当前位置:文档之家› 轴承套圈的硬车削

轴承套圈的硬车削

轴承套圈的硬车削
轴承套圈的硬车削

轴承套圈的硬车削

轴承套圈硬车削工艺一般为:

a、精车端面基准面,车后基准面端跳<0.005mm,车轴圈外经;

b、翻工件二次装卡;

c、车上端面1序(沟道里边),转换工件压板,车上端面2序(沟道外边);

d、硬车球形沟道(华菱超硬CBN圆形刀片);

车后沟底跳动<0.005mm,沟道表面粗糙度Ra0.3μm

e、精车轴圈内径;

采用上述工艺,精车后推力球轴承轴圈的壁厚差<0.01mm,超过P5级轴承对应的精度值。

案例一:风电轴承套圈的硬车削

加工对象:风电1.5MW机组用变浆轴承套圈

机床:数控立车

刀具牌号:华菱超硬BN-S20

工件尺寸:外径φ1900mm,厚130mm,

精车后的粗糙度:精车后的双桃形沟道的沟底跳动全部<0.005mm,沟道表面粗糙度达到Ra0.3μm。

案例二:精密角接触轴承套圈的斜面车削

加工对象:精密角接触轴承

刀具牌号:华菱超硬BN-H20

刀具寿命:每个刃口加工1000套左后;光洁度Ra0.4以内。

轴承套圈硬车削的优势

1、加工效率高

以轴承行业加工风电1.5MW机组用变浆轴承套圈为例,如果淬火后余量全部采用磨削加工,磨时间是18小时以上,采用以车代磨工艺,时间只需4.5小时。在同样加工精度的要求下,采用车加工效率是磨加工的4倍。

2、生产成本低

采用BN-S20牌号超硬刀具车削1900风电变浆轴承套圈为例,可精车30多件套圈。

3、减少污染

比起磨削下来的铁末砂粒,车削下来的铁屑可以很方便处理,作为资源回收利用成本低,减少对环境污染。

结语:大型轴承和高精度轴承套圈车削时,采用硬车削(以车代磨)工艺,是轴承行业加工趋势,其加工效率高、成本低,传统工艺无法与其抗衡。随着BN-S20、BN-H20牌号超硬刀具进入市场,以车代磨的光洁度和可靠性更高,刀具的使用成本也更低。

(资料来源:https://www.doczj.com/doc/ba10011327.html,/news2.asp?id=506)

轴承套圈锻造工艺研究

轴承套圈锻造工艺研究 轴承套圈的锻造是机械锻造中一个核心课题,文章对此展开论述,首先对轴承套圈锻造工艺现状进行简介,接着阐述轴承套圈锻造工艺的基本设计原则,在此基础上结合轴承套圈锻造工艺本身的特殊性,从建立产品及锻造工艺模型以及套圈锻造工艺的优化设计等方面进行深入的阐述。 标签:轴承套圈;锻造工艺;优化设计 引言 轴承套圈的锻造是机械锻造中比较典型的一类加工。轴承套圈指的是环形且有着多个滚道结构的向心轴承。轴承在机械制造等领域的应用十分广泛。其在结构上的优势是装拆过程十分简易、轴向不会发生改变、且轴向的位置能够轻易被调整。轴承套圈结合具体的结构,也可以细分成不少类型,例如圆锥内圈与外圈、双滚道内外圈等等。在机械锻造领域,对于轴承套圈锻造工艺的经验总结和方法优化是一个核心课题,掌握好轴承套圈锻造的工艺,一方面能够降低加工的支出成本,另一方面也能够保证套圈产品的质量,具有比较好的理论价值和实践意义。 1 轴承套圈锻造工艺概述 轴承套圈是一种应用非常广泛的机械部件,一个轴承套圈锻件成品一般都要经过多道次的毛坯逐点逐步锻造变形而获得,其具体的制造可以细分成四个步骤:粗模的锻造、锻件的热处理、在电脑监控下进行精确磨削、标志的添加。文章关注的重点是其在锻造的时候所采用的工艺。在零件的锻造中,如果由于工艺的不完善而导致的过烧、过热等情况发生,便会显著影响到轴承本身的强度和质量。因此一定要在锻造过程的全程中严格实时控制锻造环境的温度、循环加热等参数,尤其是一些体积相对较大的轴承品种,如果成品的温度超过了七百摄氏度,严禁以堆积的方式进行码放。文章的阐述均以圆锥滚子轴承套圈为例。此类轴承的锻造大部分使用的是单挤工艺,尤其是对一些体积偏大的轴承而言,应把锻造原料进行加热,并通过挤压使其基本成形,然后通过切芯扩孔,进行外径和内径的调整,形成轴承。 2 轴承套圈锻造工艺原则 (1)重量守恒。指的是所有锻造的锻件在质量方面要完全相同。这个准则一方面应该考虑参与锻造的锻件在煅烧工序之后的材料损失,包括火耗、尺寸公差等因素,另一方面还应顾及参与锻造的锻件在工序中,由于温度的变化,导致锻件本身的大小受到影响,只有严格控制以上的因素,才能够作出隔阂的轴承套圈锻造产品。(2)减少缺陷。轴承套圈的锻造是一个相对复杂的工艺过程,绝非几项简单操作的集合,必须在各类参数严格控制之下才能产出成品,由于外界环境并非完全理想,因此所有的工序均能够存在一些扰动因素而导致缺陷的发生。缺陷的外在表现形式,有时是毛刺、凹坑,有时是圆角等,假若无法在具体的工

