Maximum entropy markov models for information extraction and segmentation
- 格式:pdf
- 大小:240.28 KB
- 文档页数:8
机器学习算法在智能语音识别系统中的应用智能语音识别(Automatic Speech Recognition, ASR)是人工智能领域的一个重要研究方向。
随着机器学习算法的发展和优化,智能语音识别系统在语音处理、人机交互和语音转写等方面取得了显著的进展。
本文将探讨机器学习算法在智能语音识别系统中的应用,介绍其基本原理和具体应用场景,并讨论其优势和挑战。
一、机器学习在智能语音识别中的作用机器学习是一种能够让计算机从经验中学习,并根据学习结果自主进行决策和预测的技术。
在智能语音识别系统中,机器学习的主要作用是通过对大量语音数据进行学习,让计算机自动识别和理解人类语音,从而实现语音转写、语音控制和语音交互等功能。
1.语音特征提取与降噪在语音识别过程中,机器需要从原始语音信号中提取有用的语音特征,并通过对这些特征的分析和处理进行声学建模。
机器学习算法可以自动学习语音特征的潜在结构,并通过降维和去噪等技术提高特征的鲁棒性和表达能力。
例如,利用深度学习算法中的卷积神经网络(Convolutional Neural Networks, CNN)和递归神经网络(Recurrent Neural Networks, RNN)可以有效地提取语音特征并减少环境噪声对语音识别的影响。
2.音素识别与语音分割音素是语言中最小的语音单位,音素识别是将连续语音信号切分成单个音素的过程。
机器学习算法通过对大规模语音数据的训练,可以自动学习音素的统计规律和上下文关系。
常用的机器学习算法包括隐马尔可夫模型(Hidden Markov Models, HMM)和条件随机场(Conditional Random Fields, CRF)。
这些算法可以进行语音分割和音素识别,并为后续语音处理和理解任务提供基础。
3.语音识别与语义理解语音识别是将语音信号转化为文本的过程,语义理解是从转写结果中提取语意信息的过程。
机器学习算法在语音识别和语义理解任务中发挥着重要作用。
最大熵模型知识点总结
最大熵模型(Maximum Entropy Model)是一种统计模型,用于处理分类和回归问题。
这种模型基于信息论中的熵的概念,通过最大化熵来选择最合适的模型。
以下是最大熵模型的一些重要知识点:
1. 熵的概念:熵是信息论中的一个重要概念,用于衡量信息的不确定性。
熵越高,表示信息越不确定;熵越低,表示信息越确定。
2. 最大熵原理:最大熵原理认为,在不缺乏任何先验知识的情况下,应选择熵最大的模型。
这是因为最大熵对未知的事物进行了最少的假设,使得模型具有更好的灵活性和泛化能力。
3. 特征函数:最大熵模型使用特征函数来定义特征。
特征函数是一个将实例映射到特征值(0或1)的函数,用于描述实例与某种事件的关系。
每个特征函数对应一个特征,通过定义一组特征函数,可以构建最大熵模型的特征集。
4. 约束条件:最大熵模型的训练过程是一个求解最优化问题。
为了获得最大熵模型,需要定义一组约束条件。
这些约束条件可以用于限制模型的潜在搜索空间,使其符合一些先验知识。
5. 最优化算法:求解最大熵模型问题的常用方法是使用迭代的最优化算法,例如改进的迭代尺度法(Improved Iterative Scaling,IIS)和梯度下降法(Gradient Descent)。
最大熵模型在自然语言处理、信息检索和机器学习等领域有广泛的应用。
它可以用于文本分类、命名实体识别、情感分析和机器翻译等任务。
最大熵模型的灵活性和泛化能力使其成为一种强大的统计模型。
python 最大熵模型-回复Python最大熵模型(Maximum Entropy Model)是一种经典机器学习算法,它在自然语言处理、信息提取和文本分类等任务中有广泛的应用。
本文将围绕Python最大熵模型展开讨论,并逐步回答你关于该模型的问题。
首先,让我们来了解一下什么是最大熵模型。
最大熵模型是一种统计模型,它是由最大熵原理推导出来的。
最大熵原理认为,在没有任何先验知识的情况下,我们应该选择具有最高熵的模型。
在信息论中,熵是对不确定性的度量,因此最大熵原理可以理解为选择最不确定的模型。
最大熵模型的目标是在满足已知约束条件的情况下,选择最不确定的模型。
下面,让我们来看一下如何使用Python实现最大熵模型。
在Python中有多种库可以实现最大熵模型,其中较为常用的库有NLTK(Natural Language Toolkit)和Scikit-learn。
这两个库都提供了丰富的函数和类来支持最大熵模型的训练和预测。
首先我们需要准备训练数据。
最大熵模型是一种有监督学习算法,因此需要标注好的训练数据来进行模型训练。
训练数据一般由特征和标签组成,特征是用来描述样本的属性,标签是该样本所属的类别。
在NLTK 和Scikit-learn中,通常将特征表示为一个包含多个键值对的字典,其中键表示特征的名称,值表示特征的取值。
接下来,我们可以使用NLTK或Scikit-learn中提供的函数或类进行最大熵模型的训练。
这些函数或类提供了一些参数来进行模型训练的配置,如正则化参数、最大迭代次数和收敛条件等。
我们可以根据具体任务的需求来选择不同的参数配置。
在模型训练完成后,我们可以使用训练好的模型来进行预测。
预测过程同样需要提供待预测样本的特征表示。
最大熵模型会根据已学到的模型参数来为待预测样本进行分类,输出预测结果。
最后,我们可以对模型进行评估。
常用的评估指标包括准确率、召回率、F1值等。
这些指标可以帮助我们评估模型的性能,并做出进一步的改进。
最大熵模型核心原理一、引言最大熵模型(Maximum Entropy Model, MEM)是一种常用的统计模型,它在自然语言处理、信息检索、图像识别等领域有广泛应用。
本文将介绍最大熵模型的核心原理。
二、信息熵信息熵(Entropy)是信息论中的一个重要概念,它可以衡量某个事件或信源的不确定度。
