words optoelectronics; sensor; CMOS image sensor; CCD; key technical problem 中图分类号 O436 doi :10.3788/LOP20094604.0045 1引言 CMOS 图像传感器的研究始于 20世纪 60年代末, 受当时工艺技术的限制, 发展和应用有限。直到 20世纪 90年代初,随着大规模集成电路设计技术和信号处理技术的提高, CMOS 图像传感器才日益受到重视 [1~3], 成为固体图像传感器的研发热点。近几年来, 随着集成电路设计技术和工艺水平的长足进步 , CMOS 图像传感器的一些性能指标已接近甚至超过CCD 图像传感器 [4~6]。 本文简要介绍了 CMOS 图像传感器的结构及工作原理,详细比较了 CMOS 图像传感器与 CCD 的性 能特点,讨论了 CMOS 图像传感器的关键技术问题, 并给出了相应的解决途径, 综述了 CMOS 图像传感器的国内外研究现状, 最后对 CMOS 图像传感器的发展趋势进行了展望。 2结构及工作原理 CMOS 图像传感器的总体结构如图 1所示

世界传感器市场分析

世界传感器市场分析(32)—半导体生产设备中的UCM传感器   超声传感器、电容传感器、磁传感器一般统称为UCM传感器,该类传感器目前已 经非常普及,在水处理、石油、化工、化学、汽车等领域已具有了成熟的市场。但据有 关市场研究表明, UCM传感器在半导体生产设备(SEM)方面目前尚处于早期发展阶段。 SEM主要用于半导体产品生产、装配和性能测试,是一个资本密集的全球性行业。随着半 导体技术的迅速发展,对SEM提出了更高的要求,促使其加快技术的进步与更新以适应时 代的需求,所以该行业有望成为UCM传感器的主要市场。 目前,UCM传感器在半导体行业的应用还是比较有限的,但其销售额却持续增长。2000年 UCM传感器在SEM领域的总销售额为1.249亿美元,年增长率为6.9%,2001年达到了1.443 亿美元,年增长速度达到了7.1%。预计到2007年7.1%的年增长率将会保持,且随着UCM传 感器价格的下降,其需求量还会增加。 UCM传感器主要包括基于超声原理的流量传感器、物位传感器和位置传感器,电容式的接 近传感器、位置传感器和压力传感器,基于磁学原理的位置和流量传感器。由于价格昂 贵,尤其是超声流量计和电磁流量计,使UCM在SEM领域的应用受到了限制。然而,随着 半导体生产商不断引进新的技术,这些传感器将会有更广泛的应用。有关专家也分析了 几种不利于市场发展的因素。首先,半导体企业已经开始自己生产传感装置,并趋向于 向数字化技术和电子技术方向发展。其次,传感器市场的国际化也使传感器生产向国际 化发展,最后,传感器技术还无法满足半导体行业严格的生产标准。

技术的革新对UCM传感器的销量增长起着巨大的作用。例如目前最新型的MEMS传感器—超 声MEMS传感器已研制成功,它采用硅基超声传感技术,既经济又实用,代表了超声传感 器技术的发展前沿。与原有的超声传感器相比,MEMS超声传感器在性能方面有了质的提 高,而在价格方面却有了一定量的下降,很好地满足了高性能、低价格的大量应用的需 求。 半导体生产商越来越需要高精度、高静压与高智能的测试设备,传感器生产商也正在努 力满足这方面的需要,当前有向数字输出与界面化发展的趋势。如在磁性传感器领域较 为重要的进展就是其智能化单片集成系统。在主板上设置内存最主要的优点是可以使霍 尔位置传感器生产商制作出更多更好的智能传感器。SMART技术在超声与电容传感器方面 也同样越来越重要。 2000年超声传感器在SEM领域的年销售额达到了2860万美元。流量测量方面,多普勒超声 流量计更多地应用于较脏的环境中,半导体生产的超净环境倾向于选用传统的计时流量 计。超声物位传感器是一种利用声波的非接触式测量系统,而超声接近传感器则是通过 激发压电信号产生声波,检测目标物是否存在或测量到目标物的距离。超声传感器随着 精度的不断提高,销售量也在提升,但是巨额开发成本也在一定程度上阻碍了市场的扩 张。 2000年电容式传感器在SEM市场的销售额达到了3200万美元,这其中主要包括电容式位置 传感器、接近传感器和压力传感器。非接触式位置传感器具有较高的分辨率且比较牢固 耐用。接近传感器在探测非金属目标的场合是理想的选择。压力传感器价格昂贵,市场