轴承加工工艺

转盘轴承加工工艺流程简介 1)锻件毛坯的检查 在加工前首先了解毛坯的材质、锻后状态(一般为正回火状态,查阅锻件合格证即材质书)。其次要检查毛坯是否有叠层、裂纹等缺陷。 测量毛坯外型尺寸。测量毛坯内外径、高度尺寸、计算加工余量,较准确地估算出车削加工的分刀次数。 2)车削加工 2.1 粗车:根据车削工艺图纸进行粗车加工,切削速度、切削量严格按工艺规定执行(一般切削速度为5转/分钟。切削量为10mm~12mm)。 2.2 粗车时效:轴承零件粗车完成后,采用三点支承、平放(不允许叠放),时效时间不小于48小时后才能进行精车加工。 2.3 精车轴承零件精车时,切削速度每分钟6至8转,切削量0.3~0.5毫米。 2.4 成型精车:轴承零件最后成型精车时,为防止零件变形,须将零件固定夹紧装置松开,使零件处于无受力状态,车削速度为每分钟8转、切削量为0.2毫米。 2.5 交叉、三排滚子转盘轴承内圈特别工艺:为防止交叉、三排滚子转盘轴承内圈热处理后变形。车削加工时必须进行成对加工,即滚道背靠背加工,热处理前不进行切断,热后切断成型。 2.6 热后精车:轴承内外圈热处理后,进行精车成工序、工艺规程同2.3、2.4 3)热处理— 3.1 滚道表面淬火:轴承滚道表面中频淬火,硬度不低于55HRC,硬化层深度不小于4毫米,软带宽度小于50毫米,并在相应处作“S”标记。(有时客户要求可以渗碳、渗氮、碳氮共渗等) 3.2 热后回火处理:轴承内外圈中频淬火后需在200C度温度下48小时方可出炉。以确保内应力的消失。 4)滚、铣加工— 4.1 对有内外齿的转盘轴承,磨削加工前要进行滚铣齿工序,严格按工艺要求加工,精度等级要达到8级以上。 5)钻孔— 5.1 划线:在测量零件的外型尺寸后,按图纸规定尺寸进行划线、定位工序,各孔相互差不得大于3%0。 5.2 钻孔:对照图纸检测划线尺寸,确保尺寸正确无误后再进行钻孔工序,分体内套转盘轴承安装孔应组合加工,并使软带相间180C度各孔距误差不得大于5%0

轴承加工工艺流程附图

轴承加工工艺流程(附图) 轴承是当代机械设备中一种重要零部件。它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。 按运动元件摩擦性质的不同,轴承可分为滚动轴承和滑动轴承两大类.轴承可同时承受径向负荷和轴向负荷.能在较高的转速下工作。接触角越大,轴向承载能力越高。那么轴承是怎么加工出来的呢? 轴承制造加工基本过程(以套圈制造基本流程为重点,材料选用高碳铬轴承钢Gcr15SiMn) <1>滚动体(钢球)制造基本流程: 原材料——冷镦-—光磨—-热处理——硬磨-—初研——外观——精研 〈2>保持架(钢板)制造基本流程: 原材料——剪料——裁环--光整--成形——整形——冲铆钉孔 〈3>套圈(内圈、外圈)制造基本流程: 原材料—-锻造--退火——车削——淬火—-回火—-磨削--装配

汇普轴承加工流程图 (1)锻造加工:锻造加工是轴承套圈加工中的初加工,也称毛坯加工。 套圈锻造加工的主要目的是: (a)获得与产品形状相似的毛坯,从而提高金属材料利用率,节约原材料,减少机械加工量,降低成本. (b)消除金属内在缺陷,改善金属组织,使金属流线分布合理,金属紧密度好,从而提高轴承的使用寿命。 锻造方式:一般是在感应加热炉、压力机、扩孔机和整形机组成连线的设备体进行流水作业 (2)退火:套圈退火的主要目的是:高碳铬轴承钢的球化退火是为了获得铁素体基体上均匀分布着细、小、匀、圆的碳化物颗粒的组织,为以后的冷加工及最终的淬回火作组织准备。 Gcr15SiMn退火基本工序:

在790-810℃保温2-6h, 以10—30℃/h,冷至600℃以下,出炉空冷 (3)车削加工:车削加工是轴承套圈的半成品加工,也可以说是成型加工。 车削加工的主要目的是: (a)使加工后的套圈与最终产品形状完全相同。 (b)为后面的磨削加工创造有利条件。 车削加工的方法: 集中工序法:在一台设备上完成所有车削工序的小批量生产。 分散工序法:在一台设备上完成某一种车削工序的大批量生产。 (4)热处理:热处理是提高轴承内在质量的关键加工工序。 热处理的主要目的是: (a)通过热处理使材料组织转变,提高材料机械性能。 (b)提高轴承内在质量(耐磨性、强韧性),从而提高轴承寿命。 对于高碳铬轴承钢Gcr15SiMn,热处理包括淬火和低温回火淬火: 加热温度:820—840(℃)保温时间: 1—2h 冷却介质:油低温回火:

齿轮闭式锻造新工艺方案的数值模拟研究

第28卷第9期 2005年9月 合肥工业大学学报 (自然科学版) JOURNA L OF HEFEI UNI VERSITY OF TECH NO LOGY Vol.28No.9  Sept.2005  收稿日期:2005203206 基金项目:安徽省自然科学基金资助项目(03044105) 作者简介:刘全坤(1945-),男,江苏江阴人,博士,合肥工业大学教授,博士生导师. 齿轮闭式锻造新工艺方案的数值模拟研究 刘全坤, 胡成亮, 王 强, 胡龙飞 (合肥工业大学材料科学与工程学院,安徽合肥 230009) 摘 要:齿形充填不满和成形力过高是齿轮闭式锻造典型方案的缺陷。模具几何形状是影响金属塑性流动的主要因素之一,通过改变模具的几何形状可以改变金属的塑性流动。文章通过有限单元法,对3种设计方案进行了二维模拟计算,从数值模拟结果中获得了各方案的应变场和速度场的分布情况,并进行比较分析,得出一种合理可行方案,该方案的坯料沿径向流动速度分布较为均匀;最后,通过三维有限元模拟技术进一步对可行方案进行验证,发现齿轮充填饱满,成形效果较好。关键词:直齿轮;闭式锻造;数值模拟;应变场;速度场 中图分类号:TG 311 文献标识码:A 文章编号:100325060(2005)0921035204 Numerical simulation research on a ne w technological scheme for closed 2die forging spur gear LI U Quan 2kun , H U Cheng 2liang , W ANG Qiang , H U Long 2fei (School of M aterial Science and Engineering ,Hefei University of T echnology ,Hefei 230009,China ) Abstract :Unsuccess ful corner filling and excessive deformation force are the main limitations of classical cold closed 2die forging of straight spur gear.The m old shape is one major factor which affects metal deformation rules ,but metal plastic deformation process can be controlled through the change of the m old shape.The finite element method is used herein to simulate the cold forging process of the spur gear ,and three design schemes with different m old and die shapes are researched.Als o the strain distributions and velocity distributions are investigated.A feasi 2ble scheme is attained by analyzing tw o 2dimensional numerical simulation results of these schemes.Finally ,the fea 2sible scheme is further validated by three 2dimensional numerical simulation ,and the simulation results show that the corner filling is im proved and the whole forming effect is g ood. K ey w ords :spur gear ;closed 2die forging ;numerical simulation ;strain field ;velocity field 齿轮是一种典型的机械传动零件,在机械行 业中大量使用,而直齿圆柱齿轮是各种齿轮中应用最为广泛的一种齿轮。目前,直齿圆柱齿轮主要是通过传统的金属切削加工或采用热模锻与切削加工相结合的方法来制造,生产成本高而且制造费时 [1] 。齿轮的冷精锻成形工艺具有提高强 度、节能降耗、提高生产率等优点,目前国内有很多科研工作者在从事这方面的研究[26] 。 直齿圆柱齿轮冷精锻过程中主要存在以下3个问题:①齿形充填不饱满;②成形力过高;③模具寿命低。在典型的闭式精锻过程中,齿轮的角隅往往难以充满,导致产品不合格;成形力过大,导致模具寿命降低。因此,如何使齿腔充满是保证齿轮质量的首要因素,它甚至是比如何降低成形力还要优先考虑,在实际生产中要求更为迫切。

轴承套圈加工技术水平分析及解决方案

轴承套圈加工技术水平分析及解决方案 1.?前言 作为整个工业基础的机械制造业,正在朝着高精度、高效率、智能化和柔性化的方向发展。磨削、超精研加工(简称“磨超加工”)往往是机械产品的终极加工环节,其机械加工的好坏直接影响到产品的质量和性能。作为机械工业基础件之一轴承的生产中,套圈的磨超加工是决定套圈零件乃至整个轴承精度的主要环节,其中滚动表面的磨超加工,则又是影响轴承寿命以及轴承减振降噪的主要环节。因此,历来磨超加工都是轴承制造技术领域的关键技术和核心技术。? 国外轴承工业,60年代已形成一个稳定的套圈磨超加工工艺流程及基本方法,即:双端面磨削——无心外圆磨削——滚道切入无心磨削——滚道超精研加工。除了结构特殊的轴承,需要附加若干工序外,大量生产的套圈均是按这一流程加工的。几十年来,工艺流程未出现根本性的变化,但是这并不意味着轴承制造技术没有发展。简要地说,60年代只是建立和发展“双端面——无心外圆——切入磨——超精研”这一工艺流程,并相应诞生了成系列的切入无心磨床和超精研机床,零件加工精度达到3~5um,单件加工时间13~18s(中小型尺寸)。70年代则主要是以应用60m/s高速磨削、控制力磨削技术及控制力磨床大量采用,以集成电路为特征的电子控制技术的数字控制技术被大量采用,从而提高了磨床及工艺的稳定性,零件加工精度达到1~3um,零件加工时间10~12s。80年代以来,工艺及设备的加工精度已不是问题,主要发展方向是在稳定质量的前提下,追求更高的效率,{TodayHot}调整更方便以及制造系统的数控化和自动化。? 2.?轴承套圈的磨削加工 在轴承生产中,磨削加工劳动量约占总劳动量的60%,所用磨床数量也占全部金属切削机床的60%左右,磨削加工的成本占整个轴承成本的15%以上。对于高精度轴承,磨削加工的这些比例更大。另外,磨削加工又是整个加工过程中最复杂,对其了解至今仍是最不充分的一个环节。这个复杂性表现在:所要求的性能指标更多、精度更高;加工成形机理更复杂,影响加工精度的因素众多;加工参数在线检测困难。因此,对于轴承生产中关键工序之一的磨削加工,如何采用新工艺,新技术,以高精度、高效率、低成本地完成磨削过程,便是磨削加工的主要任务。 2.1?高速磨削技术 高速磨削能实现现代制造技术追求的两大目标提高产品质量和劳动效率。实践证明:若将磨削速度由35m/s提高到50~60m/s时,一般生产效率可提高30%~60%,对砂轮的耐用度提高约0.7~1倍,工件表面粗糙度参数值降低50%左右。?一般磨削速度达到45m/s以上称为高速磨削。国内以我所八十年代研制的ZYS—811全自动轴承内圆磨床为代表,率先在国内轴承行业套圈磨削加工中应用高速

轴承套圈加工工艺介绍

轴承是当代机械设备中一种重要零部件,它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。滚动轴承一般由外圈、内圈、滚动体和保持架四部分组成。按滚动体的形状,滚动轴承分为球轴承和滚子轴承两大类。 虽然滚动轴承类型众多,其结构型式、公差等级、材料选用、加工方法存在差异,但其基本制造过程类似,下面小编简单介绍下轴承零件的加工工艺: 轴承制造工艺顺序 (1)轴承零件制造-轴承零件检查-轴承零件退磁、清洗、防锈—轴承装配-轴承成品检查—轴承成品退磁、清洗-轴承成品涂油包装斗成品入库。 (2)套圈是滚动轴承的重要零件,由于滚动轴承的品种繁多,使得不同类型轴承的套圈尺寸、结构、制造使用的设备、工艺方法等各不相同。又由于套圈加工工序多、工艺复杂、加工精度要求高,因此套圈的加工质量对轴承的精度、使用寿命和性能有着重要的影响。 轴承套圈工艺顺序

套圈制造的原材料为圆柱形棒料或管料,目前根据成型工艺不同,滚动轴承套圈一般有以下几种制造过程。 (1)棒料:下料-锻造-退火(或正火)-车削(冷压成型)-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配。 (2)棒料、管料:下料-冷辗成型-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配。 (3)管料:下料-车削成型-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配 (4)棒料:下料-冷(温)挤压成型-车削-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配 套圈成型方法 目前在套圈加工中成型方法主要有以下几种:锻造成型、车削成型、冷辗扩成型和冷(温)挤压成型。