假设某个事件有n种可能的结果,每种结果发生的概率分别为p1,p2,...,pn,则该事件的信息熵定义为:H = -∑pi log pi其中,log表示以2为底的对数。
三、最大熵原理最大熵原理(Maximum Entropy Principle)是指在所有满足已知条件下,选择概率分布时应选择具有最大信息熵的分布。
这个原理可以理解为“保持不确定性最大”的原则。
四、最大熵模型最大熵模型是基于最大熵原理建立起来的一种分类模型。
它与逻辑回归、朴素贝叶斯等分类模型相似,但在某些情况下具有更好的性能。
五、特征函数在最大熵模型中,我们需要定义一些特征函数(Function),用来描述输入样本和输出标签之间的关系。
特征函数可以是任意的函数,只要它能够从输入样本中提取出有用的信息,并与输出标签相关联即可。
六、特征期望对于一个特征函数f(x,y),我们可以定义一个特征期望(Expected Feature),表示在所有可能的输入样本x和输出标签y的组合中,该特征函数在(x,y)处的期望值。
特别地,如果该特征函数在(x,y)处成立,则期望值为1;否则为0。
七、约束条件最大熵模型需要满足一些约束条件(Constraints),以保证模型能够准确地描述训练数据。
通常我们会选择一些简单明了的约束条件,比如每个输出标签y的概率之和等于1。
八、最大熵优化问题最大熵模型可以被看作是一个最优化问题(Optimization Problem),即在满足约束条件下,寻找具有最大信息熵的概率分布。
这个问题可以使用拉格朗日乘子法(Lagrange Multiplier Method)来求解。
课程编号:S0300010Q课程名称:自然语言处理开课院系:计算机科学与技术学院任课教师:关毅刘秉权先修课程:概率论与数理统计适用学科范围:计算机科学与技术学时:40 学分:2开课学期:秋季开课形式:课堂讲授课程目的和基本要求:本课程属于计算机科学与技术学科硕士研究生学科专业课。
计算机自然语言处理是用计算机通过可计算的方法对自然语言的各级语言单位进行转换、传输、存贮、分析等加工处理的科学。
是一门与语言学、计算机科学、数学、心理学、信息论、声学相联系的交叉性学科。
通过本课程的学习,使学生掌握自然语言(特别是中文语言)处理技术(特别是基于统计的语言处理技术)的基本概念、基本原理和主要方法,了解当前国际国内语言处理技术的发展概貌,接触语言处理技术的前沿课题,具备运用基本原理和主要方法解决科研工作中出现的实际问题的能力。
为学生开展相关领域(如网络信息处理、机器翻译、语音识别)的研究奠定基础。
课程主要内容:本课程全面阐述了自然语言处理技术的基本原理、实用方法和主要应用,在课程内容的安排上,既借鉴了国外学者在计算语言学领域里的最新成就,又阐明了中文语言处理技术的特殊规律,还包括了授课人的实践经验和体会。
1 自然语言处理技术概论(2学时)自然语言处理技术理性主义和经验主义的技术路线;自然语言处理技术的发展概况及主要困难;本学科主要科目;本课程的重点与难点。
2 自然语言处理技术的数学基础(4学时)基于统计的自然语言处理技术的数学基础:概率论和信息论的基本概念及其在语言处理技术中的应用。
如何处理文本文件和二进制文件,包括如何对文本形式的语料文件进行属性标注;如何处理成批的文件等实践内容3 自然语言处理技术的语言学基础(4学时)汉语的基本特点;汉语的语法功能分类体系;汉语句法分析的特殊性;基于规则的语言处理方法。
ASCII字符集、ASCII扩展集、汉字字符集、汉字编码等基础知识。
4 分词与频度统计(4学时)中文分词技术的发展概貌;主要的分词算法;中文分词技术的主要难点:切分歧义的基本概念与处理方法和未登录词的处理方法;中外人名、地名、机构名的自动识别方法;词汇的频度统计及统计分布规律。
关于HMM模型算法的一种改进彭丽莉;周传斌;田永涛【摘要】对传统的HMM模型进行了改进,结合了HMM和MEMM的优点.此改进是在"HMM:状态-观察"和"MEMM:特征-状态"之间进行的,实现"特征-状态-观察"这种模式,简化了繁冗的过程,比一般的HMM具有更好的性能,并举出实例加以论证.【期刊名称】《绵阳师范学院学报》【年(卷),期】2010(029)008【总页数】4页(P110-112,129)【关键词】人工智能;HMM模型;最大熵【作者】彭丽莉;周传斌;田永涛【作者单位】重庆师范大学数学学院,重庆,400047;重庆师范大学数学学院,重庆,400047;重庆师范大学数学学院,重庆,400047【正文语种】中文【中图分类】TP181隐马尔可夫模型(HiddenMarkovModel,HMM)作为一种统计分析模型,是对马尔可夫模型的一种扩充。
它的基本理论形成于上世纪60年代末期和70年代初期。
70年代,CMU的J.K.Baker以及I BM的F. Jelinek等把HMM模型应用于语音识别。
隐马尔可夫模型是一个双重随机过程——具有一定状态数的隐马尔可夫链和显示随机函数集。
它由一些代表隐状态的节点组成,这些节点之间由反映不同状态之间互相转移概率相联系。
每一个隐状态同时都能根据不同的概率发出一些可见的状态。
HMM非常适合描述序列模型,特别是上下文相关的场合,比如:语音中的音素。
最大熵的马尔可夫模型,对文本中的问题和答案部分进行切分。
实际上,它是一种指数模型,输入了文本中的抽象特征,在马尔可夫状态转移的基础上选择下一状态,这一点上更接近于有限状态机(FS M)。
它可以改善抽取的性能,但没有统计具体的文本词汇,只考虑抽取特征,因此在某些情况下性能不如HMM。
因此,本文结合隐马尔可夫模型(HMM)和最大熵的马尔可夫模型(MEMM),对传统的HMM模型进行了改进,来实现文本信息抽取。
