当前位置:文档之家› 振动试验基础知识及常用公式

振动试验基础知识及常用公式

振动试验基础知识及常用公式
振动试验基础知识及常用公式

振动试验基础知识常用公式Technical Guide

■Basic units used for vibration test

There are four important basic units for vibration test. They are Force [N], Acceleration [m/s 2], Velocity [m/s] and Displacement [mmp-p+. Let’s start with the force. The force “F” required to add acceleration “A” to an object of mass “m” is;

That is to say, when the acceleration of 1 [m/s 2] is applied to a mass of 1 [kg], the required force is 1 *N+. And gravity acceleration “G” equals to 9.8 *m/s 2].

Assume here we have an object moving on sine wave. The displacement is;

The velocity is found by differentiation of the displacement. Therefore;

The acceleration is found by differentiation of the velocity. Therefore;

As we substitute

we obtain formulas indicated only in amplitude;

Followings are waveforms for displacement, velocity and acceleration.

We get below formulas by transforming above.

In vibration test field, we use “d * mmp-p +” for the peak to peak displacement. So all the above formulas are substituted b y “D = d / 2000”.

Let’s try examples;

■About [dB]

We use “dB” as a unit when we talk about physical proportion. Especially, in a case the value is thousands of times or millions of times multiple of a reference value, we use logarithmic scale “dB” instead of linear scale. This is suitable for our sense and it is a proven fact. “dB” is expressed as following:

One million times is:

Not only it reduces the digit number but also simplifies calculations.

For example, 25dB and 30dB makes 55dB but if you do it in a linear way;

It is very complicated like this. Now you see you can use addition instead of multiplication by using “dB”. Followings are conversion tables for “dB” and multiple.

dB00.11361020304060 Multiple 1 1.01 1.12 1.41 2.0 3.16 10 31.6 100 1000

dB0-0.1-1-3-6-10-20-30-40-60 Multiple 1 0.99 0.891 0.709 0.501 0.316 0.1 0.0316 0.01 0.001

■Purpose of Logarithmic Graph

We often use logarithmic graph when we need to plot data for vibration testing or the other physical phenomenon. Let’s see the same graph on linear graph and logarithmic graph.

On the linear graph, we can read 20 for Y when X is 100. But we can hardly read Y when X is 10 or 1. However on the logarithmic graph, we can read Y when X is 10 or 1 as 4.5 or 1. In fact, we can read the value even if it is 1/100 or 1/1000 of the maximum value. We use logarithmic graph for the purpose like this.

■Graph for Sine Waveform Test

We often use the graph like below when we execute sine waveform test. This is a double logarithmic graph that was learned before. Graphs that disp., vel. and acc. stay constant are there. Let’s start with a graph of constant velocity. From the formulas we learned before;

Here we can read that acceleration A is enlarged 10 times when frequency f is enlarged 10 times. On the graph below, we see the acceleration turns to 100 m/s2 from 10 m/s2 as the

frequency turns to 100 Hz from 10 Hz. In case of constant displacement;

Here we can read that acceleration A is enlarged 100 (102) times when frequency f is enlarged 10 times being proportioned to second power of f. On the graph below, we see the acceleration turns to 100 m/s2 from 1 m/s2 as the frequency turns to 10 Hz from 1 Hz.

That is to say, when velocity or displacement stays constant, inclination of graph is settled as indicated above.

■Vibration Insulation of Vibration Simulation System

When you operate VSS, its vibration is transmitted to the building and or the other facilities through the floor. Especially at 2 to 20 Hz, even a small leakage of vibration from VSS can cause large effect to buildings because they have their own resonance points around there. Therefore, VSS needs vibration insulation system. Followings are examples.

F:force

All the vibration is transmitted to the floor. It may resonate

to building and or other facilities. The shaker itself

sometimes may jump up and down.

Suspension

(Air springs or other elastic bodies)

IMV takes this method except for compact series. It may

limit system’s max. displa cement when frequency is low and

displacement is big. (See “Limitation of maximum

displacement”) In such a case, you need to lock the body

suspension. Then the vibration is transmitted to the floor.

It has effect of insulation like body suspension but it can also

cause lateral motion at low frequency (See P.45.)

This is the best way of vibration insulation. Generally, the

mass of foundation should be ten times heavier than the

rated force of the system. Normally, the mass of

foundation should be twenty times heavier than the rated

force of the system. If you are interested in this method,

please contact us.

■Limitation of maximum displacement

There are several ways of vibration insulation. These ways all bring limitations on maximum displacement. In case of body suspension, VSS reacts against movement of the sample

.

Especially, at the frequency of 2 to 7 Hz, VSS vibrates in opposite phase of sample and limits maximum displacement to very small. Sometimes VSS with 51 mmp-p displacement can be limited to 10 mmp-p. Please be aware of it. In case of foundation, apparent mass of VSS is big enough comparing to the rated force so that the limitation can be ignored

■Noise control

When the vibration simulation system is installed, it is necessary to note the noise. There are several types of noises such as excitation noise, suction noise (For the air cooling system), blower noise, blower exhaust noise, and power amplifier’s fan noise, etc. so, there are several ways of noise control. The excitation noise might exceed 100dB at maximum acceleration 980m/s2. The suction noise is about 90dB, and blower noise + blower exhaust noise is about 80dB though it differs depending on the model.

1) Installing the blower outside

This is a general simple method. The Blower noise and the Blower exhaust noise can be reduced. But it doesn’t change the suction noise or the excitation noise of the vibration simulation system.