(1)锻造成型通过锻造加工可以消除金属内在缺陷,改善金属组织使金属流线分布合理,金属紧密度好。锻造成型加工工艺广泛应用于轴承成型加工中,常见的锻造成型方法有:热锻加工、冷锻加工、温锻加工。 (2)冲压成型工艺是一种能提高材料利用率,提高金属组织致密性,保持金属流线性的先进工艺方法,它是一种无屑加工方法。采用冲压工艺和锻造成型工艺时,产品的精度除了受设备精度影响外,还要受成型模具精度的影响。 (3)传统的车削成型技术是使用专用车床,采用集中工序法完成成型加工。一些外形复杂、精度要求高的产品正越来越多地采用数控车削成型技术。 轴承加工油的选用 轴承配件除在使用热锻工艺时通常都会根据工艺的不同选用适合的金属加工油以提高工件精度和加工效率。

轴承套圈工艺改进技术专题报告1

目录 引言: (1) 一.轴承零部件加工过程中的防锈 (2) (一)轴承零部件加工中的防锈 (2) (二) 轴承零部件工序间的防锈 ................................... 3 (三)常用的中间库(制品库)的防锈方法 . (4) 二.防锈包装前的处理 (5) (一)清洗的对象 (5) (二)清洗用的介质 (6) (三)清洗工艺 (6) (四)清洁度检测与标准 (6) (五)清洗后的干燥 (7) 三.暂时性保护(封存防锈)材料 (7) (一)防锈油品 (7) (二)气相防锈材料 (7) 四.轴承润滑油 (8) 五、轴承成品防锈包装 (9) 六、轴承工厂的防锈管理 (10) 结束语 (11) 参考文献: (12)

深沟球轴承轴承内外圈磨加工工艺过程改进 作者:刘圣斌指导老师:余军合 宁波大学科学技术学院 摘要:通过改进轴承内外圈磨工工艺过程和使用的设备,可以使产品磨加工工艺过程和在制 品周转更加合理,解决了冷却水、精研油、清洗煤油交叉相混现象,降低了生产成本,降低社会劳动生产时间的同时提高了社会劳动生产率和产品质量。进一步扩大了轴承产品的竞争优势。 关键字:深沟球轴承;内圈、外圈、磨削、工艺 一、轴承介绍: 轴承是一种精度高、互换性很强的标准零件,因此,为获得高的生产效率和产品质量,常采用专用加工设备。达克公司公司专业化生产深沟球轴承,对内外圈的磨加工工艺过程进行了多次改进,提高了工效和产品质量。 1原设备及工艺存在的问题 原内、外圈磨超工艺如下: 外圈:磨端面(MB7480)→退磁、清洗→磨外径(M1080,MG10200)→支外径磨外沟道(3MZ146)→退磁、清洗→支外径超精外沟道(四轴超精机)。 内圈:磨端面(MB7480)→退磁、清洗→磨内圈挡边(M1050,MGT1050)→支内沟道磨内沟道

轴承加工工艺流程附图

轴承加工工艺流程附图 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

轴承加工工艺流程(附图)轴承是当代机械设备中一种重要零部件。它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。 按运动元件摩擦性质的不同,轴承可分为滚动轴承和滑动轴承两大类。轴承可同时承受径向负荷和轴向负荷。能在较高的转速下工作。接触角越大,轴向承载能力越高。那么轴承是怎么加工出来的呢轴承制造加工基本过程(以套圈制造基本流程为重点,材料选用高碳铬轴承钢Gcr15SiMn) <1>滚动体(钢球)制造基本流程: 原材料——冷镦——光磨——热处理——硬磨——初研——外观——精研 <2>保持架(钢板)制造基本流程: 原材料——剪料——裁环——光整——成形——整形——冲铆钉孔 <3>套圈(内圈、外圈)制造基本流程: 原材料——锻造——退火——车削——淬火——回火——磨削——装配 汇普轴承加工流程图 (1)锻造加工:锻造加工是轴承套圈加工中的初加工,也称毛坯加工。 套圈锻造加工的主要目的是:

(a)获得与产品形状相似的毛坯,从而提高金属材料利用率,节约原材料,减少机械加工量,降低成本。 (b)消除金属内在缺陷,改善金属组织,使金属流线分布合理,金属紧密度好,从而提高轴承的使用寿命。 锻造方式:一般是在感应加热炉、压力机、扩孔机和整形机组成连线的设备体进行流水作业 (2)退火:套圈退火的主要目的是:高碳铬轴承钢的球化退火是为了获得铁素体基体上均匀分布着细、小、匀、圆的碳化物颗粒的组织,为以后的冷加工及最终的淬回火作组织准备。 Gcr15SiMn退火基本工序: 在790—810℃保温2-6h,以10—30℃/h,冷至600℃以下,出炉空冷 (3)车削加工:车削加工是轴承套圈的半成品加工,也可以说是成型加工。 车削加工的主要目的是: (a)使加工后的套圈与最终产品形状完全相同。 (b)为后面的磨削加工创造有利条件。 车削加工的方法: 集中工序法:在一台设备上完成所有车削工序的小批量生产。 分散工序法:在一台设备上完成某一种车削工序的大批量生产。 (4)热处理:热处理是提高轴承内在质量的关键加工工序。 热处理的主要目的是:

滚动轴承套圈的成型加工

滚动轴承套圈的成型加工 虽然滚动轴承类型众多,其结构型式、公差等级、材料选用、加工方法存在差异,但其基本制造过程均包含以下内容: 1、轴承零件制造-轴承零件检查-轴承零件退磁、清洗、防锈—轴承装配- 轴承成品检查—轴承成品退磁、清洗-轴承成品涂油包装斗成品入库。 2、套圈是滚动轴承的重要零件,由于滚动轴承的品种繁多,使得不同类型轴承的套圈尺寸、结构、制造使用的设备、工艺方法等各不相同。又由于套圈加工工序多、工艺复杂、加工精度要求高,因此,套圈的加工质量对轴承的精度、使用寿命和性能有着重要的影响。 3、套圈制造的原材料为圆柱形棒料或管料,目前根据成型工艺不同,滚动轴承套圈一般有以下几种制造过程。 1)(棒料)下料-锻造-退火(或正火-车削(冷辗成型)-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配。 2)(棒料、管料)下料-冷辗成型-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配。 3)(管料)下料-车削成型-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配4)(棒料)下料-冷(温)挤压成型-车削-热处理淬、回火-磨削-零件检查-退磁、清洗-提交装配套圈成型方法: 目前在套圈加工中,成型方法主要有以下几种:锻造成型、车削成型、冷辗扩成型和冷(温)挤压成型。在以上成型方法中,锻造成型加工应用最为广泛,占总生产量的80%左右,对于一些小型通用类产品可以采用棒(管)料直接车削成型。20世纪80年代以来,我国一些中小型企业在中小型套圈的生产中采用了冷辗扩和冷(温)挤压成型工艺。 1)锻造成型通过锻造加工可以消除金属内在缺陷,改善金属组织,使金属流线分布合理,金属紧密度好。锻造成型加工工艺广泛应用于轴承成型加工中,可以完成从内径~20mm的小型产品到外径5000mm的特大型产品的加工。常见的锻 造成型方法有:热锻加工、冷锻加工、温锻加工,我国以热锻为主。 热锻加工因其成型加工设备不同又分为:自由锻造加工工艺、压力机锻造工

滚动轴承套圈加工工艺

滚动轴承(深沟球轴承)套圈的热处理工艺一.选择零件

二.零件的服役条件及性能要求 滚动轴承的机械及工作环境千差万别,套圈要在拉伸、冲击、压缩、剪切、弯曲等交变复杂应力状态下长期工作。一般情况下,套圈的主要破坏形式是在交变应力作用下的疲劳剥落以及摩擦磨损,裂纹压痕锈蚀。所以,这就要求套圈具有高的抗塑性变形的能力,较少的摩擦磨损,良好的尺寸精度及稳定性和较长的接触疲劳寿命。 综上所诉,要求套圈要有1)高的接触疲劳强度2)高的耐磨性3)高的弹性极限4)适宜的硬度5)一定的韧性6)良好的尺寸稳定性7)良好的防锈能力8)良好的工艺性能 三.材料选择 套圈的材料选择一般有6种GCr4 ,GCr15 ,GCr15SiMn ,GCr15SiMo ,GCr18Mo 在这里我们选用的是GCr15,因为我们此次制造的是小尺寸套圈,GCr15SiMn和℃℃GCr15SiMo一般是用来制造壁厚的大轴承的套圈。GCr15SiMn一般用来制造壁厚在15mm~35mm的轴承的套圈。GCr15SiMo一般用来制造壁厚大于35mm的大型和特大型轴承的套圈。GCr4是限制淬透性轴承钢,各方面性能较好。GCr18Mo的淬透性比较高

,性能优越,但价格较高。GCr15是高碳铬轴承钢的代表钢种,综合性能良好,淬火和回火后具有高而均匀的硬度,良好的耐磨性能和高的接触疲劳寿命,热加工变形性能和削切加工性能均良好,但焊接性差,对白点形成较敏感,有回火脆性倾向,价格相对便宜。 四.加工工艺 棒料→锻制→正火→球化退火→车削加工→去应力退火→淬火→冷处理→低温回火→粗磨→补加回火→精磨→成品 1.正火 正火的目的 (1)消除网状碳化物及线条状组织 (2)返修退火的不合格品 (3)为满足特殊性能的需要 (4)为退火做组织准备 加热温度 正火加热温度主要依据正火目的和正火前组织状态来决定。此处正火主要是为了消除或减少粗大网状碳化物,所以正火温度选在930~950℃之间。如果一次正火不能消除粗大网状碳化物,可以以相同温度二次正火。 保温时间 保温时间在40min~60min 冷却速度 正火冷却过程中如果冷却速度过慢非但不能改善组织,还会再次析出网状碳化物;冷却速度过大,将会出现大量马氏体组织及裂纹。所以本材料正火冷却速不应该小于50℃/min。 冷却方法 (1)分散空冷 (2)强制吹风 (3)喷雾冷却 (4)乳化液中(70~100℃)或油中循环冷却 (5)70~80℃水中冷却

端面磨削加工工艺

一技术条件及检查方法 磨削套圈端面的技术条件有:套圈宽度尺寸,套圈宽度变动量(V Bs或V Cs),端面直线性,套圈平面度,表面粗糙度,外观(包括烧伤),残磁等,其容许偏差均规定在工序间技术条件和其它技术条件之中。 检查套圈宽度尺寸和宽度变动量均可在G904,G905仪器上用标准件比较测量(图7-35)测量时,表尖测量点必须离开倒角和打字处,以避免测量有误差,同时表尖应接触套圈的基准端面。 被测套圈两端面间的距离,则是套圈宽度尺寸,被测套圈在仪器上旋转一周以上所测量得的两端间最大与最小距离之差为宽度变动量。 检查套圈端面直线性,可用刀口尺紧贴端面检查光隙度。也可用仪器测量(图7-36),端面的凹凸度=a-b,即是端面直线性误差其误差不应超过规定的宽度变动量数值1/2. 套圈平面度(图7-37)检查,用G803仪器测量。其测量方法如图3-37b所示,仪器的三个定位必须相隔120°,仪表的测量点与套圈基准端面接触,并位于定位支点的正中间, 这样才能测出平面度正确值。 套圈平面度误差大都出现在推力轴承套圈和超轻,特轻系 列轴承的外圈上(即薄壁套圈),其产生原因是由于打印热处 理或磨端面时磁盘磁力过大等造成的。 外观质量检查,主要检查加工后的端面不允许有碰伤车削 痕压伤划伤和黑皮等缺陷,以及端面有超过规定的烧伤。 残次检查,可用电磁感仪器或用铆钉检查。 二加工余量 各型类轴承套圈宽度的磨削留量可参看表7-10,如310外圈直径为110毫米,由表中可看出,当不经软磨时,其基本留量为0.25毫米,最大留量则为0.40毫米。