第43卷第6期2021年12月指挥控制与仿真CommandControl&SimulationVol 43㊀No 6Dec 2021文章编号:1673⁃3819(2021)06⁃0122⁃06事件提取方法在军事领域的应用趋势吴㊀蕾1,2,邓甡屾1,3,柳少军1,李志强1(1.国防大学联合作战学院,北京㊀100091;2.陆军航空兵研究所,北京㊀101121;3.陆军工程大学,江苏南京㊀210001)摘㊀要:事件提取可以帮助用户从海量㊁无序的非结构化信息中快速㊁准确地获取感兴趣的事件,在自然语言处理领域有广泛应用㊂在梳理事件的概念㊁知识表示以及事件提取发展历程的基础上,对元事件和主题事件的提取方法分别进行了归纳和分析,并总结了事件提取方法在军事上的研究现状,探讨了其在军事领域未来的应用趋势㊂关键词:事件提取;元事件;主题事件;机器学习;深度学习中图分类号:E911㊀㊀㊀㊀文献标志码:A㊀㊀㊀㊀DOI:10.3969/j.issn.1673⁃3819.2021.06.022EventExtractionMethodsandDevelopmentTrendinMilitaryFieldWULei1,2,DENGShen⁃shen1,3,LIUShao⁃jun1,LIZhi⁃qiang1(1.JointOperationsCollege,NationalDefenceUniversity,Beijing100091;2.ArmyAviationResearchInstitute,Beijing101121;3.ArmyEngineeringUniversity,Nanjing210001,China)Abstract:Eventextractionmethodcanhelpusersquicklyandaccuratelyidentifytheinterestingeventsfromthemassive,disorderedandunstructuredinformation,whichiswidelyusedinthefieldofnaturallanguageprocessing.Onthebasisofsor⁃tingouttheconcept,theknowledgerepresentationofeventandthedevelopmentofeventextraction,theextractionmethodsofmeta⁃eventandtopiceventaresummarizedandanalyzedrespectively.Theresearchstatusofeventextractionmethodsinmilitaryfieldissummarized,andtheapplicationtrendofeventextractionmethodsinmilitaryfieldisdiscussed.Keywords:eventextraction;meta⁃event;topicevent;machinelearning;deeplearning收稿日期:2021⁃05⁃05修回日期:2021⁃06⁃09作者简介:吴蕾(1983 ),女,江苏泰兴人,博士研究生,工程师,研究方向为运筹分析与军事智能决策㊂邓甡屾(1982 ),女,博士研究生㊂㊀㊀大型计算机模拟对抗演习是和平时期训练指挥员作战指挥能力的主要手段,通常涵盖陆㊁海㊁空㊁天㊁电㊁网多维战场空间,具有模拟层次高㊁仿真规模大㊁覆盖范围广㊁演习要素全㊁描述实体多㊁行动交互复杂等特点㊂对抗演习过程中,人与计算机模拟系统交互作用产生海量的仿真信息,这些信息通常包括作战计划㊁行动指令㊁导调文书等内容,涵盖结构化㊁半结构化以及非结构化多种形式,其多样性和复杂性给指挥员带来了巨大的认知压力㊂因此,迫切需要一种方法,帮助指挥员从这些海量信息中快速㊁准确地筛选出较为关键的事件,为指挥决策或者检验评估提供支撑㊂目前,国内外针对事件提取研究主要集中在元事件提取方面,主题事件提取也逐渐引起关注,但事件提取方法在军事领域应用尚不成熟㊂本文对事件的概念㊁事件提取的发展历程进行了分析,归纳梳理了当前常用的事件提取方法以及各自的特点和局限,并结合事件提取在军事领域研究现状和技术发展,指出了其在军事领域未来的应用趋势,为进一步研究相关领域事件提取提供参考㊂1㊀事件提取相关概念及发展历程1 1㊀事件和事件提取事件(Event)的概念来源于认知科学,相关研究者认为人类的记忆由事件以及事件之间的关系构成㊂随后,事件的概念逐渐发展到其他领域㊂在信息检索与信息提取领域,事件一般以句子为单位,指在特定时间段和特定区域内发生的事情,涉及角色的参与,并且由行动组成㊂Allan等认为事件是 细化了的用于检索的主题 [1],Yang等将事件定义为 在一个特定时间㊁特定地点发生的事情 [2]㊂在自动文本摘要领域,事件是比参与者㊁时间和地点等概念具有更大粒度的语义单元,具有动态性和完整意义㊂杨竣辉[3]将事件作为最基本的语义单元,通过研究事件及事件间的关系来表示文本的语义㊂王伟玉等[4]提出了一种事件粒度的话题表示方法,认为通过融合事件描述的共性信息,可以生成事件粒度的话题的简短表示㊂事件提取方法主要研究如何从描述事件信息的数据或语句中提取事件信息并以结构化的形式呈现出来,包括事件时间㊁事件地点㊁参与者以及动作或状态的变化等事件要素㊂1 2㊀事件提取发展历程事件提取方法取得巨大进步,与测评会议MUC㊁TDT及ACE的推动密不可分,这些测评会议虽然研究. All Rights Reserved.第6期指挥控制与仿真123㊀的侧重点各有不同,但是它们的召开在很大程度上促进了事件提取方法的快速发展㊂事件提取研究来源于20世纪80年代美国国防部高级研究计划局(DefenseAdvancedResearchProjectsAgency,DARPA)主办的消息理解会议(MessageUnder⁃standingConference,MUC)㊂随着信息化战争的到来,军事数据数量巨大并且飞速增加,从纷繁复杂的数据中提取关键信息就显得极为重要㊂因此,会议最早的语料来源是美军的作战文书,任务是从这些作战文书中抽取相关事件,填入预先设置的模板㊂这一系列会议的召开标志着信息提取开始成为自然语言处理领域的一个重要分支㊂另一个评测会议 