2) Sound booth

A. Vibration simulation system and blower

It reduces the excitation noise and the blower noises.

B. Vibration simulation system only (blower is outside)

The excitation noise and the blower suction noise are lowered.

C. Sound booth only for blower

The blower noise falls. It doesn’t change the suction noise nor the excitation noise of the vibration simulation system.

3) Concentrated suction type

The suction noise of the vibration simulation system falls by about 5dB. The intended purpose must be to take air from the outside without using the air in the room (clean room etc.).

简单易学的两种还原魔方的口诀及公式图解详解

图解简单易学的两种还原魔方的常用口诀公式 前言 我们常见的魔方是3x3x3的三阶魔方,英文名Rubik's cube。是一个正6 面体,有6种颜色,由26块组成,有8个角块;12个棱块;6个中心块(和中心轴支架相连)见下图: (图1) 学习魔方首先就要搞清它的以上结构,知道角块只能和角块换位,棱块只能和棱块换位,中心块不能移动。 魔方的标准色: 国际魔方标准色为:上黄-下白,前蓝-后绿,左橙-右红。 (见图2)注:(这里以白色为底面,因为以后的教程都将以白色为底面, 为了方便教学,请都统一以白色为准)。 (图 2)

认识公式 (图3)(图4)公式说明:实际上就是以上下左右前后的英文的单词的头一个大写字母表示 (图5)

(图6) (图7)

(图8) 三阶魔方入门玩法教程(一) 步骤一、完成一层 首先要做的是区分一层和一面:很多初学者对于“一面”与“一层”缺乏清楚的认识,所以在这里特别解释一下。所谓一层,就是在完成一面(如图2的白色面)的基础上,白色面的四条边,每条边的侧面只有一种颜色,图(2). 如图(1)中心块是蓝色,则它所在面的角和棱全都是蓝色,是图(2)的反方向 图(3)和(4)则是仅仅是一面的状态,而不是一层! (1)(2) (3)(4) 注:图(2)和(4)分别是图(1)和(3)的底面状态 想完成魔方,基础是最重要的,就像建筑一样,魔方也如此,基础是最重要的。

由于上文提到过中心块的固定性,这一性质,在魔方上实质起着定位的作用,简单的说就是中心块的颜色就代表它所在的面的颜色。 一、十字(就是快速法中的CROSS ) 第一种情况如图所示: 公式为R2 第二种情况如图所示: (白色下面颜色为橙色,为方便观察,特意翻出颜色) 橙白块要移到上右的位置,现在橙白块在目标位置的下面。但其橙色片没有和橙色的中心块贴在 一起。为此我们先做D’ F’ 即把橙色粘在一起,接着 R 还原到顶层,, F 是把蓝白橙还原到正确的位置(上面的F’ 使蓝白块向左移了九十度)。 公式为D’ F’ R F 图解: 当然,架十字不只只有上面两种情况,现我们在分析下其它的一些情况吧! 如下图: 橙白块的位置己对好,但颜色反了,我就先做R2化成第二种情况,然后用还原第二种情况的 (橙色下面颜色为白色,为方便观察,特意翻出颜色)

振动台常用公式

振动台在使用中经常运用的公式 1、 求推力(F )的公式 F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) 2.2 V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“2.1”中同义 D —位移(mm 0-p )单峰值 2.3 A=ω2 D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为: A=D f ?250 2 式中:A 和D 与“2.3”中同义,但A 的单位为g 1g=9.8m/s 2 所以: A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 3.3 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??2 3 )2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“3.3”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、 扫描时间和扫描速率的计算公式 4.1 线性扫描比较简单: S 1= 1 1 V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 4.2 对数扫频: 4.2.1 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 4.2.2 扫描速率计算公式 R= T Lg f f Lg L H 2/ ……………………………公式(10) 式中:R —扫描速率(oct/min 或)

魔方公式口诀

魔方分级教材 ★魔方公式基础知识★ F,B,L,R,U,D分别代表魔方的前,后,左,右,上,下六个面,(上黄下白前红后橙左蓝右绿)如图所示: 一个字母代表顺时针转90度,字母加“ ' ”表示逆时针转90度,加“2”表示转180度 单层转:F、B、L、R、U、D,F'、B'、L'、R'、U'、D',F2、B2、L2、R2、U2、D2 两层转(单层转的同时中间层一起转):f、b、l、r、u、d,f '、b'、l'、r'、u'、d',f2、b2、l2、r2、u2、d2 整体转(三层转):x、y、z,x'、y'、z',x2、y2、z2【方向对应为x-R,y-U,z-F】 转中层:M、M'、M2 (M的方向同R) 注:顺、逆指面对该面看时的转向,故对于B、B'、L、L'、D、D'的转向要特别小心。(以上内容大多摘自三叶虫老师的教程)