表7-10 套圈高度留量表 套圈外径车工留量及公差软磨留量及公差基准面余量 >18≤500.25--0.400.2±0.030.10 >50≤800.25--0.400.25±0.030.13 >80≤1200.25--0.400.25±0.030.13 >120≤1500.30--0.450.30±0.030.15 >150≤1800.30--0.500.30±0.030.15 >280≤2500.40--0.600.40±0.030.20 >250≤3150.50--0.700.50±0.030.25 >315≤4000.60--0.800.60±0.030.30 在磨削端面时,应特别注意余量在套圈两个端面上的分配,每个端面必须合理地去除磨量。第一工步应先磨非基准端面,第二工步磨基准端面。各类型套圈的基准面应按图纸规定,如向心球轴承和圆柱滚子轴承套圈,均以无打字面为基准端面。圆锥滚子轴承和角接触轴承的内外圈,均以宽面为基准端面。 图7-38为310轴承外圈的加工图(不软磨)。宽度基本留量为0.25毫米,毛坯的公差为+0.15毫米,这时基准端面留量为二分之一的基本留量,即0.13毫米,而非基准面的最大余量则为0.27毫米。 由此可以看出,基准面和非基准面的加工余量是不一样的,因此加工的先后不可弄错。在实际操作中,应认真挑选基准面加工。 在采用卧式双端面磨床加工套圈端面时,根据其工艺特性,对于对于两端面面积相等的轴承套圈,其高度之总余量自动地平均分配于被加工的两个端面。为了保证毛坯沟的位置,车加工宽度尺寸必须达到严格要求,一般需要精车宽度或经软磨工序。例如,308外圈车加工宽度应达到23.25±0.03毫米的要求。 在双端面磨削时,还必须注意每个工步的加工余量的合理分配。生产实践表明,在一次贯穿行程中(即一个工步)磨去过大的余量,会使砂轮工作面过快磨损,磨削力和磨削热过大不能保证加工质量。每个工步去除余量的合理数值应在生产条件下试验确定,以308外圈为例第一工步可磨至23.10±0.02毫米,第二工步磨至最后尺寸23 0-0.03毫米。 三砂轮选择 磨削轴承套圈端面的砂轮可参考表7-11. 表7-11 磨端面用的砂轮

轴承套圈冷辗扩加工技术简介

轴承套圈冷辗扩加工技术简介 >> 冷辗加工的特点 1)可大幅度的节省原材料 车加工与冷辗加工下料比较(锻件毛坯)传统的加工方法要包容套圈的全部形状,而冷辗加工仅需要与成品相同体积的毛坯。 采用冷辗加工可节省钢材15~35%;减少机械加工量10~20%。

2)加工精密高:主要加工表面的尺度精度、粗糙度和形位公差能稳定的达到甚至超过车加工水平。 冷辗套圈的尺寸集中度要好于车加工 3)全面改善了工件的内在质量,轴承使用寿命成倍提高,可靠性显著提高,噪声明显降低 冷辗与车加工断面比较 例如我们用6206轴承为代表型号进行的试验。冷辗用坯料退火组织,按标准(JB1255-81)第一级别图评为3级退火组织 A.冷辗后的流线: 流线不仅与沟道表面形状一致,在表面上无断头,而且在沟道表面以下,超过1MM深度范围内特别致密,愈接近表面愈致密。 B.原料中的夹杂物在冷辗后也明显按流线取向。 C.冷辗并热处理后的晶粒度:

晶粒度一般比传统加工提高2-4级,而且均匀性也大大提高。 D.冷辗并热处理后的显微组织: 经冷辗,其碳化物细小而分布均匀、浓度起伏变化小。按标准(J131255-81)第二级别图应评为2级。寿命试验结果如下表: 试验样本额定寿命/计算寿命可靠性 冷辗6206 22 99.93% 对比用进口名牌6206 7 98.66% 4)简化生产流程,降低管理成本。 因冷辗是滚道、倒角一次成型,因此可省掉挖沟,倒角这两道最影响加工质量的工序。 5)提升产品品质。 加工质量靠模具保证,质量易于控制,产品一致性好。 6)自动化程度高,可配置自动生产线。 当前精密冷辗技术在世界范围内处于成长和上升时期。这一阶段的主要标志是在应用中提高、完善、发展,在发展中扩大应用。在当前阶段,精密冷辗技术在充分发挥自身优点的同时,还必须冷辗环机为核心,在加工精度、稳定性、可靠性,生产效率及自动化程度方面与传统加工技术竞争,并在加工能力和工件种类方面扩大应用范围,直到实现在其适宜的范围内普遍推广应用。 精密冷辗技术的成功应用需要4个条件: A.先进而适用的冷辗环机。 B.质量足够高、供应充足的模具及其制造技术。 C.冷辗用坯料的制备。 D.掌握冷辗技术的人员培训。 人们期望,精密冷辗技术的加工精度能达到粗磨加工的效果,冷辗环机像其他数控机床一样稳定、可靠、自动,而这正是我们努力的目标。 应用中的常见问题