2018年硅片行业分析报告

2018年硅片行业分析 报告 2018年7月

目录 一、硅片:半导体产业的基石 (5) 1、硅片:半导体不可或缺的基础材料 (5) 2、多维度解密硅片制造:设备、材料、工艺 (6) 12 3、硅片产品家族 .................................................................................................. (1)抛光片(Polished Wafer) (12) (2)退火片(Annealed Wafer) (12) (3)外延片(Epitaxial Wafer) (13) (4)结隔离硅片(Junction Isolated Wafer) (13) 4、大尺寸成为硅片发展未来方向 (14) (1)大尺寸硅片的优势 (14) ①提高生产效率 (14) ②提升硅片利用率 (15) ③在合理成本下提升性能 (15) (2)大尺寸硅片的难点 (16) ①尺寸越大,成本及所需资本投入急升 (16) ②晶圆尺寸面积增速远高于厚度增速,导致传统CZ法难以继续提升晶圆尺寸 . 16 ③随着面积倍增,硅晶柱重量也在提升,导致传统CZ拉晶法效率降低 (17) ④石英坩埚的一次性使用进一步提高了成本 (18) 二、供需关系:硅片市场开启新一轮景气周期 (22) 22 1、供给端分析 ...................................................................................................... (1)硅片产线投资回报测算:7年收回成本 (22) (2)传统供应商垄断市场,扩产动力和能力双重缺失 (23) (3)中国新建产能释放仍需等待至少1-2年 (26) 2、需求端分析 ...................................................................................................... 27(1)行业特征从周期性转向持续成长 (27)

中国硅材料产业现状分析

中国硅材料产业现状分析 有研半导体材料股份有限公司供稿 硅材料是制造半导体器件和太阳能电池的关键材料,面对着两个发展着的产业,一个是半导体产业,一个是太阳能光伏产业。半导体产业已经从原来周期性大起大落,平均增速达17%左右,步入一个增速减缓、起伏不大的新时代。而光伏产业正处在以平均30%的年增长速度迅猛发展的时代。作为这两大产业的主要原料,多晶硅紧缺的局面近期内仍将持续。 1 半导体硅片产业 (1)全球半导体硅产业 全球硅片材料生产,主要集中在日、美、德三国,其他还有韩国、马来西亚、芬兰、中国大陆和中国台湾地区。生产的硅片主要有抛光片、外延片、回收片、SOI片及非抛光片等。根据SEMI硅制造商团体(SEMI SMG)最新统计,2007年世界半导体用硅片的产量为86.61亿平方英寸(1英寸=25.4毫米)销售额为121亿美元,产量和销售额增长率分别为8%和21%。世界硅片出货量经历了连续6年的增长。2002-2007年世界硅片的产量和销额如表1所示: 表1 2002-2007年世界硅片的产量和销售额 2002 2003 2004 2005 2006 2007 销售额/亿美元 55 58 73 79 100 121 产量/亿英寸246.81 51.49 62.62 66.45 79.96 86.61 其中: 抛光片 35.21 38.21 46.57 外延片 9.43 11.11 13.63 14.44 18.21 非抛光片 2.17 2.26 2.42 2.25 2.54 注:抛光片包括正片、陪片,但不包括回收片。 从表1可见,在全球硅硅片总交货面积中抛光片约占75%,硅外延片约占

CMOS图像传感器的基本原理及设计考虑.

CMOS图像传感器的基本原理及设计考虑 摘要:介绍CMOS图像传感器的基本原理、潜在优点、设计方法以及设计考虑。 关键词:互补型金属-氧化物-半导体图像传感器;无源像素传感器;有源像素传感器 1引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS 图像传感器的图像质量就可以达到或略微超过CCD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CMOS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其

传感器产业调查报告

传感器产业调查报告 新技术革命的到来,世界开始进入信息时代。在利用信息的 过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。传感器早已渗透 到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。传感器技术在发展经济、推动社会进步方面的重要作用是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。传感器产业是极其具有前瞻性和市场性的,此调查报告只能对传感器产业有个浅略的介绍和分析。 一、传感器分类 GB7665-87国家标准中规定,传感器(tran sducer/se nsor ) 的定义为:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成,其中敏感元件是指传感器中能直接感受和响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输和测量的电信号部分。被测量是一般理解为非电量或理解为物理量、化学量、生物量等;可用输出信号一般也理解为电信号,即模拟量的电压、电流信号(连续量)和离散量的电平变换的开关信号、脉冲信号。现代按照信息理论理解被测量的输出信号应包括 多种信息,除上述信号外,还包括声音、图象、味觉、触觉、 空间位置等,按照控制理论理解传感器应包括检测以外的识别、 检索、侦察、寻找、跟踪、选择拾取、判断等功能。IEC定义传