话题识别与跟踪(TopicDe⁃tectionandTracking,TDT)会议也是由DARPA主办的,它的主要任务是对面向新闻信息事件识别和提取的技术进行研究和评测,目的是通过对文本的划分㊁对新闻信息流的监控以及对同一话题下的分散报道的有效组织,发现特定领域新事件的报道㊂会议初期,学者们指出一个话题就是一个特定事件,随着会议的召开,话题逐渐发展为相互之间有关系的多个事件的组合㊂由美国国家标准与技术研究所(NationalInstituteofStandardsandTechnology,NIST)组织的自动内容抽取(AutomaticContentExtraction,ACE)国际测评会议进一步推动了事件提取研究的发展,这是事件提取领域非常重要的系列会议,主要研究如何从新闻语料库中自动抽取实体㊁关系㊁事件等内容㊂与MUC会议相比,ACE会议不针对具体的领域或场景,也不预先设置模板,更强调对文本中事件要素的识别与描述㊂2㊀事件提取的分类元事件表示一个动作的发生或状态的变化,它是主题事件的基本组成单位㊂目前国内外学者对于元事件提取的研究已经比较成熟,对于主题事件提取的研究也越来越重视㊂2 1㊀元事件提取随着事件提取技术的发展,元事件提取先后出现三种主要方法㊂最早出现的是基于模式匹配的事件提取方法,其在提取事件时用模式进行约束,从而找出符合约束条件的事件,具体提取流程如图1所示㊂国外很早就开展了这方面的研究工作,并陆续开发了PALKA㊁TIMES㊁AutoSlog⁃TS等基于模式匹配的事件提取系统㊂国内事件提取研究开展较晚,研究者们陆续定义了一些事件的模式并提出了相关模式学习方法,这些方法主要是利用与领域无关的知识库进行模式学习,进而实现事件提取㊂图1㊀基于模式匹配的元事件提取流程将传统机器学习方法应用到事件提取中主要是通过特征选择,训练出分类效果较好的分类器,进而实现事件的提取㊂用于事件提取的传统机器学习方法主要有支持向量机(SupportVectorMachine,SVM)模型㊁最大熵(MaximumEntropy,ME)模型㊁隐马尔可夫模型(HiddenMarkovModel,HMM)㊁条件随机场(ConditionalRandomFields,CRF)模型等方法,它们各有其局限性,比如,SVM模型难以在大规模训练样本上进行,HMM需要严格的独立性假设作为前提,ME模型迭代过程计算量非常大,而CRF模型较复杂且训练代价较高㊂随着人工智能技术的飞速发展,以循环神经网络(RecurrentNeuralNetwork,RNN)和卷积神经网络(ConvolutionalNeuralNetwork,CNN)为代表的深度学习方法逐渐在事件提取中快速应用和发展㊂Nguyen[5]使用RNN来进行事件提取的研究,在神经网络输入层除了使用传统的词向量之外,还根据文本内容增加了额外的特征向量,因此,能够更好地在局部文本中提取事件㊂Chen等[6]提出动态多池化卷积神经网络(DynamicMulti⁃PoolingConvolutionalNeuralNetworks,DMCNN)事件提取模型,在传统CNN模型基础上增加了动态多池机制,从而提升了事件提取的效果㊂基于模式匹配的事件提取由于需要进行具体模式的构建,因此,方法可移植性较差,且模式构建通常需要领域相关专家的参与㊂与模式匹配方法相比,基于机器学习的方法需要的人工干预相对较少,但也需要借助工具选取与任务相关的特征,因而特征选取的好坏与事件提取的效果直接关联㊂而基于深度学习的事件提取方法采用的是端到端的学习,不需要借助外部的自然语言处理工具设计特征,但其对语料库的质量和数量要求很高㊂2 2㊀主题事件提取单个元事件通常无法清楚描述整个事件,而主题事件作为元事件的有机组合,能更好地表现主题,目前可分为基于事件框架和基于本体两种方式㊂. All Rights Reserved.124㊀吴㊀蕾,等:事件提取方法在军事领域的应用趋势第43卷基于框架的主题事件提取通过构建事件框架来提取事件,并根据一定规则将事件融合在一起㊂许荣华等[7]通过定义事件融合框架(TopicEventFusionFrame⁃work,TEEE)来完成主题事件提取,如图2所示,一般通过合并与同一主题相关的所有元事件以及通过计算元事件与主题之间的相关性来呈现主题事件㊂赵文娟等[8]基于主题事件框架,构建网络事件提取流程,对从网络文档中提取㊁合并与主题事件相关的各种信息的技术和方法进行了描述与验证㊂图2㊀主题事件融合框架基于本体的主题事件提取开始受到越来越多的关注㊂本体是概念及概念间关系的一种表示方法,可以被看作一个描述某领域知识的通用概念模型,因此,非常适合描述主题型事件㊂张一帆等[9]提出了事件五元组表示方式和事件本体模型,该模型是以事件类为基本单位的知识表示模型,包含了时间㊁地点㊁动作㊁参与者㊁结果等事件要素,能够更全面㊁准确地描述突发事件,更好地展示主题㊂吴奇[10]将本体技术应用到事件提取中,利用对领域知识的描述进行事件提取,指出可以利用本体中的概念和关系,结合本体中事件结构的特点,根据不同的算法和规则实现主题事件提取㊂3㊀事件提取方法在军事领域的研究现状和应用分析3 1㊀事件提取方法在军事领域的研究现状事件提取方法最早起源于美军对作战文书进行信息提取的需求,后来逐渐发展到金融㊁新闻㊁法律㊁医学等领域,并取得了极大的进步㊂国内近些年也开始注重对事件提取的研究,但目前,相比其他领域来说,军事领域事件提取相关研究相对较少,仅在军事实体事件提取㊁战场元素建模㊁作战文书事件提取等方面有一些研究㊂沈大川等人[11]提出了利用本体和规则推理捕获战场 关键事件 的方法,构建了战场态势核心本体以及战场领域本体,提出战场数据是以事件的形式传递的,战场 关键事件 提取规则建立在战场领域本体的基础之上,通过对战场元素的概念建模以及一定条件的约束,能反映战场的要素及要素间的基本关系,结合一定的知识和规则可将这些要素和关系聚合成 关键事件 ㊂宋仁亮等[12]提出利用事件描述模型提取战场关键事件的方法,他分析了战场关键事件的主要类型和相关特征,建立了关于战场关键事件的描述模型,通过对作战目标和战场区域之间的关系㊁作战目标与战场分界线之间的关系㊁战场实体属性的变化㊁作战力量的变化进行分析和计算,提取战场关键事件㊂付雨萌等[13]以某海军舰队的活动事件为例,对相关军事实体进行了分类,在此基础上,结合军事活动的特点,分别对活动事件进行结构化㊁形式化描述,实现军事活动事件本体的构建,从而为其后续进行军事活动相关领域知识库及知识图谱的构建打下基础㊂游飞[14]对军事装备实体事件进行分类,并运用双向长短时记忆(Bi⁃directionalLongShort⁃TermMemory,Bi⁃LSTM)网络模型对事件触发词进行识别,通过在模型中加入负采样训练得到的特征向量,并引入句法分析和双向多层LSTM,从而提升LSTM网络模型的性能,取得了良好的效果,反映出事件提取在军事领域的研究价值㊂王学峰等[15]针对作战文书中出现的新力量㊁新编号和新战法难以通过简单的模板构建提取事件的实际问题,提出利用深度学习方法从作战文书中获取关键事件㊂Bi⁃LSTM网络对较长句子上下文能较好记忆,动态词向量(EmbeddingfromLanguageModelsofChar⁃acter,ELMo)对汉字语义能多重表示,CRF模型对标注规则能有效学习,基于这些特点,构建了结合这三种方法的事件提取模型,并在演习导调文书语料集上进行了实验,取得了较好的事件提取效果㊂3 2㊀军事知识图谱的应用现状军事知识图谱中包含的事件知识隐含于军事大数据中,需要通过事件提取技术从不断增加的海量军事数据中获取关键事件知识才能实现数据的有效利用㊂目前,军事领域已经逐渐开展相关知识图谱构建工作,为军事人员快速准确获取并共享军事相关知识提供支撑㊂第6期指挥控制与仿真125㊀邢萌等[16]面向部队平时及战时的应用场景,针对军事领域的特点,提出军事领域知识图谱及应用技术架构,描述了军事领域知识图谱构建环节的难点,对基于本体的知识表示㊁基于机器学习的知识提取等关键技术进行研究,为开展军事领域知识图谱的应用提供支撑手段㊂吴云超等[17]为提高仿真推演系统的效率,探讨了领域知识图谱在仿真实体动态生成中的应用㊂通过提出面向仿真推演的领域知识图谱构架及领域知识图谱构建方法,建立基于军事专家经验和知识的领域知识体系,实现从实时战场数据㊁作战条例㊁历史规律等结构多样的数据中提取相关的实体㊁关系㊁属性等事件要素㊂车金立等[18]将知识图谱应用于装备维修保障知识库的构建㊂在对装备维修保障知识图谱的构建流程设计的基础上,利用装备维修保障数据进行关键信息的提取㊂知识图谱在装备维修保障领域的应用目的是解决装备维修保障信息化过程中出现的信息过载㊁查询信息效率低下等问题㊂张进等[19]针对传统武器系统故障诊断方法的一些弊端,在统计岸炮武器系统各类常见故障的基础上,利用知识图谱构建领域知识库,并根据武器系统常见故障设定多重任务场景,然后基于任务驱动智能客服多轮对话,实现武器系统的故障诊断和排除㊂陈辞等[20]从复杂关系语义特征出发,研究如何利用现有的军事知识图谱,对新增的军事知识进行语义融合和组织,深入研究军事语义信息提取方法以及基于在线和学习的信息提取机制,构建基于关联语义链网络的军事知识图谱演化研究方法和技术构架㊂王保魁等[21⁃22]基于知识图谱技术,采用态势要素解析方法与形式化态势知识描述方法相结合的方式,对想定场景初始态势中实体及其关系进行分析和知识表示学习,并提出基于图嵌入的兵棋联合作战态势实体知识表示方法,为大规模联合作战态势知识的获取㊁融合㊁推理奠定基础㊂胡志磊等[23]围绕以事件为核心的事件图谱,对其构建与应用的相关模型和方法进行总结㊂对其中包含的事件提取㊁事件关系推断以及事件预测等技术进行分析,并给出事件图谱具体的应用场景㊂3 3㊀面向仿真推演的事件提取方法应用分析模拟对抗演习时,推演数据急速增长,如何从这些海量㊁低密度㊁结构多样的信息中提取出关键事件逐渐受到重视㊂通过对推演数据进行事件提取,并以军事知识图谱㊁作战过程描述㊁作战行动脉络等形式展现,可以用来支持信息检索㊁自动问答㊁情报分析㊁知识推荐等活动,辅助导演部更好地对演习进行复盘评估,实施总结讲评,从而让指挥员更清楚地了解作战要素及演习过程,更有效地总结经验教训或者实施指挥决策,具体应用框架如图3所示㊂图3㊀面向辅助演习讲评的事件提取方法应用框架1)作战过程分析与描述如何从海量的计算机演习数据中筛选出影响演习进程或者作战结果的关键事件,对于分析评估整个作战过程至关重要㊂演习过程中,指挥员通常会根据作战任务和态势变化下达大量演习指令,形成众多的作战行动,产生不同的行动效果㊂这些作战行动中往往会包含一些影响战役进程或战略全局的重要事件,通过对这些重要事件进行提取和梳理不仅有助于描述作战过程,帮助指挥员聚焦关键行动,减少冗余信息的干扰,甚至可以进一步探寻联合作战中一些隐藏的规律㊂2)军事知识图谱的构建知识图谱(KnowledgeGraph)是一种描述实体及其关系的语义网络,它提供对领域知识的可视化表示方法㊂军事知识图谱是各类作战实体及其关系的可视化呈现,通过构建军事知识图谱,将散乱㊁无序的战场数据整合在一起,可以提供作战要素㊁行动㊁效果以及关系等的查询与相关知识的推荐,为军事数据智能化分析提供有力支撑㊂事件提取作为军事知识图谱构建的基本方法之一,将对运用军事知识图谱研究作战过程中的事件及其关系建模等问题提供强有力的手段㊂3)作战行动脉络分析元事件粒度相对较小,通过其看问题往往比较片面,仅仅对其进行信息提取无法令人清晰地认识整个. All Rights Reserved.126㊀吴㊀蕾,等:事件提取方法在军事领域的应用趋势第43卷事件过程㊂未来军事领域中,事件提取方法重要的一个应用趋势就是作战行动脉络分析㊂作战行动脉络作为一种特定的事件脉络,它通常是演习中指挥员关注的重点㊂面向演习讲评或者指挥决策需求时,导演部和指挥员更需要通过获取行动事件发生的原因㊁经过和结果等信息以及行动之间的层次关系㊁因果关系等来了解整个战役行动的脉络,掌握整个战役的发展过程,从而通过对多个行动及其之间关系的有序集合,完整㊁清晰地呈现整个战役的发展过程,真实再现重要作战行动的来龙去脉㊂3 