当前位置:文档之家› 基于单片机的直流电机PWM调速控制(文献综述,,,)

基于单片机的直流电机PWM调速控制(文献综述,,,)

基于单片机的直流电机PWM调速控制(文献综述,,,)
基于单片机的直流电机PWM调速控制(文献综述,,,)

本科毕业论文(设计)文献综述

题目: 直流电机调速的研究现状及发展趋势姓名: 杨林

学院(部): 信息与工程学院

专业: 生物医学工程

班级: 生物医学工程 1 班

学号: 0903030027

指导教师: 张鑫职称:

2012年10月25日

直流电机调速的研究现状及发展趋势

摘要:本文阐述了直流电机调速控制系统的发展情况,首先包括各种直流电机的调速方式介绍,再到从单一的调速加入单片机的控制、转速的采集和显示器显示转速等方式来实现实时调控,以及国内外各个高校及专业人员就自己擅长的方面进行探索并取得一定的研究成果。其次具体讲述了各种调速调速系统中的一些关键模块,如:单片机控制、PWM脉冲如何产生、如何改变PWM脉冲占空比调速、如何改变电阻调速、如何采集转速和显示等等,最后浅谈一下各模块中的优异和可以采取的改进方法,以及当下比较适宜的处理办法。

关键词:单片机;调速;直流电机

Dc motor speed regulating research situation and

development trend

Abstract: this paper describes the situation of the DC motor speed regulation control system development , Firstly , it includes all kinds of the DC motor speed control mode is introduced,and then from a single speed to join MCU control, the speed of the acquisition .The display shows speed, and other ways to realize real-time control, and domestic and foreign various colleges and universities and professional personnel is good at aspects of exploration and obtained a certain research results. Secondly, the paper specificly say about all kinds of speed governing system of some key modules, such as: MCU control, how to PWM pulse produce, and how to change the PWM pulse duty ratio control, how to change the resistance of motor speed, how to gather the speed and display, and so on,.Finally talk about how each module of the excellent and can take improvement methods, as well as the suitable processing method.

Keywords: MCU; Speed control; Dc motor

引言

现在电气传动的主要方向之一是电机调速系统采用微处理器实现数字化控制,随着现代化生产规模的不断扩大,各个行业对直流电机的需求愈益增大,并对其性能提出了更高的要求。并且伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了[1]。改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。随着电力电子技术、微电子技术和

自动控制技术的发展以及各种新的理论方法, PWM控制技术获得了空前的发展,到目前为止,已经出现了多种PWM控制技术。

1、直流电机调速的发展

近年来,各国对调速控制技术的研究越来越多,也越来越深入,逐步向着简单化、智能化、综合化的方向发展[2]

1、1电机的几种种调速方法

(1)双闭环直流调速系统[3]:

在系统中设置了两个调节器, 分别调节转速和电流, 二者之间实行串联连接来实现转

速和电流两种负反馈分别起作用。把转速调节器ASR的输出当作电流调节器ACR的输入, 再用电流调节器的输出去控制晶闸管整流器的触发装置GT, TA为电流传感器, TG为测速发电机。如图1示:

图1 转速、电流双闭环调速系统

双闭环调速系统是基于“最短时间控制”原则设计的, 在充分发挥电机过载能力的同时, 可以获得良好的静、动态性能, 在实际工程中有一定的应用价值,但在设计中对稳态指标和动态指标要求较高,并且在电流调节器的设计和速度调节器中时间常数的计算较为复杂,所以逐渐被其他调速系统所取代。

(2)调频调速系统 [4]:

系统采用ARM作为控制器,通过转速与频率、细分倍数直接的关系来调节电机速度,电机转速=60倍频率与200倍细分倍数的商,细分驱动方式下由于步距角小,电机控制精度明显提高,同时这种方式可以抑制低速运行中产生的噪声和震荡现象。

(3)PID调速方式[5]:

PID控制在本质上是一种线性控制方式,其控制性能取决于被控对象的数学模型精度,PID调速结构包括传统PID控制。

传统PID控制的问题是其控制性能依赖于控制对象精确的数学模型,K p为比例系数, K d 为微分,如图2所示:

图2 传统PID控制器系统

(4)PWM 调速方式[6]

PWM (脉冲宽度调制)是通过控制固定电压的直流电源开关频率,改变负载两端的电压,从而达到控制要求的一种电压调整方法。PWM 可以应用在许多方面,比如:电机调速、温度控制、压力控制等等。

在PWM 驱动控制的调整系统中,按一个固定的频率来接通和断开电源,并且根据需要改变一个周期内“接通”和“断开”时间的长短。通过改变直流电机电枢上电压的“占空比”来达到改变平均电压大小的目的,从而来控制电动机的转速。也正因为如此,PWM 又被称为“开关驱动装置”。如图3所示:

图3 PWM 方波

设电机始终接通电源时,电机转速最大为V max ,设占空比为D= t1 / T ,则电机的平均速度为V a = V max * D ,其中V a 指的是电机的平均速度;V max 是指电机在全通电时的最大速度;

D = t1 / T 是指占空比[7]。

由上面的公式可见,当我们改变占空比D = t1 / T 时,就可以得到不同的电机平均速度V d ,从而达到调速的目的。严格来说,平均速度V d 与占空比D 并非严格的线性关系,但是在一般的应用中,我们可以将其近似地看成是线性关系。

基于单片机类由软件来实现PWM :在PWM 调速系统中占空比D 是一个重要参数在电源电压d U 不变的情况下,电枢端电压的平均值取决于占空比D 的大小,改变D 的值可以改变电

枢端电压的平均值从而达到调速的目的。改变占空比D 的值有三种方法[8]:

A 、定宽调频法:保持1t 不变,只改变t ,这样使周期(或频率)也随之改变。

B 、调宽调频法:保持t 不变,只改变1t ,这样使周期(或频率)也随之改变。

C 、定频调宽法:保持周期T(或频率)不变,同时改变t1和t 。

前两种方法在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此常采用定频调宽法来改变占空比从而改变直流电动机电枢两端电压。利用单片机的定时计数器外加软件延时等方式来实现脉宽的自由调整,此种方式可简化硬件电路,操作性强等优点。

2、电机驱动系统

目前直流电机的驱动方式主要有两种形式:线性驱动方式和开关驱动方式[7]。随着电子技术的不断发展,出现了一系列电机驱动芯片L298,L6203,LMD18200等等,这些芯片体积小巧,外围只需添加少量几元件即可工作,而且编程简单,结构简单、功耗低及组网方便等特