感器是测量系统中将输入变量转换成可供测量信号的一种前置部件。并有人把传感器和传感器系统概念分开,即认为传感器是传感器系统的敏感元件。更有人把传感器界定为器件(称为传感器件) 传统的以弹性元件、光学元件等为基础的传感器也在向微小型方向发展。传感器产业还与新材料、新工艺、新的制造设备等联系在一起,所以传感器产业是一个产业链,它的产品应用市场除军用外,可分为工业与汽车电子产品、通信电子产品、消费电子产品、专用设备四大类。所以,人们把目前兴起的图像传感器 (成像技术)、RFID射频识别、纳米材料应用、微型机器人等均纳入传感器市场范围,就不足为怪了。 关于传感器的分类方法很多,而且互相交叉,一般以被测量参数来分类和以测量原理两种分类为主: 被测量参数分类可分为温度、压力、流量、位移、速度、加 速度、粘度、湿度等传感器,又除去模拟量以外,还有离散量(开关等)传感器等。 按测量原理分类可分为根据电阻定律的电位计式、应变式传感器,根据变磁阻原理的电感式、差动变压器式、电涡流式传感器,根据半导体理论的半导体力敏、热敏、光敏、气敏等固态传感器。

CMOS图像传感器的性能

CMOS图像传感器的性能 2.2.1光电转换的原理和性能 当光子入射到半导体材料中,光子被吸收而激发产生电子–空穴对,称为光生载流子,如图2.3(a)所示。量子效率(Quantum Efficiency,QE)被定义为产生光生载流子的光子数占总入射光子数的百分比;或者被定义为η,即每个入射光子激发出来的光生载流子数。 式中,N e为被激发出来的电子数;N v为入射的光子数。不同的半导体材料对入射光的响应随其波长而变化,对于硅材料而言波长覆盖整个可见光范围,截止在 约1.12μm的近红外波长,如图2.3(b)所示。 (a)(b) 图2.3硅半导体材料的光照响应 光电信号的噪声水平决定了能检测到的最小光功率,即光电转换的灵敏度。硅光电传感器的噪声构成包括: ●来源于信号和背景的散粒噪声(shot noise);

●闪烁噪声(flicker noise),即1/f噪声; ●来源于电荷载流子热扰动的热噪声(thermal noise)。 噪声特性用噪声等效功率NEP(Noise Equivalent Power)表达,信号功 率和噪声等效功率的比值,被称为信噪比(Signal Noise Ratio,SNR),是描述传感器性能的重要参数之一。 当入射光子照射在半导体材料的PN结上,如图2.4(a)所示,如果在PN 结上施加电压使光生载流子形成电流,产生如图2.4(b)所示的I-V特性曲线。曲线上V>0的正向偏置一段被称为太阳能电池模式;PN结反向偏置V<0的平直一段曲线,被称为光电二极管模式;I-V特性的反向击穿段被称为雪崩模式。通常在图像传感器中,光电转换元件工作在光电二极管模式,如图2.3(c)所 示。图2.3中PN结的反向电流I leak为 I leak=I ph+I diff (a)(b) 图2.4PN结光电二极管示意图