轴承套圈加工技术水平分析及解决方案

轴承套圈加工技术水平分析及解决方案 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

轴承套圈加工技术水平分析及解决方案 1.?前言 作为整个工业基础的机械制造业,正在朝着高精度、高效率、智能化和柔性化的方向发展。磨削、超精研加工(简称“磨超加工”)往往是机械产品的终极加工环节,其机械加工的好坏直接影响到产品的质量和性能。作为机械工业基础件之一轴承的生产中,套圈的磨超加工是决定套圈零件乃至整个轴承精度的主要环节,其中滚动表面的磨超加工,则又是影响轴承寿命以及轴承减振降噪的主要环节。因此,历来磨超加工都是轴承制造技术领域的关键技术和核心技术。? 国外轴承工业,60年代已形成一个稳定的套圈磨超加工工艺流程及基本方法,即:双端面磨削——无心外圆磨削——滚道切入无心磨削——滚道超精研加工。除了结构特殊的轴承,需要附加若干工序外,大量生产的套圈均是按这一流程加工的。几十年来,工艺流程未出现根本性的变化,但是这并不意味着轴承制造技术没有发展。简要地说,60年代只是建立和发展“双端面——无心外圆——切入磨——超精研”这一工艺流程,并相应诞生了成系列的切入无心磨床和超精研机床,零件加工精度达到3~5um,单件加工时间13~18s(中小型尺寸)。70年代则主要是以应用60m/s高速磨削、控制力磨削技术及控制力磨床大量采用,以集成电路为特征的电子控制技术的数字控制技术被大量采用,从而提高了磨床及工艺的稳定性,零件加工精度达到1~3um,零件加工时间10~12s。80年代以来,工艺及设备的加工精度已不是问题,主要发展方向是在稳定质量的前提下,追求更高的效率,{TodayHot}调整更方便以及制造系统的数控化和自动化。? 2.?轴承套圈的磨削加工 在轴承生产中,磨削加工劳动量约占总劳动量的60%,所用磨床数量也占全部金属切削机床的60%左右,磨削加工的成本占整个轴承成本的15%以上。对于高精度轴承,磨削加工的这些比例更大。另外,磨削加工又是整个加工过程中最复杂,对其了解至今仍是最不充分的一个环节。这个复杂性表现在:所要求的性能指标更多、精度更高;加工成形机理更复杂,影响加工精度的因素众多;加工参数在线检测困难。因此,对于轴承生产中关键工序之一的磨削加工,如何采用新工艺,新技术,以高精度、高效率、低成本地完成磨削过程,便是磨削加工的主要任务。 2.1?高速磨削技术 高速磨削能实现现代制造技术追求的两大目标提高产品质量和劳动效率。实践证明:若将磨削速度由35m/s提高到50~60m/s时,一般生产效率可提高

轴承套圈加工技术水平分析及解决方案

轴承套圈加工技术水平分析及解决方案 1.前言 作为整个工业基础的机械制造业,正在朝着高精度、高效率、智能化和柔性化的方向发展。磨削、超精研加工(简称“磨超加工”)往往是机械产品的终极加工环节,其机械加工的好坏直接影响到产品的质量和性能。作为机械工业基础件之一轴承的生产中,套圈的磨超加工是决定套圈零件乃至整个轴承精度的主要环节,其中滚动表面的磨超加工,则又是影响轴承寿命以及轴承减振降噪的主要环节。因此,历来磨超加工都是轴承制造技术领域的关键技术和核心技术。 国外轴承工业,60年代已形成一个稳定的套圈磨超加工工艺流程及基本方法,即:双端面磨削——无心外圆磨削——滚道切入无心磨削——滚道超精研加工。除了结构特殊的轴承,需要附加若干工序外,大量生产的套圈均是按这一流程加工的。几十年来,工艺流程未出现根本性的变化,但是这并不意味着轴承制造技术没有发展。简要地说,60年代只是建立和发展“双端面——无心外圆——切入磨——超精研”这一工艺流程,并相应诞生了成系列的切入无心磨床和超精研机床,零件加工精度达到3~5um,单件加工时间13~18s(中小型尺寸)。70年代则主要是以应用60m/s高速磨削、控制力磨削技术及控制力磨床大量采用,以集成电路为特征的电子控制技术的数字控制技术被大量采用,从而提高了磨床及工艺的稳定性,零件加工精度达到1~3um,零件加工时间10~12s。80年代以来,工艺及设备的加工精度已不是问题,主要发展方向是在稳定质量的前提下,追求更高的效率,{TodayHot}调整更方便以及制造系统的数控化和自动化。 2.轴承套圈的磨削加工 在轴承生产中,磨削加工劳动量约占总劳动量的60%,所用磨床数量也占全部金属切削机床的60%左右,磨削加工的成本占整个轴承成本的15%以上。对于高精度轴承,磨削加工的这些比例更大。另外,磨削加工又是整个加工过程中最复杂,对其了解至今仍是最不充分的一个环节。这个复杂性表现在:所要求的性能指标更多、精度更高;加工成形机理更复杂,影响加工精度的因素众多;加工参数在线检测困难。因此,对于轴承生产中关键工序之一的磨削加工,如何采用新工艺,新技术,以高精度、高效率、低成本地完成磨削过程,便是磨削加工的主要任务。 2.1 高速磨削技术 高速磨削能实现现代制造技术追求的两大目标提高产品质量和劳动效率。实践证明:若将磨削速度由35m/s提高到50~60m/s时,一般生产效率可提高30%~60%,对砂轮的耐用度提高约0.7~1倍,工件表面粗糙度参数值降低50%左右。

轴承加工工艺流程(附图)教程文件

轴承加工工艺流程(附 图)

轴承加工工艺流程(附图) 轴承是当代机械设备中一种重要零部件。它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。 按运动元件摩擦性质的不同,轴承可分为滚动轴承和滑动轴承两大类。轴承可同时承受径向负荷和轴向负荷。能在较高的转速下工作。接触角越大,轴向承载能力越高。那么轴承是怎么加工出来的呢? 轴承制造加工基本过程(以套圈制造基本流程为重点,材料选用高碳铬轴承钢Gcr15SiMn) <1>滚动体(钢球)制造基本流程: 原材料——冷镦——光磨——热处理——硬磨——初研——外观——精研 <2>保持架(钢板)制造基本流程: 原材料——剪料——裁环——光整——成形——整形——冲铆钉孔 <3>套圈(内圈、外圈)制造基本流程: 原材料——锻造——退火——车削——淬火——回火——磨削——装配

汇普轴承加工流程图 (1)锻造加工:锻造加工是轴承套圈加工中的初加工,也称毛坯加工。 套圈锻造加工的主要目的是: (a)获得与产品形状相似的毛坯,从而提高金属材料利 用率,节约原材料,减少机械加工量,降低成本。 (b)消除金属内在缺陷,改善金属组织,使金属流线分布合理,金属紧密度好,从而提高轴承的使用寿命。 锻造方式:一般是在感应加热炉、压力机、扩孔机和整形机组成连线的设备体进行流水作业 (2)退火:套圈退火的主要目的是:高碳铬轴承钢的球化退火是为了获得铁素体基体上均匀分布着细、小、匀、圆的碳化物颗粒的组织,为以后的冷加工及最终的淬回火作组织准 备。