点,因而具有较高的实用价[8]。

2006年,张悦玲,高文彦,刘万成在80C196KB/KC单片机的直流电机控制器设计中,采用驱动模块LMD18200芯片,从而实现PWM的控制,该芯片内部集成了H型驱动桥,只需要输入方向、转速等信号及其相关保护电路即可,芯片内设有过热报警输出和自动关断保护电路。单片机的高速输出口获得PWM调制信号直接输入给芯片的调速管脚,驱动芯片需要外接电容22nF,外接电容越大,工作频率越高。

2008年,赵鸿图在基于单片机AT89C51的直流电机PWM调速系统采用L298驱动[9],L298是由达林顿管组成的双H桥高电压大电流集成PWM电路。PWM电路由四个大功率晶体管组成的H桥电路构成,四个晶体管分为两组,交替导通和截止,用单片机控制达林顿管使之工作在开关状态,根据调整输入脉冲的占空比,精确调整电动机转速。这种电路由于管子的只在饱和和截止状态下,效率非常高。H型电路使实现转速和方向的控制简单化,且电子开关的速度很快,稳定性也极强,是一种广泛采用的PWM调速技术。

2008年,曹太强,许建平,吴昊,王杰在基于DSP 的直流电机数字调速系统设计中用H 型双极可逆PWM驱动[10],直流电动机的转速n 正比于电枢端电压U0,所以控制U0 就可以控制n。利用开关管对直流电动机进行PWM 调速,通过在一个周期内改变开关管的导通和关闭来改变直流电动机电枢绕组两端的电压,如图4所示:

图 4 H 型双极可逆PWM驱动系统

3、转速检测

转速检测模块常见的通过光耦测速、霍尔元件测速、光电编码测速等等[10]。

霍尔效应:在一块半导体薄片上,其长度为l,宽度为b,厚度为d,当它被置于磁感应强度为B的磁场中,如果在它相对的两边通以控制电流I,且磁场方向与电流方向正交,则在半导体另外两边将产生一个大小与控制电流I和磁感应强度B乘积成正比的电势UH,即UH=KHIB,其中kH为霍尔元件的灵敏度。该电势称为霍尔电势,半导体薄片就是霍尔元件。

工作原理:霍尔开关集成电路中的信号放大器将霍尔元件产生的幅值随磁场强度变化的霍尔电压UH放大后再经信号变换器、驱动器进行整形、放大后输出幅值相等、频率变化的方波信号。信号输出端每输出一个周期的方波,代表转过了一个齿。单位时间内输出的脉冲数N,因此可求出单位时间内的速度V=NT。

光电编码测速[11]:光电编码器有4个端口, 2个电源端口2个脉冲输出端口(A、B),通过与单片机等硬件相连接来测速,如图5所示:以上升沿触发为例, 当B路信号的上升沿引起中断时, 单片机判断PC5信号的电平高低。若PC5为低电平, 则电机为正转, 计数器N 值加1; 若为高电平, 则电机为反转, 计数器N值减1。则电机的速度即为一个采样周期中

N值的变化量。

图5 编码器接口硬件电路

光耦测速[12]:在电机转轴上安装开有透光小孔的圆盘,在透光孔通过的路径上圆盘两侧分别安装发光器件和光电接收器件。Q1接收不到DS2的光信号时,Q1截止,该电路输出为高电平;在透光孔经过该位置时,Q1导通,则输出低电平信号。输出的信号是经过整形处

理的负脉冲信号,直接输入给单片机中断引脚,由单片机对脉冲计数,经运算可得电机转速。如图6所示:

图6光耦测速电路

4、转速显示

显示模块常见有数码管显示和液晶显示[13]。液晶显示器不仅可以显示数字、字符,还可以显示各种图形、曲线及汉子,并且可以实现屏幕上下左右滚动、动画、闪烁、文本特征显示等功能,较之数码管显示就比较单一了。

目前大部分LED液晶显示器的控制器都有采用型号为HD44780的集成控制器[14]。HD44780是集控制器、驱动器一体,专用于字符显示控制驱动集成电路。HD44780是字符型液晶显示控制器的代表电路。HD44780不仅作为控制器而其具有驱动40×16点阵液晶像素的能力,且驱动能力可通过外接驱动扩展360列驱动。

4、软件编程应用

目前软件编程种类繁多,如C++,VB,C等等一系列编程方式,系统软件主要由主程序MAIN,电机控制子程序和串口通信子程序等组成[15]。主程序MAIN完成堆栈设置、定时器初始化、中断初始化和各功能模块主程序的调用。电动机PWM控制子程序模块主要由单片机输出相应的控制信号给直流电动机控制芯片[16]。单片机根据算法由反馈信号计算得出方向信号和占空比参数大小,再由单片机调用串口通讯子程序。

小结

本文主要从几种调速方式以及电机驱动、软件编程、显示等几个模块展开讨论,对各个调速系统的成果及不足之处都做了一定比较及说明,其次简述了几种调速方式、驱动技术,也综合评价了这些技术的实用性。

目前单片机控制直流电机调速系统主要依赖单片机、驱动器等作为处理的核心,但其在转速检测方面精确度不高、可靠性差,另外在转速显示方面多为数码管显示,这样显示就比较单一,不能满足现实中企业、军用等方面的需求。因此,更应实现成本低廉、控制效率高、智能化程度高的单片机控制直流电机PWM调速系统。

参考文献

[1] Mengda Li; Xiaobin Liu and Na Lin EE Dept. Dual-PWM Four-Quadrant Control System of Induction Motor Based on DSP[C]. Proceedings of 2010 International Conference on Management Science and Engineering (MSE 2010) (Volume 1). 2010,(10),246-248.

[2]孙宜,王东.经济型直流电机PWM闭环调速系统设计[J],现代电子技术.2001,(11),75-76.

[3]杨怀林,基于MatlabPSimulink双闭环调速系统设计及仿真,[J],佳木斯大学学报( 自然科学版).2007(05),339-341.

[4]吴栋念,唐慧强,基于LPC2148的步进电机调速和测速系统设计,[J],电子设计工程,2010(10),54-56.

[5]杨元祖,杨华芬,双闭环直流调速系统模糊PID控制研究,[J],计算机应用研究,2011(03),921-923.

[6]吴泽明,王俊,王景.利用单片机产生PWM信号的软件实现方法[J]. 电子技术2008,(01),20-21.

[7] 蒲龙梅,李泓.单片机控制的直流PWM调速装置的研究[J]技术探讨与研究.2006,(03),48-62.

[8]张悦玲,高文彦,刘万成.80C196KB/KC单片机的直流电机控制器[J],光电技术应用,2006,(06),43-46.

[9] 赵鸿图. 基于单片机AT89C51的直流电机PWM调速系统[J]. 电子技术, 2008,(10),73-76.