4㊀事件提取方法在军事领域的应用趋势利用事件提取方法对海量异构的军事数据进行分析与挖掘,能够大幅提高军事大数据的综合利用能力㊂随着人工智能技术的发展,事件提取方法在军事领域中的应用将呈现以下趋势㊂1)关注事件溯源以及趋势研判现代战争,军事行动多样,作战样式复杂,涉及要素众多,如何从多源㊁无序㊁复杂的海量数据中发现关键军事事件并对其来源以及意图趋势进行分析研判,对辅助指挥员准确判断敌情㊁正确指挥决策极为重要㊂事件提取方法作为情报分析与态势研判的基础,能够为指挥员从杂乱无章的数据中发现关键军事事件,并进行因果关系研判提供基本手段㊂通过对事件溯源和趋势分析,对弱关联事件进行数据挖掘,可以将军事行动的整个过程以及行动间的关系清晰地展现出来,为指挥员决策提供依据㊂2)聚焦特定任务知识图谱目前,军事知识图谱已发展得较为成熟,但其建设与应用仍存在较大局限㊂随着军事智能化要求的提高,军事知识图谱将进一步细化到各分支的业务领域㊂今后,面向特定作战任务的知识图谱以及侧重于复杂事件及其关系建模的知识图谱,将越来越受到关注㊂因此,针对不同的军事任务,需要从实际应用角度出发,考虑具体的应用背景和知识框架,界定出合理的知识粒度,才能更好地实现面向特定任务知识图谱的事件提取㊂3)重视面向事件的语料库构建目前,高质量数据集缺失或不足问题,使事件提取在军事领域的应用仍有较大局限㊂尤其深度学习方法对数据质量和数量要求很高,需要大量不同实例的数据集作为训练样本数据,数据量达不到一定规模将难以开展基于深度学习的事件提取研究㊂而当前军事领域面向事件提取的语料库并不丰富,成为制约军事领域事件提取方法研究的瓶颈㊂因此,未来将重视军事领域语料库的扩建,解决相关领域语料缺乏的问题㊂4㊀结束语本文梳理了事件的概念㊁事件提取的发展历程,对元事件和主题事件的提取方法分别进行归纳和分析,并结合事件提取在军事领域研究现状和技术发展,指出了事件提取方法在军事领域今后可能的应用趋势,为下一步事件提取工作的开展和研究提供参考㊂参考文献:[1]㊀AllanJ,PapkaR,LavrenkoV.On⁃lineNewEventDe⁃tectionandTracking[C]ʊProceedingsofthe21stAnnualInternationalACMSIGIRConferenceonResearchandDe⁃velopmentinInformationRetrieval,1998:37⁃45.[2]㊀YangY,CarbonellJG,BrownRD,etal.LearningAp⁃proachesforDetectingandTrackingNewsEvents[J].IEEEIntelligentSystemsSpecialIssueonApplicationsofIntelligentInformationRetrieval,1999,14(4):32⁃43.[3]㊀杨竣辉.文本事件关系抽取中关键技术研究及应用[D].上海:上海大学,2019.[4]㊀王伟玉,史存会,俞晓明,等.一种事件粒度的抽取式话题简短表示生成方法[J].山东大学学报,2021,56(5):66⁃75.[5]㊀NguyenTH,ChoK,GrishmanR.JointEventExtractionviaRecurrentNeuralNetworks[C]ʊConferenceoftheNorthAmericanChapteroftheAssociationforComputa⁃tionalLinguistics:HumanLanguageTechnologies,2016:300⁃309.[6]㊀ChenYubo,XuLiheng,LiuKang,etal.EventExtractionviaDynamicMulti⁃PoolingConvolutionalNeuralNetworks[C]ʊAssociationforComputationalLin⁃guistics,2015:167⁃176.[7]㊀许荣华,吴刚,李培峰,等.基于事件框架的主题事件融合研究[J].计算机应用研究,2009,26(12):4542⁃4544.[8]㊀赵文娟,刘忠宝.基于汉语框架的网络事件抽取及相关算法研究[J].情报理论与实践,2016,39(10):112⁃116.[9]㊀张一帆,郭勇,李坤伟,等.一种突发事件领域本体建模方法[J].信息系统工程,2020,1(5):134⁃136.[10]吴奇.基于领域本体的Web实体事件抽取问题研究[D].济南:山东大学,2014.[11]沈大川.战场关键事件提取技术研究[J].计算机技术与发展,2009,19(11):202⁃205,209.[12]宋仁亮,戴兆乐.战场关键事件提取与告警方法[J].软件工程,2016,19(10):1⁃3.[13]付雨萌,程瑾,罗准辰,等.基于本体的军事活动事件知识建模研究[J].中华医学图书情报杂志,2020,29(3):47⁃52.[14]游飞.基于深度学习的军事事件抽取研究[D].南京:华. All Rights Reserved.第6期指挥控制与仿真127㊀东计算技术研究所,2018.[15]王学峰,杨若鹏,李雯.基于深度学习的作战文书事件抽取方法[J].信息工程大学学报,2019,20(5):635⁃640.[16]邢萌,杨朝红,毕建权.军事领域知识图谱的构建及应用[J].指挥控制与仿真,2020,42(4):1⁃7.[17]吴云超,毛少杰,周芳.面向仿真推演的领域知识图谱构建技术[J].指挥信息系统与技术,2019,10(3):32⁃36.[18]车金立,唐力伟,邓士杰,等.装备维修保障知识图谱构建方法研究[J].兵工自动化,2019,38(1):15⁃19.[19]张进,徐宁骏,赵伟光,等.基于智能客服技术的武器系统故障诊断方法[J].指挥控制与仿真,2020,42(4):123⁃127.[20]陈辞.基于知识图谱的军事知识演化技术研究[J].舰船电子工程,2019,39(6):22⁃27.[21]王保魁,吴琳,胡晓峰,等.基于知识图谱的联合作战态势实体描述方法[J].指挥控制与仿真,2020,42(3):8⁃13.[22]王保魁,吴琳,李丽,等.基于图嵌入的兵棋联合作战态势实体知识表示学习方法[J].指挥控制与仿真,2020,42(6):22⁃28.[23]胡志磊,靳小龙,陈剑赟,等.事件图谱的构建㊁推理与应用[J].大数据,2021,7(3):80⁃96.(责任编辑:张培培). All Rights Reserved.。