Gcr15SiMn退火基本工序: 在790—810℃保温2-6h, 以10—30℃/h,冷至600℃以下,出炉空冷 (3)车削加工:车削加工是轴承套圈的半成品加工,也可以说是成型加工。 车削加工的主要目的是: (a)使加工后的套圈与最终产品形状完全相同。 (b)为后面的磨削加工创造有利条件。 车削加工的方法: 集中工序法:在一台设备上完成所有车削工序的小批量生产。 分散工序法:在一台设备上完成某一种车削工序的大批量生产。 (4)热处理:热处理是提高轴承内在质量的关键加工工序。 热处理的主要目的是: (a)通过热处理使材料组织转变,提高材料机械性能。 (b)提高轴承内在质量(耐磨性、强韧性),从而提高轴承寿命。 对于高碳铬轴承钢Gcr15SiMn,热处理包括淬火和低温回火淬火:

我国轴承套圈超精研技术的改进要点

我曾经在《怎么样提高高精度轴承的超精质量?》一文中写到:“超精加工主要要提高和改善被加工工件表面的微观质量,这些微观质量包括粗糙度、沟形、圆度和金属条纹的走向。”轴承套圈沟道超精研工序主要是为了降低被加工沟道的粗糙度,这是最基本的要求,无论是最原始的棍棒超精机还是采用无心支撑结构的自动化超精机,原理大同小异,都是如此。高水平的和低档的轴承套圈超精研设备的主要区别是轴承套圈沟道形状精度的改善程度和被加工工件表面应力状态的差异。 轴承套圈沟道形状精度的改善主要取决于三个方面:首先,要约束超精前的轴承沟道磨加工形状的基础精度,轴承沟道的基准精度和位置精度在磨削工序也要精确地控制,因为这些需要约束的被加工工件的磨削工序的精度及其对超精加工的结果的影响是不容忽视的;其次,超精研设备的制造精度也会对被超精工件沟道表面形状的变化起到很大的影响,品质较差的超精机非但不能够改善磨削工序形成的形状精度,反而会破坏磨削工序形成的形状精度;第三,超精余量的大小不仅与超精加工的节拍有关,而且也与轴承沟道超精后的表面质量有关 系。 假如我们的轴承产品没有对轴承的噪音和轴承的寿命提出特殊的要求,假如我们的轴承产品仅仅满足于参与国内外市场的低价格竞争,假如我们的轴承产品不想走出国门或者不想替代进口产品,那么,使用低价位的超精研设备是可以的。因为,在中低档产品的轴承市场上,中国的轴承企业打了很多顽强的战役,在空调类家电市场和电机市场,我们的微型和小型轴承取得了不俗的销售业绩,这些成绩的取得也部分得益于我国轴承加工设备的发展和进步。而在我国高精尖产品领域,大量的高附加值高利润轴承还是依靠进口。我国生产的最好的轴承设备,即使出口到国外,也只是应用在普通轴承生产线上;部分大陆境内的外资和合资的轴承加工企业采购国内的轴承设备,也主要用在中低档轴承的生产线上。迄今为止,我国高水平的进口轴承设备所占的比率很小,部分原因是由于高水平的进口轴承设备的价格普遍高于国产的轴承设备,其主要原因还是国内大部分企业生产的轴承精度和效率要求偏低,在引进更好水平的进口轴承设备方面的要求还不是特别强烈。如果我们要在精密轴承的竞争市场上有所作为,那么我们就一定要知道,世界上最好的轴承生产线上都在使用什么设备?那些高精尖轴承生产线都是采用什么工艺加工出来的?与国外相比,我国轴承企业的制造水平和差距在哪里? 做高品质的轴承产品,就要选择最先进的轴承设备,就要有制造高品质轴承的实践,这是硬道理。本文限于篇幅,仅给大家介绍一下世界上最先进的超精研技术的发展概况。

轴承套圈锻件检验规范

轴承套圈锻件检验作业规范Q/QCHJ30005—2013 轴承套圈锻件检验作业规范Q/QCHJ30005—2013 1.本规范规定了轴承套圈锻件的技术要求及检验规范,适用于本公司轴承套圈锻件的工序检查和转递验 收。 2.引用文件 CSBTS TC98.25-1997 滚动轴承套圈锻件技术条件 JB/T1255-2001 高碳鉻轴承钢滚动轴承零件热处理技术条件 3.技术要求 3.1套圈锻件的余量、公差应符合锻件产品图样的规定。合同另有约定的从其约定。 3.2套圈锻件的形位公差要求 3.2.1套圈锻件的直径变动量、两端直径差、壁厚差、平行差、垂直差按表1规定 3.2.2套圈锻件的表面质量 套圈锻件表面氧化皮垫坑,毛刺垫坑,端面凹陷,内、外径凹陷鼓度不允许超过该处单边加工余量的三分之一。锻件不允许有水淬裂纹。锻造折叠和裂纹不允许超过该处单边加工余量的三分之一。锻件在装夹面不允许有毛刺。其他部位毛刺不超过2×3。基准面鼓度(平面度)不允许超过1㎜。 3.2.3套圈锻件的内部质量 锻件退火后的硬度GCr15为HB179-207(HRC不超过HRC20);退火后的组织应符合JB/T1255-2001高碳鉻轴承钢滚动轴承零件热处理技术条件的规定;锻件退火后脱碳层总(包括脱碳和贫碳)深度不允许超过单边最小加工余量的三分之二。脱碳层以最深处为准;不允许有过烧和过热组织;不允许有夹渣、气泡、缩孔、内裂等内部缺陷。 3.2.4材质要求 套圈锻件的材质必须满足GB/T18254-2002规定的高碳鉻轴承钢的要求。公司用户对材质另有要求的或指定钢材供应商的按用户要求执行;以上要求必须同时满足。 4.检验规则 4.1套圈锻件检查项目及特性分类按表2 第 1 页共4 页

相关主题
文本预览
相关文档 最新文档