[10]曹太强,许建平,吴昊,王杰,基于DSP 的直流电机数字调速系统设计,[J],电力电子技术,2008(02),73-77.

[11] 郑宪伟,赵玉林,陈广大.基于AVR单片机的直流电机的PWM闭环调速系统的设计[J].煤矿机械,2008,(01),120-122.

[12] 王松林,刘世江,杨数强.基于L6203的直流电机控制电路设计[J].电子质量,2001,(06),38-39.

[13]李磊,李瑞鹤,朱腾.基于AT89S52图文显示与实现[J].甘肃联合大学学报(自然科学版),2011,(11),57-60.

[14]陈京陪,徐永梅.基于AT89S52单片机的液晶显示控制电路设计[J].现代电子技术.2008,(11),22-25.

[15] 方力. 基于单片机的直流电动机控制系统设计[J]. 机械制造与自动化, 2011,(06),175-177.

[16]Xiaodong Zhang Bingshu Wang Yongjun; Application Research of PWM Inverter in the Cascade Speed Control System of Inner-feedback Motor[C].Proceedings of 2009 9th International Conference on Electronic Measurement & Instruments(ICEMI’2009)2009-08-16.

基于STM32的直流电机PWM调速控制

电动摩托车控制器中的电机PWM调速 摘要:随着“低碳”社会理念的深入,新型的电动摩托车发展迅速,逐渐成为人们主要的代步工具之一,由于直流无刷电机的种种优点,在电动摩托车中也得到了广泛应用,因此,本文控制部分主要介绍一种基于STM32F103芯片的新型直流无刷电机调速控制系统,这里主要通过PWM技术来进行电机的调速控制,且运行稳定,安全可靠,成本低,具有深远的意义。 1.总体设计概述 1.1 直流无刷电机及工作原理 直流无刷电机(简称BLDCM),由于利用电子换向取代了传统的机械电刷和换向器,使得其电磁性能可靠,结构简单,易于维护,既保持了直流电机的优点又避免了直流电机因电刷而引起的缺陷,因此,被广泛应用。另外,由于直流无刷电机专用控制芯片价格昂贵,本文介绍了一种基于STM32的新型直流无刷电机控制系统,既可降低直流无刷电机的应用成本,又弥补了专用处理器功能单一的缺点,具有重要的现实意义和发展前景。 工作原理:直流无刷电机是同步电机的一种,其转子为永磁体,而定子则为三个按照星形连接方式连接起来的线圈,根据同步电机的原理,如果电子线圈产生一个旋转的磁场,则永磁体的转子也会随着这个磁场转动因此,驱动直流无刷电机的根本是产生旋转的磁场,而这个旋转的磁场可以通过调整A、B、C三相的电流来实现,其需要的电流如图1所示 随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。 1.2 总体设计方案 总体设计方案的硬件部分详细框图如图1所示。

直流电机PWM调速

直流电机转速的PWM控制测速 王鹏辉 姬玉燕

摘要 本设计采用PWM的控制原理来完成对直流电机的正转、反转以及其加速、减速过程的控制,在此过程中是通过单片机的定时器加上中断的方式产生不同时长的高低电压脉冲信号来完成。并通过霍尔传感器对直流电机的转速进行测定,最后将实时测定的转速数值1602液晶屏上。 关键词: PWM控制直流电机霍尔传感器 1602液晶显示屏 L298驱动 一、设计目的: 了解直流电机工作原理,掌握用单片机来控制直流电机系统的硬件设计方法,熟悉直流电机驱动程序的设计与调试,能够熟练应用PWM方法来控制直流电机的正反转和加减速,提高单片机应用系统设计和调试水平。 1.1系统方案提出和论证 转速测量的方案选择,一般要考虑传感器的结构、安装以及测速范围与环境条件等方面的适用性;再就是二次仪表的要求,除了显示以外还有控制、通讯和远传方面的要求。本说明书中给出两种转速测量方案,经过我和伙伴查资料、构思和自己的设计,总体电路我们有两套设计方案,部分重要模块也考虑了其它设计方法,经过分析,从实现难度、熟悉程度、器件用量等方面综合考虑,我们才最终选择了一个方案。下面就看一下我们对两套设计方案的简要说明。 1.2 方案一:霍尔传感器测量方案 霍尔传感器是利用霍尔效应进行工作的?其核心元件是根据霍尔效应原理制成的霍尔元件。本文介绍一种泵驱动轴的转速采用霍尔转速传感器测量。霍尔转速传感器的结构

原理图如图3.1, 霍尔转速传感器的接线图如图3.2 。 传感器的定子上有2 个互相垂直的绕组A 和B, 在绕组的中心线上粘有霍尔片HA 和HB ,转子为永久磁钢,霍尔元件HA 和HB 的激励电机分别与绕组A 和B 相连,它们的霍尔电极串联后作为传感器的输出。 图3.1 霍尔转速传感器的结构原理图 方案霍尔转速传感器的接线图 缺点:采用霍尔传感器在信号采样的时候,会出现采样不精确,因为它是靠磁性感应才采集脉冲的,使用时间长了会出现磁性变小,影响脉冲的采样精度。 1.3方案二:光电传感器 整个测量系统的组成框图如图3.2所示。从图中可见,转子由一直流调速电机驱

基于单片机的直流电机PWM调速控制系统的设计

基于单片机的直流电机PWM调速控制系统的设计 第一章:前言 1.1前言: 直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。 近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。 采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。 随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。 1.2本设计任务: 任务: 单片机为控制核心的直流电机PWM调速控制系统 设计的主要内容以及技术参数: 功能主要包括: 1)直流电机的正转; 2)直流电机的反转; 3)直流电机的加速; 4)直流电机的减速; 5)直流电机的转速在数码管上显示; 6)直流电机的启动; 7)直流电机的停止; 第二章:总体设计方案 总体设计方案的硬件部分详细框图如图一所示。

直流电机PWM调速系统参考论文

毕业论文 基于51单片机的直流电机PWM调速控制系统设计 所在学院 专业名称 年级 学生姓名、学号 指导教师姓名、职称 完成日期

摘要 本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。本文中采用了三极管组成了PWM信号的驱动系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。另外,本系统中使用了霍尔元件对直流电机的转速进行测量,经过处理后,将测量值送到液晶显示出来。 关键词:PWM信号,霍尔元件,液晶显示,直流电动机 I