开始学习之前,请大家先自行查阅资料了解下列概念:棱块、角块、中心块、面、层、十字、T字形、顶视图等概念,因本教程是黑白打印教程,不好标注,就不再讲解了。好在很简单,大家稍微想想或看看其它资料就能理解。好了,不再废话,让我们开始神奇的魔方之旅吧。 第一级最简单好记的方法 本方法只强调简单好记,预计1——2小时就能学会。 【第一步】完成单面十字架(建议用白色面,本文用白色面作为底部。如果不理解什么是标准十字架,请先自行查阅下相关资料。) 要点:正规的方法是完成单面十字的同时,要对好红橙蓝绿四个面第二层中心块颜色。本方法为了方便新手,将这一步拆解为两个步骤。 步骤一:先在单面架出一个白色的十字。注意点一:只要单面的中心块和四个棱块是白色的就行,其它四个角块是不是白色不必理会。注意点二:为了方便新手,这时十字架先不去对应红橙蓝绿四个面第二层中心块颜色,也就是说,只在白色单面翻出一个十字就可以了。 步骤二:单面十字架完成后再运用下面两个公式来对应中心块颜色,(注意,这时十字架需摆放在上面)。如果还想简单,只用图2公式也行,遇到图1情况,用图2公式就可转化为图2情况。 图1 顶视图相对棱对调:R U2 R′U2 R或者M2 U2 M2 图2 顶视图相邻棱对调: R U′R ′UR或者R′U′R U R′ 【第二步】还原第一层,和第二层中心块颜色形成T字形 第一步完成的十字架摆放到下面。各面的中心块颜色在上一步已经对好,所以只需调整好四个角块颜色就行。这步容易理解,两个基本公式:UR U′R′ 、R UR′,所有情况都可由这两组公式演变,自己琢磨吧。 【第三步】完成第二层 1 R’U’R’U’R’U R U R 【五逆四顺】 2 y’R U R U R U’R’U’R’【五顺四逆】 注:y’是将整个魔方以U’的方向转动的90度转动,将中心麻点这面转到右面。

魔方公式口诀+图解教程

新魔方新手教程 常见的魔方是3x3x3的三阶魔方,英文名Rubik's cube。是一个正6 面体,有6种颜色,由26块组成,有8个角块;12个棱块;6个中心块(和中心轴支架相连)见下图: (图1) 要知道角块只能和角块换位,棱块只能和棱块换位,中心块不能移动。 其实还有超级公式等等,但是要从最基本的做起。下面来学一下 吧 魔方的标准色: 国际魔方标准色为:上黄-下白,前蓝-后绿,左橙-右红。 (见图2)注:(这里以白色为底面,因为以后的教程都将以白色为底面, 为了方便教学,请都统一以白色为准)。 (图2) 认识公式 (图3)(图4) 公式说明:实际上就是以上下左右前后的英文的单词的头一个大写字母表示

(图5) (图6)

(图7) (图8)步骤一、完成一层

首先要做的是区分一层和一面:很多初学者对于“一面”与“一层”缺乏清楚的认识,所以在这里特别解释一下。所谓一层,就是在完成一面(如图2的白色面)的基础上,白色面的四条边,每条边的侧面只有一种颜色,图(2). 如图(1)中心块是蓝色,则它所在面的角和棱全都是蓝色,是图(2)的反方向 图(3)和(4)则是仅仅是一面的状态,而不是一层 ! (1)(2) (3)(4) 注:图(2)和(4)分别是图(1)和(3)的底面状态 想完成魔方,基础是最重要的,就像建筑一样,魔方也如此,基础是最重要的。 由于上文提到过中心块的固定性,这一性质,在魔方上实质起着定位的作用,简单的说就是中心块的颜色就代表它所在的面的颜色。 一、十字(就是快速法中的CROSS) 第一种情况如图所示: 公式为R2 第二种情况如图所示: (白色下面颜色为橙色,为方便观察,特意翻出颜色) 橙白块要移到上右的位置,现在橙白块在目标位置的下面。但其橙色片没有和橙色的中心块贴在 (橙色下面颜色为白色,为方便观察,特意翻出颜色)

振动试验常用公式

振动台在使用中经常运用的公式 1、求推力(F )的公式 F=(m 0+m 1+m 2+……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 =ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) =ωD ×10-3………………………………………………公式(3) 式中:V 和ω与“”中同义 D —位移(mm 0-p )单峰值 =ω2D ×10-3………………………………………………公式(4) 式中:A 、D 和ω与“”,“”中同义 公式(4)亦可简化为: A=D f ?250 2 式中:A 和D 与“”中同义,但A 的单位为g 1g=s 2 所以:A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6………………………………………公式(5)

式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=-…………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??23 )2(10π……………………………………公式(7) 式中:f A-D —加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、扫描时间和扫描速率的计算公式 线性扫描比较简单: S 1= 1 1 V f f H -……………………………………公式(8) 式中:S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 对数扫频: 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 扫描速率计算公式 R= T Lg f f Lg L H 2/……………………………公式(10)

振动基础知识分析

基本概念和基础知识 一、常见的工程物理量 力、压力、应力、应变、位移、速度、加速度、转速等 (一)力:力是物体间的相互作用,是一个广义的概念。物体承受的力可以有加载力,也可以有动态力,我们常测试的力主要是动态力,即给结构施加力,激发结构的某些特性,便于测试了解其结构特性,如模态试验用的力锤。 (二)应力应变:材料或构件在单位截面上所承受的垂直作用力称为应力。在外力作用下,单位长度材料的伸长量或缩短量,称为应变量。在一定的应力范围(弹性形变)内,材料的应力与应变量成正比,它们的比例常数称为弹性模量或弹性系数。 (三)振动位移:位移就是质量块运动的总的距离,也就是说当质量块振动时,位移就是质量块上、下运动有多远。位移的单位可以用μm 表示。进一步可以从振动位移的时间波形推出振动的速度和加速度值。