CMOS图像传感器的工作原理及研究

CMOS图像传感器的工作原理及研究 摘要:介绍了CMOS图像传感器的工作原理,比较了CCD图像传感器与CMOS图像传感器的优缺点,指出了CMOS图像传感器的技术问题和解决途径,综述了CMOS图像传感器的现状和发展趋势。 1 引言 自从上世纪60年代末期,美国贝尔实验室提出固态成像器件概念后,固体图像传感器便得到了迅速发展,成为传感技术中的一个重要分支,它是PC机多媒体不可缺少的外设,也是监控中的核心器件。互补金属氧化物半导体(CMOS)图像传感器与电荷耦合器件(CCD)图像传感器的研究几乎是同时起步,但由于受当时工艺水平的限制,CMOS图像传感器图像质量差、分辨率低、噪声降不下来和光照灵敏度不够,因而没有得到重视和发展。而CCD 器件因为有光照灵敏度高、噪音低、像素少等优点一直主宰着图像传感器市场。由于集成电路设计技术和工艺水平的提高,CMOS图像传感器过去存在的缺点,现在都可以找到办法克服,而且它固有的优点更是CCD器件所无法比拟的,因而它再次成为研究的热点。 70年代初CMOS传感器在NASA的Jet Pro pul sion Laboratory(JPL)制造成功,80年代末,英国爱丁堡大学成功试制出了世界第一块单片CMOS型图像传感器件,1995年像元数为(128×128)的高性能CMOS有源像素图像传感器由喷气推进实验室首先研制成功[1],1997年英国爱丁堡VLSI Ver sion公司首次实现了CMOS图像传感器的商品化,就在这一年,实用CMOS技术的特征尺寸已达到0.35mm,东芝研制成功了光敏二极管型APS,其像元尺寸为5.6mm×5.6mm,具有彩色滤色膜和微透镜阵列,2000年日本东芝公司和美国斯坦福大学采用0.35mm技术开发的CMOS-APS已成为开发超微型CMOS摄像机的主流产品。 2 技术原理 CCD型和CMOS型固态图像传感器在光检测方面都利用了硅的光电效应原理,不同点在于像素光生电荷的读出方式。CMOS图像传感器芯片的结构 [2]如图1所示。典型的CMOS像素阵列[3],是一个二维可编址传感器阵列。传感器的每一列与一个位线相连,行允许线允许所选择的行内每一个敏感单元输出信号送入它所对应的位线上(图2),位线末端是多路选择器,按照各列独立的列编址进行选择。根据像素的不同结构[4],CMOS图像传感器可以分为无源像素被动式传感器(PPS)和有源像素主动式传感器(APS)。根据光生电荷的不同产生方式APS又分为光敏二极管型、光栅型和对数响应型,现在又提出了DPS(digital pixel sensor)概念。

MEMS传感器行业分析

第一章:微机电系统(MEMS)概述...........................................................................3 1.1 MEMS产业概况 (3) 1.1.3 (5) 1.1.5中国MEMS产业发展状况 (6) 1.1.6 MEMS技术概况 (6) 1.1.7 MEMS设计技术 (6) 1.1.8 MEMS制造技术 (7) 1.1.9 MEMS封装技术 (9) 1.1.10 MEMS与CMOS结合的趋势 (10) 1.1.11 微机电系统(MEMS)不同领域应用 (12) 第二章:微机电系统(MEMS)市场动态 (12) 2.1 微机电系统(MEMS)市场热点产品运行状况透析 (12) 2.2 微机电系统(MEMS)市场动态概述 (14) 2.2.1 全球MEMS市场的增长态势 (14) 2.2.2 全球微机电系统市场销售额分析 (14) 2.3 中国微机电系统(MEMS)行业市场发展环境解析 (15) 2.4 中国微机电系统(MEMS)行业现状 (15) 2.5中国微机电系统行业分析 (16) 2.5.1 中国微机电系统(MEMS)行业特点分析 (16) 2.5.2 中国微机电系统(MEMS)行业所处阶段 (16) 2.6 中国微机电系统(MEMS)市场政策环境分析 (17) 2.6.1 微机电系统行业标准解析 (17) 2.6.2 国内支持政策解析 (17) 2.7 中国微机电系统(MEMS)产业运行透析 (17) 2.7.1 中国微机电系统(MEMS)行业动态分析 (17) 2.7.2 各区域发展动态 (18) 2.8 中国微机电系统(MEMS)手机产业运行状况 (22) 2.8.1 2011年中国手机产业市场走势分析 (22) 2.8.2 中国手机产量统计分析 (22) 2.8.3 中国手机用户规模分析 (22) 2.8.4 2008年-2010年中国手机产销数据分析 (23) 2.8.5 中国电子行业用MEMS市场分析 (23) 王 2011.09.16