目录 目录 ................................................................................................................................ III 1 引言 (1) 1.1 课题背景 (1) 1.1.2 开发背景 (1) 1.1.3 选题意义 (2) 1.2 研究方法及调速原理 (2) 1.2.1 直流调速系统实现方式 (4) 1.2.2 控制程序的设计 (5) 2 系统硬件电路的设计 (6) 2.1 系统总体设计框图及单片机系统的设计 (6) 2.2 STC89C51单片机简介 (6) 2.2.1 STC89C51单片机的组成 (6) 2.2.2 CPU及部分部件的作用和功能 (7) 2.2.3 STC89C51单片机引脚图 (8) 2.2.4 STC89C51引脚功能 (8) 3 PWM信号发生电路设计 (11) 3.1 PWM的基本原理 (11) 3.2 系统的硬件电路设计与分析 (11) 3.3 H桥的驱动电路设计方案 (12) 5 主电路设计 (14) 5.1 单片机最小系统 (14) 5.2 液晶电路 (14) 5.2.1 LCD 1602功能介绍 (15) 5.2.2 LCD 1602性能参数 (16) 5.2.3 LCD 1602与单片机连接 (18) 5.2.4 LCD 1602的显示与控制命令 (19) 5.3 按键电路 (20) 5.4 霍尔元件电路 (21) III

直流电机PWM调速电路汇编

《电子技术》课程设计报告课题:直流电机PWM调速电路 班级电气1107 学号 1101205712学生姓名王海彬 专业电气信息类 学院电子与电气工程学院 指导教师电子技术课程设计指导小组 淮阴工学院 电子与电气工程学院 2012年05月

直流电机PWM调速电路 一)设计任务与要求: 1.设计电机驱动主回路,实现直流电机的正反向转动; 2.设计PWM驱动信号发生电路; 3.设计电机转速显示电路; 4.设计电机转速调节电路,可以按键或电位器调节电机转速; 5.安装调试。 二)系统原理及功能概述 1)直流电机脉宽调速电路原理 对小功率直流电机调速系统,使用单片机是极为方便的。其方法是通过改变电机电枢电压接通时间与通电周期的比值(即占空比)来控制电机速度。这种方法称为脉冲宽度调制(Pulse Width Modulation),简称 PWM。 改变占空比的方法有 3 种: (1)定宽调频法,这种方法是保持 t1 不变,只改变 t2 ,这样周期 T(或频率)也随之改变; (2)调宽调频法,保持 t1 不变,而改变 t2 ,这样也使周期 T(或频率)改变; (3)定频调宽法,这种方法是使周期 T(或频率)不变,而同时改变 t2 和 t1 由,当控制频率与系统的固有频率接近于前两种方法都改变了周期(或频率)时,将会引起振荡,用的比较少,因此本系统用的是定频调宽法。在脉冲作用下,当电机通电时,速度增加。电机断电时,速度逐渐减小。只要按一定规律,改变通断电时间,即可实现对电机的转速控制。设电机永远接通电源时,其最大转速为 Vmax,设占空比 D= t1 /T ,则电机的平均速度为 Vd,平均速度 Vd 与占空比 D 的函数曲线如图 1-2 所示,从图可以看出,VD 与占空比 D 并不是完全线性关系(图中实线),当系统允许时,可以将其近似的看成线性关系(图中虚线),本系统采用近似法。

直流电动机的PWM调压调速原理

直流电动机的PWM调压调速原理 直流电动机转速N的表达式为:N=U-IR/Kφ 由上式可得,直流电动机的转速控制方法可分为两类:调节励磁磁通的励磁控制方法和调节电枢电压的电枢控制方法。其中励磁控制方法在低速时受磁极饱和的限制,在高速时受换向火花和换向器结构强度的限制,并且励磁线圈电感较大,动态响应较差,所以这种控制方法用得很少。现在,大多数应用场合都使用电枢控制方法。 对电动机的驱动离不开半导体功率器件。在对直流电动机电枢电压的控制和驱动中,对半导体器件的使用上又可分为两种方式:线性放大驱动方式和开关驱动方式。 线性放大驱动方式是使半导体功率器件工作在线性区。这种方式的优点是:控制原理简单,输出波动小,线性好,对邻近电路干扰小;但是功率器件在线性区工作时由于产生热量会消耗大部分电功率,效率和散热问题严重,因此这种方式只用于微小功率直流电动机的驱动。绝大多数直流电动机采用开关驱动方式。开关驱动方式是使半导体器件工作在开关状态,通过脉宽调制PWM 来控制电动机电枢电压,实现调速。 在PWM调速时,占空比α是一个重要参数。以下3种方法都可以改变占空比的值。 (1)定宽调频法 这种方法是保持t1不变,只改变t2,这样使周期T(或频率)也随之改变。 (2)调频调宽法 这种方法是保持t2不变,只改变t1,这样使周期T(或频率)也随之改变。 (3)定频调宽法 这种方法是使周期T(或频率)保持不变,而同时改变t1和t2。 前两种方法由于在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此这两种方法用得很少。目前,在直流电动机的控制中,主要使用定频调宽法。 直流电动机双极性驱动可逆PWM控制系统 双极性驱动则是指在一个PWM周期里,作为在电枢两端的脉冲电压是正负交替的。 双极性驱动电路有两种,一种称为T型,它由两个开关管组成,采用正负电源,相当于两个不可逆控制系统的组合。但由于T型双极性驱动中的开关管要承受较高的反向电压,因此只用在低压小功率直流电动机驱动。 另一种称为H型。 H型双极性驱动 一、显示接口模块 方案一:液晶显示器也是一种常用的显示器件。它的优点是功耗低,寿命长,本身无老化问题,显示信息量大(可以显示字母和数字),在显示字符上没有限制。但价格高,接口电路较为复杂。其只在一些(袖珍型)设备上作为显示之用。

基于PWM控制的直流电机调速

基于PWM控制的直流电机调速摘要:直流电机(direct current machine)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。直流电机的结构应由定子和转子两大部分组成。直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。 本文设计了直流电机控制系统的基本方案,阐述了该系统的基本结构,工作原理,运行特性及其设计方法,主要研究直流电机的控制和测量方法。本设计系统以单片机AT80C52为核心,实现直流电机调速的系统。 关键字:直流电机 PWM 控制 AT80C52 DC motor is a rotary motor that can convert a direct current into a mechanical energy (a DC motor) or a mechanical energy into a direct current (DC generator). It is capable of achieving the conversion of DC electric energy and mechanical energy to each other. When the motor is running, it is a direct current motor, the electric energy can be converted into mechanical energy; the generator is a direct current generator, the mechanical energy can be converted to electric energy. The structure of the DC motor is composed of two parts, the stator and the rotor. Operation of the DC motor are still part of the said stator, stator's main function is produces a magnetic field, is composed of a frame, a main pole, Huan Xiangji, an end cover, a bearing and an electric brush device and composition. Said operation, the rotating part of the rotor, the main role is electromagnetic torque and induction electromotive force generated, the DC motor is the hub of energy conversion, so is often referred to as the armature and is composed of a shaft, the armature core, an armature wining and commutator and fan.