可以是静态位移,可以是动态位移。通常我们测试的都是动态位移量。有角位移、线位移等。 (四)振动速度:质量块在振荡过程中运动快慢的度量。质量块在运动波形的上部和下部极限位置时,其速度为0,这是因为质量块在这两点处,在它改变运动方向之前,必须停下来。质量块的振动速度在平衡位置处达到最大值,在此点处质量块已经加速到最大值,在此点以后质量块开始减速运动。振动速度的单位是用mm/s来表示。 (五)振动加速度:被定义为振动速度的变化率,其单位是用有多少个m/s2 或g来表示。由下图可见加速度最大值处是速度值最小值的地方,在这些点处质量块由减速到停止然后再开始加速。 (六)转速:旋转机械的转动速度 (七)简谐振动及振动三要素 振动是一种运动形式――往复运动

d=Dsin(2πt/T+Φ) D――振动的最大值,称为振幅 T――振动周期,完成一次全振动所需要的时间 f――单位时间内振动的次数,即周期的倒数为振动频率, f =1/T (Hz)(1) 频率f 又可用角频率来表示,即 ω=2π/T (rad/s) ω和f的关系为 ω=2πf (rad/s)(2) f =ω/2π(Hz)(3) 将式(1)、(2)、(3)代入式可得 d =D sin(ωt+Φ)=Dsin(2πft+Φ) 可以用正玄或余玄函数描述的振动过程称之为简谐振动

振动分析基础知识讲课教案

旋转机械振动分析基础 汽轮机、发电机、燃气轮机、压缩机、风机、泵等都属于旋转机械,是电力、石化和冶金等行业的关键设备。这些设备出现故障后,大多会带来严重的经济损失。 振动在设备故障中占了很大比重,是影响设备安全、稳定运行的重要因素。振动又是设备的“体温计”,直接反映了设备健康状况,是设备安全评估的重要指标。一台机组正常运行时,其振动值和振动变化值都应该比较小。一旦机组振动值变大,或振动变得不稳定,都说明设备出现了一定程度的故障。振动对机组安全、稳定运行的危害主要表现在: (1)振动过大将会导致轴承乌金疲劳损坏。 (2)过大振动将会造成通流部分磨损,严重时将会导致大轴弯曲。统计数据表明,汽轮发电机组60%以上的大轴弯曲事故就是由于摩擦引起的。 (3)振动过大还将使部件承受大幅交变应力,容易造成转子、联结螺栓、管道、地基等的损坏。 正因为振动对设备安全运行相当重要,人们对振动问题都很重视。目前大型机组上普遍安装了振动监测系统,并将振动信号投了保护。振动超标时,保护动作,机组自动停机,从而保证设备的绝对安全。

一、振动分析基本概念 振动是一个动态量。图所示是一种简单的振动形式-简谐振动,即振动量按余弦(或正弦)函数规律周期性地变化,幅值反映了振动大小;频率反映了振动量动态变化的快慢程度;相位反映了信号在t=0时刻的初始状态。 可见,为了完全描述一个振动信号,必须同时知道幅值、频率和相位这三个参数,人们称之为振动分析的三要素。 振动是一个动态变化量。为了突出反映交变量的影响,振动监测时常取波形中正、负峰值的差值作为振动幅值,又称为峰峰值。 简谐振动是一种简单的振动形式,实际机组上发生的振动比简谐振动要复杂得多。不管振动多么复杂,由信号分析理论可知,都可以将其分解为若干具有不同频率、幅值和相位的简谐分量的合成。 旋转机械振动分析离不开转速,为了方便和直观起见,

魔方公式口诀图解教程

新魔方新手教程 前言 我们常见的魔方是3x3x3的三阶魔方,英文名Rubik's cube。是一个正6 面体,有6种颜色,由26块组成,有8个角块;12个棱块;6个中心块(和中心轴支架相连)见下图: (图1) 学习魔方首先就要搞清它的以上结构,知道角块只能和角块换位,棱块只能和棱块换位,中心块不能移动。 魔方的标准色: 国际魔方标准色为:上黄-下白,前蓝-后绿,左橙-右红。 (见图2)注:(这里以白色为底面,因为以后的教程都将以白色为底面, 为了方便教学,请都统一以白色为准)。 (图2)

认识公式 (图3)(图4)公式说明:实际上就是以上下左右前后的英文的单词的头一个大写字母表示 (图5)

(图6) (图7)

(图8) 步骤一、完成一层 首先要做的是区分一层和一面:很多初学者对于“一面”与“一层”缺乏清楚的认识,所以在这里特别解释一下。所谓一层,就是在完成一面(如图2的白色面)的基础上,白色面的四条边,每条边的侧面只有一种颜色,图(2). 如图(1)中心块是蓝色,则它所在面的角和棱全都是蓝色,是图(2)的反方向 图(3)和(4)则是仅仅是一面的状态,而不是一层! (1)(2) (3)(4) 注:图(2)和(4)分别是图(1)和(3)的底面状态 想完成魔方,基础是最重要的,就像建筑一样,魔方也如此,基础是最重要的。 由于上文提到过中心块的固定性,这一性质,在魔方上实质起着定位的作用,简单的说就是中心块的颜色就代表它所在的面的颜色。 一、十字(就是快速法中的CROSS)

第一种情况如图所示: (橙色下面颜色为白色,为方便观察,特意翻出颜色) 公式为R2 第二种情况如图所示: (白色下面颜色为橙色,为方便观察,特意翻出颜色) 橙白块要移到上右的位置,现在橙白块在目标位置的下面。但其橙色片没有和橙色的中心块贴在一起。为此我们先做D’F’即把橙色粘在一起,接着 R 还原到顶层,,F 是把蓝白橙还原到正确的位置(上面的F’使蓝白块向左移了九十度)。 公式为D’F’R F 图解: 当然,架十字不只只有上面两种情况,现我们在分析下其它的一些情况吧! 如下图: 橙白块的位置己对好,但颜色反了,我就先做R2化成第二种情况,然后用还原第二种情况的公式即可!