2018年化工新材料行业之日本篇专题分析报告

2018年化工新材料行业之日本篇专题分析报告

投资要点: ?半导体和碳纤维材料需求旺盛,日本企业研发能力强且市场定位精 准实现后发先至奠定行业领先地位。信息技术和航空航天等高技术产业的快速发展,驱动半导体功能材料和碳纤维结构材料市场快速增长。日本企业信越化学工业(4063.T)、住友化学(4005.T)、JRS 株式会社(4185.T)、东曹株式会社(4042.T)、日立化成(4271.T)和东丽株式会社(3402.T)等在相应领域起步略晚于欧美,从20世纪70至80年代之间在日本年政府政策扶植下,凭借其优秀的研发能力和精准的市场定位实现后发先至,目前在全球半导体功能材料和碳纤维结构材料领域处于绝对领先地位。 ?硅晶圆材料市场份额最大,信越化学工业(4063.T)掌握行业定价 权。硅晶圆在半导体前端制造材料化学品市场中占比达30%以上,市场份额最大。以信越化学工业和胜高等为代表的日本企业占据着全球硅晶圆68%的市场份额。作为全球硅晶圆领域的龙头企业,信越化学工业在全球范围首先实现300mm的晶圆和SOI硅片的量产,因具有技术和产能优势掌握行业硅晶圆产品定价权,2017年11月,信越化学将12寸硅晶圆价格从75美元/片提升至120美元/块,涨幅高达60%,受益于硅晶圆产品上涨,公司半导体硅晶圆板块业绩快速上升。 ?光刻胶技术壁垒高,住友化学(4005.T)和JSR株式会社(4185.T) 产品技术布局最前沿。光刻胶是在半导体生产过程中,用量仅次于硅晶圆和特种气体的化学材料,其生产具有很高的技术壁垒,光刻胶技术水平直接决定半导体晶圆制程。住友化学和JSR株式会社等日本企业一直深耕光刻胶领域,占据全球72%的市场份额。目前住友化学已经研制出适用于ArF浸入式光刻胶和EUV技术的光刻胶,其中EUV技术的光刻胶应用于32nm以下晶圆制造制程;JSR株式会社联合Imec(Intelligent Machinery Expert Control)微电子研究所共同成立的EUV光刻胶制备和认证中心,致力于实现EUV光刻胶材料的量产应用,预计2020年前实现批量供货应用于7nm及以下的晶圆制程,其产品技术布局行业最前沿。 ?半导体溅射靶行业日本东曹株式会社(4042.T)实现高纯度和全品 类覆盖,综合竞争优势明显。溅射靶材是半导体、平板显示和薄膜

太阳能硅材料的发展前景调研

太阳能电池级硅材料行业调研报告 1国内外光伏发电现状 1.1全球光伏发电现状 2008年全球光伏发电累计装机容量:14GW 为了扶持和促进太阳能发电产业的发展,很多国家都制定了相关的激励政策用于鼓励产业界以及科技界对该产业的投入,太阳能产业已初具规模。 2008年全球光伏发电累计装机容量为14.5GW,1992年仅0.1 GW。特别是2000年以来,全球光伏发电装机容量以每年40%的速度增长,仅2008年一年就新增6GW。光伏发电仅满足全球0.1%的电力需求。但发展速度惊人。 全球光伏发电装机容量变化 2009年全球新增光伏发电装机容量7.2GW ,其中德国3.8GW,约占全球的1/2。欧洲之外,最大的市场是日本,新增装机容量预计为1GW,其次为美国0.8GW。2010年全球新增光伏装机容量16GW,是上年新增容量的两倍。德国和意大利的数据大约分别为7GW和3GW。欧洲其他主要国家的太阳能光伏发电新增装机容量预计为捷克1.3GW,法国0.5GW,西班牙0.4GW,比利时0.25GW以及希腊0.2GW。2010年全球太阳能光伏累计装机容量接近40GW,比2009年的23GW增加70%。 2011年全球新增光伏装机预计19GW。 1.2中国光伏发电现状 中国太阳能发电产业起步晚,发展快,空间大 截至2008年底,中国累计光伏装机量仅为145MW。 中国政府的一系列光伏激励政策促进了中国光伏市场的快速增长。2009年中国年度光伏新增装机量达到160MW,超过了截至2008年底的累计安装总量。2010年实际新增装机量超过500MW。截止到2010年底,光伏累计装机容量为800MW 左右,仍未达到1GW。

CMOS图像传感器的基本原理及设计

CMOS图像传感器的基本原理及设计考虑 1、引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS图像传感器的图像质量就可以达到或略微超过C CD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这

主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CM OS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2、基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其能在很低的带宽情况下把离散的电荷信号包转换成电压输出,而且也仅需要在帧速率下进行重置。CMOS图像传感器的优点之一就是它具有低的带宽,并增加了信噪比。由于制造工艺的限制,早先的CMOS图像传感器无法将放大器放在像素位置以内。这种被称为PPS的技术,噪声性能很不理想,而且还引来对CMOS图像传感器的种种干扰。

相关主题
文本预览
相关文档 最新文档