直流电机PWM调速电路

《电子技术》课程设计报告 课题:直流电机PWM调速电路 班级电气工程1101学号1101205304 学生姓名xxx 专业电气信息类 系别电子与电气工程学院 指导老师电子技术课程设计指导小组 xxxxx 电子与电气工程学院 2012年5月 一、设计目的 a)培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 b)学习较复杂的电子系统设计的一般方法,了解和掌握模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 c)进行基本技术技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 d)培养学生的创新能力。 二、设计任务与要求 1.设计电机驱动主回路,实现直流电机的正反向驱动; 2.设计PWM驱动信号发生电路; 3.设计电机转速显示电路; 4. 设计电机转速调节电路;可以按键或电位器调节电机转速; 5.安装调试; 6.撰写设计报告。

三、设计思想及设计原理 1.信号可以采用数字方法给定,也可以采用电位器给定。建议采用数字方法。 2.PWM信号可以采用三角波发生器和比较器产生,也可采用数字电路及可编程器件产生。建议采用数字方法。 3.正反转主回路可以采用双极型器件实现,也可以用MOS器件实现; 4.转速测量电路可以采用增量型光电编码器,也可采用自行制作的光电编码电路、霍尔传感器以及其它近似测速方法。建议采用光电编码器。 5.显用数字方法显示电机转速。采用光电编码等方法的脉冲测速方法时,可采用计数法测量电机转速;电机转速信号为模拟信号时,可采用数字表头显示转速。建议采用数字方法。 6.(提高部分)可以采用反馈控制技术对系统进一步完善。 四、单元电路设计 4.1 LM324组成的PWM直流电机产生电路 4.1.1 它主要由U1(LM324)和Q1组成 图4.1中,由U1a、U1d组成振荡器电路,提供频率约为400Hz的方波/三角形波。U1c产生6V的参考电压作为振荡器电路的虚拟地。这是为了振荡器电路能在单电源情况下也能工作而不需要用正负双电源。U1b这里接成比较器的形式,它的反相输入端(6脚)接入电阻R6、R7和VR1,用来提供比较器的参考电压。这个电压与U1d的输出端(14脚)的三角形波电压进行比较。当该波形电压高于U1b的6脚电压.U1b的7脚输出为高电平;反之,当该波形电压低于U1b的6脚电压,U1b的7脚输出为低电平。由此我们可知,改变U1b的6脚电位使其与输入三角形波电压进行比较。就可增加或减小输出方波的宽度,实现脉宽调制(PWM)。电阻R6、R7用于控制VR1的结束点,保证在调节VR1时可以实现输出为全开(全速或全亮)或全关(停转或全灭),其实际的阻值可能会根据实际电路不同有所改变。 图4.1中,Q1为N沟道场效应管,这里用作功率开关管(电流放大),来驱动负载部分。前面电路提供的不同宽度的方波信号通过栅极(G)来控制Q1的通断。LED1的亮度变化可以用来指示电路输出的脉冲宽度。C3可以改善电路输出波形和减轻电路的射频干扰(RFI)。D1是用来防止电机的反电动势损坏Q1。 当使用24v的电源电压时,图1电路通过U2将24V转换成12V供控制电路使用。而Q1可以直接在21v电源上,对于Q1来讲这与接在12v电源上没有什么区别。参考图1,改变J1、J2的接法可使电路工作在不同电源电压(12V或24V)下。当通过Q1的电流不超过1A时,Q1可不用散热器。但如果Q1工作时电流超过1A时,需加装散热器。如果需要更大的电流(大于3A),可采用IRFZ34N

直流电机PWM调速控制

§1.1 直流电机调速原理 §1.1.1 直流电机电压调速原理 图1.2为按电机惯例标定的直流电机稳定运行量各物理量的正方向。由图可见电机的电枢电动势Ea 的正方向与电枢电流Ia 的方向相反,为反电动势;电磁转矩T 的正方向与转速n 的方向相同,是拖动转矩;轴上的机械负载转矩T2及空载转矩T0均与n 相反,是制动转矩。 根据基尔霍夫第二定律,对图中的电枢回路列回路电压方程可得直流电动的电动势平衡方程式: U=Ea-Ia (Ra+Rc ) (1.4) 式1.4中,Ra 为电枢回路电阻,电枢回路串联绕阻与电刷接触电阻的总和;Rc 是外接在电枢回路中的调节电阻。 由此可得到直流电机的转速公式为: n =Ua-IR/Ce Φ (1.5) 由1.1式和1.2式得 n =Ea/Ce (1.6) 由式子1.6可以看出,对于一个已经制造好的电机,当励磁电压和负载转矩恒定时,它的转速由电枢电压Ea 决定,电枢电压越高,电机转速就越快,电枢电压降低到0V 时,电机就停止转动;改变电枢电压的极性,电机就反转。总之电机的调速可以通过控制电枢电压实现 错误!未找到引用源。。 说明: U ………………> 电压 Ea ……… >电枢电动势 n …………………>转速 I ………………>电枢电流 r a ……… >电枢回路电阻 Rc ……… >外在电枢电阻 T1,T2………>负载转矩 T0………… > 空载转矩 Φ………………> 磁通量 图1-3 PWM 调速原理 §1.1.2 直流电机PWM 调速原理

所谓脉冲宽度调制是指用改变电机电枢电压接通与断开的时间的占空比来控制电机转速的方法,称为脉冲宽度调制(PWM)。 对于直流电机调速系统,使用FPGA进行调速是极为方便的。其方法是通过改变电机电枢电压导通时间与通电时间的比值(即占空比)来控制电机速度。PWM调速原理如图1-3所示。 在脉冲作用下,当电机通电时,速度增加;电机断电时,速度逐渐减少。只要按一定规律改变通、断电时间,即可让电机转速得到控制。设电机永远接通电源时,其转速最大为Vmax,设占空比为D=t1/T,则电机的平均速度为 Vd=Vmax?D (1.7)式中,Vd——电机的平均速度 Vmax——电机全通时的速度(最大) D=t1/T——占空比 平均速度Vd与占空比D的函数曲线,如图1.4所示。 图1-4 平均速度和占空比的关系 由图1-4可以看出,Vd与占空比D并不是完全线性关系(图中实线),理想情况下,可以将其近似地看成线性关系(图中虚线)。因此也就可以看成电机电枢电压Ua与占空比D成正比,改变占空比的大小即可控制电机的速度。 由以上叙述可知:电机的转速与电机电枢电压成比例,而电机电枢电压与控制波形的占空比成正比,因此电机的速度与占空比成比例,占空比越大,电机转得越快,当占空比α=1时,电机转速最大。