魔方公式口诀

魔方公式口诀

关于魔方,你需要知道: 无论怎么转,每一个面的最中间的块[图:1-面中心块]是固定不动的。所以每一面的中心块颜色决定了该面的颜色。 无论怎么转,位于顶角的有三种颜色的块[图:2-顶角块]永远会在某一个顶角;位于棱中间的有两种颜色的块[图:2-棱中间块]永远会在某一个棱的中间。 所谓的公式,就是用一定的套路告诉你每个面该怎么转。所用到的字母 U D L R F B 分别代表魔方的上下左右前后 6个面。如上图(后方那面(B)一般不用,所以没有展示)。在字母后加一个撇('),表示把该面逆时针旋转,

不加撇的就是顺时针转。如 R’表示右侧面逆时针转。 第一步首面十字 这里以白色面为例。想要转出一个面,最先要转出一个十字形。但是十字也不是随意哪个白色块都可以的。在转出十字的同时,必须保证上层的棱中间块的颜色与该面相同。这个步骤需要自己稍微摸索。如下图: P.S. 第一步果然很重要,很多同学还是不懂。我前几天也尝试把第一步详细写出来,可是分布情况实在太多,写着写着自己都绕晕了。而且第一步一旦你上手之后就会发现非常的简单。所以请原谅我这根懒惰的神经,这一步就不详细

图解了,大家请根据下面那张图和文字摸索一下吧: 首先要先定位你要复原的棱中心块。 比如说,面朝你的一面是蓝色的,最上层是白色的,于是你就要先找到[白-蓝]块到底跑哪去了,然后把它复原到原位,即下图中标有黄色阴影的1号位置。 [白-蓝]块归位以后,转下魔方顶层,让[白-蓝]块中的蓝色和蓝色面中心块衔接,接着看蓝色面右边的面。 如图,从面中心块可以知道,蓝色面的右面是红色面,(好吧这里实在忍不住了吐个槽,做图的时候貌似把红蓝色搞反了,大家...将就自动脑补一下吧.....( ̄▽ ̄")),所以要把[白-红]块转到2号位置。 当你找到迷失的[白-红]块后,在尽量不转顶层的情况下,把它转到2号位置。 只要保证把它转到下图中的2号位置,然后再转一下顶层,你会发现1号位置中的蓝色,和

三阶魔方公式口诀图解[新手快速入门]

三阶魔方玩法与口诀 目录 一、前言_________________________________________________ - 2 - 二、认识公式 _____________________________________________ - 2 - 三、拧魔方的步骤与口诀 ___________________________________ - 4 - 步骤一、完成一层_______________________________________ - 4 - (一)完成第一层十字________________________________ - 4 - (二)完成第一层角块________________________________ - 5 - 步骤二、完成第二层_____________________________________ - 7 - 步骤三、完成顶层_______________________________________ - 8 - (一)顶层十字______________________________________ - 8 - (二)顶层平面_____________________________________ - 10 - (三)顶层角块_____________________________________ - 11 - (四)顶层棱块_____________________________________ - 12 -

一、前言 魔方是3x3x3的三阶魔方,英文名Rubik's cube。是一个正 6 面体,有6种颜色,由26块组成,有8个角块;12个棱块;6个中心块(和中心轴支架相连)见下图: 学习魔方首先就要搞清它的以上结构,知道角块只能和角块换位,棱块只能和棱块换位,中心块不能移动。 魔方的标准色: 国际魔方标准色为:上黄-下白,前蓝-后绿,左橙-右红。 二、认识公式

振动台试验方案设计实例

一、振动台试验方案 1试验方案 1.1工程概况 本工程塔楼结构体系为“三维巨型空间框架-钢筋混凝土核心筒”结构体系,主要由4个核心筒、钢骨混凝土(SRC)外框架、3个避难层联系桁架三部分构成,图1-2、图1-3分别是B塔结构体系构成示意图和建筑效果图。特别指出的是本工程在14、24楼层的联系桁架的腹杆以及32、48楼层的斜撑为防屈曲支撑(UBB)构件。设计指标为小震不屈服,大震屈服耗能。具体位置示意见图1-4。 本工程的自振周期约为 6.44秒,超过了《建筑抗震设计规范》(GB-50011-2001)设计反应谱长为6秒的规定。本工程存在5个一般不规则和2个特别不规则类型,5个一般不规则类型分别是扭转不规则、凹凸不规则、刚度突变、构件间断和承载力突变。2个特别不规则是高位转换和复杂连接。 1.2 模拟方案 1、模拟方案选择 动力试验用的结构模型必须根据相似律进行设计,模型动力相似律的建立以结构运动方程为基础,选择若干主要控制参数作为模拟控制的对象,依据Buckingham的π定理,经无量纲分析导出控制参数的无量纲积,据此确定各控制参数的相似比率。 结构动力试验的相似模型大致分为四种: (1)弹塑性模型理论上可以重现结构反应的时间过程,使模型和原型的应力分布一致,并可模拟结构的破坏。由于要严格考虑重力加速度对应力反应的影响,必须满足S a=S g=1(S a=模型加速度/原型加速度,S g为重力加速度相似系数,各相似系数之间的关系见表1),即模型加速度反应与原型加速度反应一致,这一要求大大限制模型材料的选择。因为在缩尺模型中,几何比(S l)很小,在Sa=Sg=1的条件下,要满足Sa=S E/S l Sρ=1,即S l=S E/Sρ,必须使模型材料的弹模