Maximum Entropy Markov Modelsfor Information Extraction and SegmentationAndrew McCallum MCCALLUM@ Dayne Freitag DAYNE@ Just Research,4616Henry Street,Pittsburgh,PA15213USAFernando Pereira PEREIRA@ AT&T Labs-Research,180Park Ave,Florham Park,NJ07932USAAbstractHidden Markov models(HMMs)are a powerfulprobabilistic tool for modeling sequential data,and have been applied with success to manytext-related tasks,such as part-of-speech tagging,text segmentation and information extraction.Inthese cases,the observations are usually mod-eled as multinomial distributions over a discretevocabulary,and the HMM parameters are setto maximize the likelihood of the observations.This paper presents a new Markovian sequencemodel,closely related to HMMs,that allows ob-servations to be represented as arbitrary overlap-ping features(such as word,capitalization,for-matting,part-of-speech),and defines the condi-tional probability of state sequences given ob-servation sequences.It does this by using themaximum entropy framework tofit a set of expo-nential models that represent the probability of astate given an observation and the previous state.We present positive experimental results on thesegmentation of FAQ’s.1.IntroductionThe large volume of text available on the Internet is caus-ing an increasing interest in algorithms that can automati-cally process and mine information from this text.Hidden Markov models(HMMs)are a powerful tool for represent-ing sequential data,and have been applied with significant success to many text-related tasks,including part-of-speech tagging(Kupiec,1992),text segmentation and event track-ing(Yamron,Carp,Gillick,Lowe,&van Mulbregt,1998), named entity recognition(Bikel,Schwartz,&Weischedel, 1999)and information extraction(Leek,1997;Freitag& McCallum,1999).HMMs are probabilisticfinite state models with parameters for state-transition probabilities and state-specific observa-tion probabilities.Greatly contributing to their popularity is the availability of straightforward procedures for train-ing by maximum likelihood(Baum-Welch)and for using the trained models tofind the most likely hidden state se-quence corresponding to an observation sequence(Viterbi). In text-related tasks,the observation probabilities are typ-ically represented as a multinomial distribution over a dis-crete,finite vocabulary of words,and Baum-Welch training is used to learn parameters that maximize the probability of the observation sequences in the training data.There are two problems with this traditional