直流电机pwm调速代码

#include #define uint unsigned int #define uchar unsigned char sbit LEFT=P2^2; sbit MID=P2^1; sbit RIGHT=P2^0; sbit EN1=P1^0; sbit EN2=P1^6; sbit M1=P1^1; sbit M2=P1^7;//电机1 sbit M3=P1^2; sbit M4=P1^5;//电机2 uchar pro_left,pro_right,i,j; //左右占空比标志 void delay(uint z) { uint x,y; for(x=110;x>0;x--) for(y=z;y>0;y--); } void go() { EN1=1; EN2=1; pro_left=99; pro_right=99; M1=1; M2=0; M3=1; M4=0; } void stop() { EN1=0; EN2=0; delay(100); } void down() {

EN1=1; EN2=1; pro_right=70; pro_left=70; M1=0; M2=1; M3=0; M4=1; } void turnleft() { EN1=1; EN2=1; pro_right=20; pro_left=99; M1=0; M2=1; M3=1; M4=0; } void turnright() { EN1=1; EN2=1; pro_right=99; pro_left=20; M1=1; M2=0; M3=0; M4=1; } void init() { TMOD=0x01; TH0=(65536-100)/256; TL0=(65536-100)%256; EA=1;

直流电机PWM调速电路

《电子技术》课程设计报告 班级电气1107 学号1101205712学生海彬 专业电气信息类 学院电子与电气工程学院 指导教师电子技术课程设计指导小组 工学院 电子与电气工程学院 2012年05月

直流电机PWM调速电路 一)设计任务与要求: 1.设计电机驱动主回路,实现直流电机的正反向转动; 2.设计PWM驱动信号发生电路; 3.设计电机转速显示电路; 4.设计电机转速调节电路,可以按键或电位器调节电机转速; 5.安装调试。 二)系统原理及功能概述 1)直流电机脉宽调速电路原理 对小功率直流电机调速系统,使用单片机是极为便的。其法是通过改变电机电枢电压接通时间与通电期的比值(即占空比)来控制电机速度。这种法称为脉冲宽度调制(Pulse Width Modulation),简称PWM。 改变占空比的法有3 种: (1)定宽调频法,这种法是保持t1 不变,只改变t2 ,这样期T(或频率)也随之改变; (2)调宽调频法,保持t1 不变,而改变t2 ,这样也使期T(或频率)改变; (3)定频调宽法,这种法是使期T(或频率)不变,而同时改变t2 和t1 由,当控制频率与系统的固有频率接近于前两种法都改变了期(或频率)时,将会引起振荡,用的比较少,因此本系统用的是定频调宽法。在脉冲作用下,当电机通电时,速度增加。电机断电时,速度逐渐减小。只要按一定规律,改变通断电时间,即可实现对电机的转速控制。设电机永远接通电源时,其最大转速为Vmax,设占空比D=t1 /T ,则电机的平均速度为Vd,平均速度Vd 与占空比D 的函数曲线如图1-2 所示,从图可以看出,VD 与占空比 D 并不是完全线性关系(图中实线),当系统允时,可以将其近似的看成线性关系(图中虚线),本系统采用近似法。

直流电机PWM-调速实验报告

实验报告

直流电机PWM调速实验 一、实验目的: 1、掌握脉宽调制的方法; 2、用程序实现脉宽调制,并对直流电机进行调速控制 二、实验设备: PC机一台,单片机最小系统,驱动板,直流电机,连接导线等 三、实验原理: 1、PWM(Pulse Width Modulation)简称脉宽调制。即,通 过改变输出脉冲的占空比,实现对直流电机进行调速控制。 2、实验线路图: 四、实验内容: 1、利用实验时提供的单片机应用系统及直流电机驱动电路板,编制控 制程序,实现直流电机PWM调速控制。 2、连接实验电路,观察PWM调控速度控制,实现的加速、减速等调速 控制。 五、实验步骤: 1、按系统电路图连线,调试完成; 2、开启单片机,按下键盘启动按钮,电机正常旋转;

3、按动键盘加速、减速、正转、反转、停止按键,分别实现预定功能。 4、实验完成,收拾实验器械,整理。 六、实验程序: #include #define TH0_TL0 (65536-1000)//设定中断的间隔时长 unsigned char count0 = 50;//低电平的占空比 unsigned char count1 = 0;//高电平的占空比 bit Flag = 1;//电机正反转标志位,1正转,0反转 sbit Key_add=P2 ^ 0; //电机减速 sbit Key_dec=P2 ^ 1; //电机加速 sbit Key_turn=P2 ^ 2; //电机换向 sbit PWM1=P2^6;//PWM 通道1,反转脉冲 sbit PWM2=P2^7;//PWM 通道2,正转脉冲 unsigned char Time_delay; /************函数声明**************/ void Delay(unsigned char x); void Motor_speed_high(void); void Motor_speed_low(void); void Motor_turn(void); void Timer0_init(void); /****************延时处理**********************/ void Delay(unsigned char x) { Time_delay = x; while(Time_delay != 0);//等待中断,可减少PWM输出时间间隔 } /*******按键处理加pwm占空比,电机加速**********/ void Motor_speed_high(void)// { if(Key_add==0)

液晶显示的PWM直流电机调速报告

课程名称:微机原理课程设计 题目:基于51单片机的PWM直流电机调速

直流电机脉冲宽度调制(Pulse Width Modulation-简称PWM)调速产生于20世纪70 年代中期,最早用于自动跟踪天文望远镜、自动记录仪表等的驱动,后来由于晶体管器件水平的提高及电路技术的发展, PWM 技术得到了高速发展,各式各样的脉宽调速控制器,脉宽调速模块也应运而生,许多单片机也都有了PWM输出功能。而51单片机却没有PWM 输出功能,采用定时器配合软件的方法可以实现51单片机PWM的输出功能。本设计就是由单片机STC89C52RC芯片,直流电机(搭建H桥电路驱动)和1602液晶为核心,辅以必要的电路,构成了一个基于51单片机PWM可调速的直流电机。该可调直流电机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。该可调直流电机布置合理,全部器件分布在7*9cm洞洞板上,看起来小巧精简。采用的是单片机内部定时器产生方波并且两个P口交换输出,可以方便灵活地调速度和方向。该可调直流电机从0到最大速度1200转每分钟一共设置了60个档次的转速,采用1602蓝光液晶,可以直观地显示出来(显示的是每分钟的转速)。有红光和绿光的两个二极管作为转速指示灯。四个控制按键就可以控制电机的转速,方向与暂停。每按一个键,该可调电机就会实现相对应的功能,操作非常简单。 关键词:直流电机,51单片机,C语言,1602液晶