振动测量仪器知识

振动测量仪器知识 一、概述 (一)用途 振动测量仪器是一种测量物体机械振动的测量仪器。测量的基本量是振动的加速度、速度和位移等,可以测量机械振动和冲击振动的有效值、峰值等,频率范围从零点几赫兹?几千赫兹。外部联接或内部设置带通滤波器,可以进行噪声的频谱分析。随着电子技术尤其是大规模集成电路和计算机技术的发展,振动测量仪器的许多功能都通过 数字信号处理技术代替模拟电路来实现。这不仅使得电路更加简化,动态范围更宽,而且功能和稳定性也大大提高,尤其是可以实现实时频谱分析,使振动测量仪器的用途更加广泛。 (二)分类与特点 振动测量仪器按功能来分:分为工作测振仪、振动烈度计、振动分析仪、激振器 (或振动台)、振动激励控制器、振动校准器测量机械振动,具有频谱分析功能的称为频谱分析仪,具有实时频谱分析功能的称为实时频谱分析仪或实时信号分析仪,具有多路测量功能的多通道声学分析仪。 振动测量仪器按采用技术来分:分为模拟振动计、数字化振动计和多通道实时信号分析仪。 振动测量仪器按测量对象来分:分为测量机械振动的通用振动计,测量振动对人体影响的人体(响应)振动计、测量环境振动的环境振动仪和振动激励控制器。 工作测振仪特点 通常是手持式,操作简单、价格便宜,只测量并显示振动的加速度、速度和位移等。以前用电表显示测量值,现在都是用数字显示。通常不带数据储存和打印功能,用于一般振动测量。振动烈度计是指专用于测量振动烈度(10 Hz?1000 Hz 频率范围的速度有效值)的振动测量仪器。 实时信号分析仪特点 实时信号分析仪是一种数字频率分析仪,它采用数字信号处理技术代替模拟电路来 进行振动的测量和频谱分析。当模拟信号通过采样及A/D转换成数字信号后,进入数字计算机进行运算,实现各种测量和分析功能。实时信号分析仪可同时测量加速度、速度和位移,均方根、峰值(Peak、峰-峰值(Peak-Peak检波可并行工作。不仅分析速度快,而且也能分析瞬态信号,在显示器上实时显示出频谱变化,还可将分析得到的数据输出并记录下来。 动态信号测试和分析系统特点 包含多路高性能数据采集、多功能信号发生、基本信号分析,还可以选择高级信号分析;以及模态分析、故障分析等应用。尤其适合振动、噪声、冲击、应变、温度等信号的采集和分析。 人体(响应、振动计特点 主要用于测量和分析振动对人体的影响。人体振动又分为人体全身振动和手 传振动,测量计权振动加速度有效值。仪器性能应符合GB/T 23716-2009《人体对 振动的响应一一测量仪器》的要求,对于全身振动(频率计权W c、W d、W e、W j、W k、)和用于进行轨道车辆舒适度评价的全身振动(频率计权W b)频率范围为0.5 Hz?80 Hz,对于建筑物内连续与冲击引起的振动(频率计权W m)频率范围为1 Hz?80 Hz,

三阶魔方公式口诀图解123

三阶魔方玩法与口诀 一、前言 魔方是3x3x3的三阶魔方,英文名Rubik's cube。是一个正 6 面体,有6种颜色,由26块组成,有8个角块;12个棱块;6个中心块(和中心轴支架相连)见下图: 学习魔方首先就要搞清它的以上结构,知道角块只能和角块换位,棱块只能和棱块换位,中心块不能移动。 魔方的标准色: 国际魔方标准色为:上黄-下白,前蓝-后绿,左橙-右红。 二、认识公式

公式说明:实际上就是以上下左右前后的英文的单词的头一个大写字母表示

三、拧魔方的步骤与口诀 步骤一、完成一层 (一)完成第一层十字 第一种情况如图所示: 公式为 R2 第二种情况如图所示: (白色下面颜色为橙色,为方便观察,特意翻出颜色) 橙白块要移到上右的位置,现在橙白块在目标位置的下面。 但其橙色片没有和橙色的中心块贴在一起。为此我们先做D’ F’ 即把橙色粘在一起,接着 R 还原到顶层,, F 是把蓝白橙还原到正确的位置(上面的 F’ 使蓝白块向左移了九十度)。 公式为D’ F’ R F 图解: 其它的一些情况 如下图: 橙白块的位置己对好,但颜色反了,我就先做R2化 (橙色下面颜色为白色,为方便观察,特意翻出颜色)

成第二种情况,然后用还原第二种情况的公式即可! 上面两种情况都为前右的块要移到上后的位置。我们先 做R’D’ 移到前下的位置,再做R “把橙白还原上 去”,接着做D2 移到后下的位置。上面两种情况分别化为上面第一种和第二种情况。其对称情况亦是按类似上面的思想来还原!如果刚开始 时橙白块也还没对好,直接做R’ D 移到后下位置即可! (二)完成第一层角块 依然把十字放在顶层,还原角块时,我们首先在底层找有没有我们要还原的角,没有的话再到顶层去找!基本的两种情况为: 公式:D’R’ D R公式:R’D’ R 图解: 公式:D’R’ D R 公式:R’D’ R 然而还可能会出现下面这种情况: 白色在底面!这种情况我们称之为不可见,在还原时我们 要做的就是令它的白色可见,同时它要位于底层! 先做R’角处于后下右的位置,而且白色是可见的,然后做 D 或D2 移到后下左或前下左,接着要再做R 把白橙还原回去!再把那角移到前下右就是上面第二种情况了! 最后还有两种情况,就是角块的位置已经对好,但颜色没对好,如下