一、设计任务与要求 (4) 1.1 设计任务 (4) 1.2 设计要求 (4) 二、方案总体设计 (5) 2.1 方案一 (5) 2.2 方案二 (5) 2.3 系统采用方案 (5) 三、硬件设计 (7) 3.1 单片机最小系统 (7) 3.2 液晶显示模块 (7) 3.3 系统电源 (8) 3.4驱动电路 (8) 3.5 整体电路 (9) 四、软件设计 (10) 4.1 keil软件介绍 (10) 4.2 系统程序流程 (10) 五、仿真与实现 (13) 5.1 proteus软件介绍 (13) 5.2 仿真过程 (13) 5.3 实物制作与调试 (15) 5.4 使用说明 (16) 六、总结 (17) 6.1 设计总结 (17) 6.2 经验总结 (17) 七、参考文献 (19)

直流电机调速的PWM实现方法

直流电机调速的PWM实现方法 PWM在控制中使用非常广泛,可以以数字量对模拟电路进行控制。这里对PWM的原理进行讲述,并举例说明PWM的重要应用。 1、PWM简介 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。通俗的说PWM是采用数字量对模拟量进行合成的方法。 数字量是怎么样对模拟量进行合成的呢?请看下例: 用PWM波代替正弦冲半波: 上图中用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。这两种波作用于电路时,所产生的效果基本相同。 2、PWM的应用 基于面积相等的原理实际上可以对任意波形进行合成,再如下图: 上图中用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。这两种波作用于电路时,所产生的效果基本相同。 3、PWM的应用 基于面积相等的原理实际上可以对任意波形进行合成,再如下图: ******************************************************************** #define V_TH0 0XFF #define V_TL0 0XF6 #define V_TMOD 0X01 void init_sys(void); /*系统初始化函数*/ void Delay5Ms(void);

基于51单片机的直流电机PWM调速控制系统设计

基于51单片机的直流电机PWM调速控制系统设计 I

摘要 本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。本文中采用了三极管组成了PWM信号的驱动系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。另外,本系统中使用了霍尔元件对直流电机的转速进行测量,经过处理后,将测量值送到液晶显示出来。 关键词:PWM信号,霍尔元件,液晶显示,直流电动机 II

目录 目录 ................................................................................................................................ III 1 引言 (1) 1.1 课题背景 (1) 1.1.2 开发背景 (1) 1.1.3 选题意义 (2) 1.2 研究方法及调速原理 (2) 1.2.1 直流调速系统实现方式 (4) 1.2.2 控制程序的设计 (5) 2 系统硬件电路的设计 (6) 2.1 系统总体设计框图及单片机系统的设计 (6) 2.2 STC89C51单片机简介 (6) 2.2.1 STC89C51单片机的组成 (6) 2.2.2 CPU及部分部件的作用和功能 (6) 2.2.3 STC89C51单片机引脚图 (7) 2.2.4 STC89C51引脚功能 (7) 3 PWM信号发生电路设计 (10) 3.1 PWM的基本原理 (10) 3.2 系统的硬件电路设计与分析 (10) 3.3 H桥的驱动电路设计方案 (11) 5 主电路设计 (13) 5.1 单片机最小系统 (13) 5.2 液晶电路 (13) 5.2.1 LCD 1602功能介绍 (14) 5.2.2 LCD 1602性能参数 (15) 5.2.3 LCD 1602与单片机连接 (17) 5.2.4 LCD 1602的显示与控制命令 (18) 5.3 按键电路 (19) 5.4 霍尔元件电路 (20) III

直流电机PWM调速控制系统

直流电机PWM调速控制系统 摘要:为了验证控制策略和电机参数设计的合理性,基于matlab/simulink平台,从无刷直流电机的基本原理出发,详细介绍电机各个模块的组成,构建了无刷直流电机pwm调速控制系统的建模与仿真模型,给出仿真曲线并验证该模型的正确性。 关键词:无刷直流电机模型仿真 1、引言 随着无刷直流电机(bldcm)应用领域的不断扩大,要求控制系统设计简易、成本低廉、控制算法合理、开发周期短。本文主要研究反电势近似梯形波的永磁无刷直流电机模型的建立与仿真,根据电机的参数和实际运行状况,通过matlab软件的simulink和psb 模块,快捷地创建一些电机控制系统模型,并与simulink结合,实现电机控制算法的仿真。文章介绍了如何创建无刷直流电动机的动态数学模型和pwm调速控制系统模型,并利用该模型,进行了pwm 调速控制系统的仿真试验。 2、无刷直流电机的数学模型 以两相导通三相六状态的无刷直流电机为例。方波无刷直流电动机的主要特征是反电动势为梯形波,包含有较多的高次谐波,这意味着定子和转子的互感是非正弦的,并且无刷直流电动机的电感为非线性[1]。采用直、交变换理论己经不是有效的分析方法,因此应该利用电机本身的相变量来建立数学模型。为简化数学模型的建

立,在电动机模型建立时,认为电动机气隙是均匀的。并作以下假设[2]: (1)电动机的气隙磁感应强度在空间呈梯形(近似为方波分布); (2)定子齿槽的影响忽略不计; (3)电枢反应对气隙磁通的影响忽略不计; (4)忽略电动机中的磁滞和涡流损耗; (5)三相绕组完全对称。 无刷直流电动机在运行过程中,每相绕组通过的不是持续不变的电流,该电流和转子作用产生的转矩,以及绕组上的感应电动势也都不是持续的。因此转矩和反电动势都采用平均值的概念。由以上假设,根据无刷直流电动机的特性,可建立其电压方程、转矩方程、状态方程以及等效电路结构。 对于三相无刷直流电机,其电压平衡方程可表示为[3] 式中:为定子相绕组电压(v);为定子相绕组电流(a);为定子相绕组反电动势(v);r为每相绕组的电阻(); l为每相绕组的电感(h);m 为每相绕组间的互感(h)。 在通电期间,无刷直流电机的带电导体处于相同的磁场下,各相绕组的反电动势为理想梯形波,其幅值为 式中:为反电动势系数;为转子的机械角速度。 无刷直流电动机的电磁转矩方程为: 式中:为电磁转矩;转子的机械角速度。

直流电机PWM调速电路驱动与保护部分

前言 上个世纪50年代,美国通用电气公司发明的硅晶闸管的问世,标志着电力电子技术的开端。此后,晶闸管(SCR)的派生器件越来越多,到了70年代,已经派生了快速晶闸管、逆导晶闸管、双向晶闸管、不对称晶闸管等半控型器件,功率越来越大,性能日益完善。但是由于晶闸管本身工作频率较低(一般低于400Hz),大大限制了它的应用。此外,关断这些器件,需要强迫换相电路,使得整体重量和体积增大、效率和可靠性降低。目前,国内生产的电力电子器件仍以晶闸管为主。 随着关键技术的突破以及需求的发展,早期的小功率、低频、半控型器件发展到了现在的超大功率、高频、全控型器件。由于全控型器件可以控制开通和关断,大大提高了开关控制的灵活性。自70年代后期以来,可关断晶闸管(GTO)、电力晶体管(GTR或BJT)及其模块相继实用化。此后各种高频全控型器件不断问世,并得到迅速发展。这些器件主要有电力场控晶体管(即功率MOSFET)、绝缘栅极双极晶体管(IGT或IGBT)、静电感应晶体管(SIT)和静电感应晶闸管(SITH)等。与此同时,脉冲宽度调制(PWM)技术与开关功率电路成为功率应用中的主流技术;长期以来,直流电机以其良好的线性特性,优异的控制性能、低成本等特点成为大多是变速运动控制系统和闭环位置伺服系统的最佳选择。因此,基于PWM(Pulse Width Modulation)的直流电机调速技术在现代电气传动系统中被广泛运用。 电机调速系统采用微机实现数字化控制,是电气传动发展的主要方向。而驱动电路则是调速电路的重要组成部分,其处在主电路和控制电路之间,将控制电路的信号进行放大。保护电路以及检测电路是对电机速度精确控制的前提,本次课程设计是对直流电机调速驱动电路进行设计,下面是驱动电路设计的具体过程。 一、设计目的: 1、培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生

基于51系列单片机的直流电机PWM调速系统设计说明

课程设计 设计题目:基于51系列单片机的直流电机PWM 调速系统设计 学院:机电工程学院 专业:机械工程及自动化 班级:机自07级01班 姓名:强艳梅 学号: 指导老师:敏 完成时间:2011年1月11日

目录 1 直流电动机调速概述 (4) 1.1直流电机调速原理 (4) 1.2直流调速系统实现方式 (5) 1.3 89C51单片机 (6) 2 硬件电路设计 (6) 2.1 PWM波形的程序实现 (6) 2.2直流电动机驱动 (7) 2.3续流电路设计 (8) 3 软件设计 (8) 3.1主程序设计 (8) 3.2 数码显数设计 (10) 3.3 功能程序设计 (11) 3.4仿真图 (15) 3.5 仿真结果分析 (16) 心得体会 (17) 参考文献 (18)

1 直流电动机调速概述 1.1直流电机调速原理 直流电动机根据励磁方式不同,直流电动机分为自励和他励两种类型。不同励磁方式的直流电动机机械特性曲线有所不同。但是对于直流电动机的转速有以 —励磁绕组本身的电阻;下公式:n=U/C cφ-TR/C r C cφ其中:U—电压;R 内 φ—每极磁通(Wb);C c—电势常数;C r—转矩常量。由上式可知,直流电机的速度控制既可采用电枢控制法,也可采用磁场控制法。磁场控制法控制磁通,其控制功率虽然较小,但低速时受到磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差。所以在工业生产过程中常用的方法是电枢控制法。 图1-1 直流电机的工作原理图 电枢控制是在励磁电压不变的情况下,把控制电压信号加到电机的电枢上,以控制电机的转速。在工业生产中广泛使用其中脉宽调制(PWM)应用更为广泛。脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期“接通”和“断开”时间的长短,即改变直流电机电枢上电压的“占空比”来改变平均电压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动

直流电机PWM调速系统的设计与仿真

直流电机PWM调速系统的设计与仿真 一、引言 1本课题设计的目的和要求 1. 直流电机PWM调速系统的目的: (1)熟悉直流电机PWM调速系统的整体运行过程和总体布局 (2)掌握该硬件电路的设计方法 (3)掌握电机PWM调速系统程序的设计和调试 2. 直流电机PWM调速系统的要求 (1)可输入0~1范围的占空比,占空比可用电位器输入、拨码开关输入或键盘输入。 (2)设计电机驱动电路,根据输入的占空比控制电机转速。 (3)检测电机转速,并用LED或LCD显示。 (4)在PROTUES下仿真。 二、系统总体框图与原理说明 2.1 总体方案原理及设计框图 本设计是基于AT89c51为核心的直流调速器,由单片机控制和产生适合要求的PWM信号,该PWM信号通过驱动芯片电路进行直流调速,使输出电压平均值和功率可以按照PWM信号的占空比而变化,从而达到对直流电机调速的目的。拨码开关输入0~1范围的占空比,用LCD1602作为主液晶显示器,显示输入的占空比控制电机转速,能够实现较好的人机交互。

总体方案设计框图 三、硬件电路图 拨码开关输入模块 AT89c51单片机 LCD1602显示 电机驱动模块 直流电机 示波器显示 用压控振荡器(可用555电路构成)来模拟直流电机的运行

3.1 PWM 产生方式 (1)PWM (脉冲宽度调制)是通过控制固定电压的直流电源开关频率,改变负载两 端的电压,从而达到控制要求的一种电压调整方法。PWM 可以应用在很多方面,比如:电机调速、温度控制、压力控制等等。 在PWM 驱动控制的调整系统中,按一个固定的频率来接通和断开的电源,并且根据需要改变一个周期内“接通”和“断开”时间的长短。通过改变直流电机电枢上电压的“占空比”来达到改变平均电压大小的目的,从而来控制电动机的转速。正因为如此,PWM 又被称为“开关驱动装置”。PWM 波形如图所示: PWM 波形图 设电机始终接通电路时,电机转速最大为V max ,设占空比为: T t D 1 = 则电机的平均转速为 D V V a *max = 其中V a 指的是电机的平均速度,V max 是指电机在全通电时最大速度,D 指的是占空比。 由上面的公式可见,当改变占空比D 时,就可以得到不同电机平均速度V a ,从而达到调速的目的。 (2)单片机片内软件生成PWM 信号 PWM 信号采用单片机定时中断的方式软件模拟产生,这样实现比较容易,可以节 约硬件成本。 //===================定时器0初始化设置=================== //===================定时器0初始化设置=================== void Time0_Init() //定时器0初始化函数 { TMOD=0x01; //定时器0为工作方式1 TH0=(65536-50000)/256; TL0=(65536-50000)%256; //初始化为定时时间为50ms

相关主题
文本预览
相关文档 最新文档