振动计算力学公式

振动台力学公式 1、 求推力(F )的公式 F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) 2.2 V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“2.1”中同义 D —位移(mm 0-p )单峰值 2.3 A=ω2 D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为: A= D f ?250 2 式中:A 和D 与“2.3”中同义,但A 的单位为g 1g=9.8m/s 2 所以: A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 3.3 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??2 3 )2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“3.3”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、 扫描时间和扫描速率的计算公式 4.1 线性扫描比较简单: S 1= 1 1 V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 4.2 对数扫频: 4.2.1 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 4.2.2 扫描速率计算公式 R= T Lg f f Lg L H 2/ ……………………………公式(10) 式中:R —扫描速率(oct/min 或)

机械振动理论基础及其应用

旋转机械振动与故障诊断研究综述 1.前言 工业生产离不开回转机械,随着装置规模不断扩大,越来越多的高速回转机械应用于工业生产,诸如高速离心压缩机、汽轮机发电机组。动态失稳造成的重大恶性事故屡见不鲜。急剧上升的振动可在几十秒之内造成机组解体,甚至祸及厂房,造成巨大的经济损失和人员伤亡。此外,机械振动可能降低设备机械性能,加速机械零部件的磨损,发出的噪声损害操作者的健康。但是振动也能合理运用,如工业上常用的振动筛、振动破碎等都是振动的有效利用。工程技术人员必须认真对待机械振动问题,当机组产生有害的振动时,及时分析原因,坚持用合理的振动测试标准,采取科学的防治措施。 2.旋转机械振动标准 ●旋转机械分类: Ⅰ类:为固定的小机器或固定在整机上的小电机,功率小于15KW。 Ⅱ类:为没有专用基础的中型机器,功率为15~75KW。刚性安装在专用基础上功率小于300KW的机器。 Ⅲ类:为刚性或重型基础上的大型旋转机械,如透平发电机组。 Ⅳ类:为轻型结构基础上的大型旋转机械,如透平发电机组。 ●机械振动评价等级: 好:振动在良好限值以下,认为振动状态良好。 满意:振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。 不满意:振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采取措施。 不允许:振动超过停机限值,应立即停机。 3.振动产生的原因 旋转机械振动的产生主要有以下四个方面原因,转子不平衡,共振,转子不对中和

机械故障。 4.旋转机械振动故障诊断 4.1转子不平衡振动的故障特征 当发生不平衡振动时,其故障特征主要表现在如下方面: 1 )不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图, 转速频率成分具有突出的峰值。 2 )单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波。 3 )转子振幅对转速变化很敏感,转速下降,振幅将明显下降。 4 )转子的轴心轨迹基本上为一个圆或椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90°。 4.2旋转机械振动模糊诊断 4.2.1 振动模糊诊断基本原理 振动反映了系统状态及变化规律的主要信息,统计资料表明:机械设备的故障有67 % 左右是由于振动引起的,并且能从振动和振动辐射出的噪声反映出来。回转机械的振动信息尤其明显,且振动诊断具有快速、简便、准确和在线诊断等一系列优点,所以振动诊断法是旋转机械状态识别和故障诊断的最有效、最常用的方法。 但是,由于机械系统本身的复杂性以及所摄取的振动信号强烈的模糊性,使故障之间没有清晰的界限,这时利用传统的振动频谱分析,对一个故障可能有多个征兆来表现,一个征兆也可能有多个故障原因的复杂现象,往往难定两者的对应关系进行指导维修。振动模糊法,将模糊数学与振动诊断相结合,利用模糊综合评判技术,较好地处理了回转机械故障的不确定性问题。 4.2.2旋转机械振动模糊诊断法的实现 隶属函数的确定

振动试验基本知识

专业知识 1、振动试验基本知识 1.1 振动试验方法 试验方法包括试验目的,一般说明、试验要求、严酷等级及试验程序等几个主要部分。为了完成试验程序中规定的试验,在振动试验方法中又规定了“正弦振动试验”和“随机振动试验”两种型式的试验方法。 正弦振动试验 正弦振动试验控制的参数主要是两个,即频率和幅值。依照频率变和不变分为定频和扫频两种。 定频试验主要用于: a)耐共振频率处理:在产品振动频响检查时发现的明显共振频率点上,施加规定振动参数振幅的振动,以考核产品耐共振振动的能力。 b)耐予定频率处理:在已知产品使用环境条件振动频率时,可采用耐予定频率的振动试验,其目的还是为考核产品在予定危险频率下承受振动的能力。 扫频试验主要用于: ●产品振动频响的检查(即最初共振检查):确定共振点及工作的稳定性,找出产品共振频率,以做耐振处理。 ●耐扫频处理:当产品在使用频率范围内无共振点时,或有数个不明显的谐振点,必须进行耐扫频处理,扫频处理方式在低频段采用定位移幅值,高频段采用定加速度幅值的对数连续扫描,其交越频率一般在55-72Hz,扫频速率一般按每分钟一个倍频进行。 ●最后共振检查:以产品振动频响检查相同的方法检查产品经耐振处理后,各共振点 有无改变,以确定产品通过耐振处理后的可靠程度。 随机振动试验

随机振动试验按实际环境要求有以下几种类型:宽带随机振动试验、窄带随机振动试验、宽带随机加上一个或数个正弦信号、宽带随机加上一个或数个窄带随机。前两种是随机试验,后两种是混合型也可以归入随机试验。 电动振动台的工作原理是基于载流导体在磁场中受到电磁力作用的安培定律。 1.2 机械环境试验方法标准 电工电子产品环境试验国家标准汇编(第二版)2001年4月 汇编中汇集了截止目前我国正式发布实施的环境试验方面的国家标准72项,其中有近50项不同程度地采用IEC标准,内容包括:总则、名词术语、各种试验方法、试验导则及环境参数测量方法标准。 其中常用的机械环境试验方法标准: (1)GB/T 2423.5-1995 电工电子产品环境试验第2部分:试验方法 试验Ea和导则:冲击 (2)GB/T 2423.6-1995 电工电子产品环境试验第2部分:试验方法 试验Eb和导则:碰撞 (3)GB/T 2423.7-1995 电工电子产品环境试验第2部分:试验方法 试验Ec和导则:倾跌与翻倒(主要用于设备型产品) (4)GB/T 2423.8-1995 电工电子产品环境试验第2部分:试验方法 试验Ed和导则:自由跌落 (5)GB/T 2423.10-1995 电工电子产品环境试验第2部分:试验方法 试验Fc和导则:振动(正弦) (6)GB/T 2423.11-1997 电工电子产品环境试验第2部分:试验方法 试验Fd:宽频带随机振动——一般要求 (7)GB/T 2423.12-1997 电工电子产品环境试验第2部分:试验方法

魔方教程公式口诀

魔方教程 前言 我们常见的魔方是3x3x3的三阶魔方,英文名Rubik's cube。是一个正6 面体,有6种颜色,由26块组成,有8个角块;12个棱块;6个中心块(和中心轴支架相连)见下图: (图1) 学习魔方首先就要搞清它的以上结构,知道角块只能和角块换位,棱块只能和棱块换位,中心块不能移动。 魔方的标准色: 国际魔方标准色为:上黄-下白,前蓝-后绿,左橙-右红。 (见图2)注:(这里以白色为底面,因为以后的教程都将以白色为底面, 为了方便教学,请都统一以白色为准)。 (图 2) 认识公式 (图3)(图4) 公式说明:实际上就是以上下左右前后的英文的单词的头一个大写字母表示

(图5) (图6)

(图7) (图8)步骤一、完成一层

首先要做的是区分一层和一面:很多初学者对于“一面”与“一层”缺乏清楚的认识,所以在这里特别解释一 下。所谓一层,就是在完成一面(如图2的白色面)的基础上,白色面的四条边,每条边的侧面只有一种颜色,图(2). 如图(1)中心块是蓝色,则它所在面的角和棱全都是蓝色,是图(2)的反方向 图(3)和(4)则是仅仅是一面的状态,而不是一层 ! (1) (2) (3) (4) 注:图(2)和(4)分别是图(1)和(3)的底面状态 想完成魔方,基础是最重要的,就像建筑一样,魔方也如此,基础是最重要的。 由于上文提到过中心块的固定性,这一性质,在魔方上实质起着定位的作用,简单的说就是中心块的颜色就代表它所在的面的颜色。 一、十字(就是快速法中的CROSS ) 第一种情况如图所示: 公式为R2 第二种情况如图所示: (白色下面颜色为橙色,为方便观察,特意翻出颜色) 橙白块要移到上右的位置,现在橙白块在目标位置的下面。但其橙色片没有和橙色的中心块贴在 (橙色下面颜色为白色,为方便观察,特意翻出颜色)

振动试验必备公式

振动台在使用中经常运用得公式 1、 求推力(F)得公式 F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N) m 0—振动台运动部分有效质量(kg) m 1—辅助台面质量(kg) m 2—试件(包括夹具、安装螺钉)质量(kg) A — 试验加速度(m/s 2) 2、 加速度(A)、速度(V)、位移(D)三个振动参数得互换运算公式 2、1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s) ω=2πf(角速度) 其中f 为试验频率(Hz) 2、2 V=ωD ×10-3 ………………………………………………公式(3) 式中:V 与ω与“2、1”中同义 D —位移(mm 0-p )单峰值 2、3 A=ω2D ×10-3 ………………………………………………公式(4) 式中:A 、D 与ω与“2、1”,“2、2”中同义 公式(4)亦可简化为: A=D f ?250 2 式中:A 与D 与“2、3”中同义,但A 得单位为g 1g=9、8m/s 2 所以: A ≈D f ?25 2 ,这时A 得单位为m/s 2 定振级扫频试验平滑交越点频率得计算公式 3、1 加速度与速度平滑交越点频率得计算公式 f A-V =V A 28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz)(A 与V 与前面同义)。

3、2 速度与位移平滑交越点频率得计算公式 D V f D V 28.6103?=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz)(V 与D 与前面同义)。 3、3 加速度与位移平滑交越点频率得计算公式 f A-D =D A ??23 )2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz),(A 与D 与前面同义)。 根据“3、3”,公式(7)亦可简化为: f A-D ≈5×D A A 得单位就是m/s 2 4、 扫描时间与扫描速率得计算公式 4、1 线性扫描比较简单: S 1=1 1V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz) V 1—扫描速率(Hz/min 或Hz/s) 4、2 对数扫频: 4、2、1 倍频程得计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct) f H —上限频率(Hz) f L —下限频率(Hz) 4、2、2 扫描速率计算公式 R=T Lg f f Lg L H 2/ ……………………………公式(10) 式中:R —扫描速率(oct/min 或)

相关主题
文本预览
相关文档 最新文档