approach. First,many tasks would benefit from a richer representa-tion of observations—in particular a representation that de-scribes observations in terms of many overlapping features, such as capitalization,word endings,part-of-speech,for-matting,position on the page,and node memberships in WordNet,in addition to the traditional word identity.For example,when trying to extract previously unseen com-pany names from a newswire article,the identity of a word alone is not very predictive;however,knowing that the word is capitalized,that is a noun,that it is used in an appositive,and that it appears near the top of the article would all be quite predictive(in conjunction with the con-text provided by the state-transition structure).Note that these features are not independent of each other. Furthermore,in some applications the set of all possible observations is not reasonably enumerable.For example, it may beneficial for the observations to be whole lines of text.It would be unreasonable to build a multinomial distri-bution with as many dimensions as there are possible lines of text.Consider the task of segmenting the questions and answers of a frequently asked questions list(FAQ).The fea-tures that are indicative of the segmentation are not just the individual words themselves,but features of the line as a whole,such as the line length,indentation,total amount of whitespace,percentage of non-alphabetic characters,andgrammatical features.We would like the observations to be parameterized with these overlapping features.The second problem with the traditional approach is that it sets the HMM parameters to maximize the likelihood of the observation sequence;however,in most text applica-tions,including all those listed above,the task is to predict the state sequence given the observation sequence.In other words,the traditional approach inappropriately uses a gen-erative joint model in order to solve a conditional problem in which the observations are given.This paper introduces maximum entropy Markov models (MEMMs),which address both of these concerns.To al-low for non-independent,dif ficult to enumerate observa-tion features,we move away from the generative,joint probability parameterization of HMMs to a conditional model that represents the probability of reaching a state given an observation and the previous state.These con-ditional probabilities are speci fied by exponential models based on arbitrary observation features.The exponen-tial models follow from a maximum entropy argument,and are trained by generalized iterative scaling (GIS)(Darroch &Ratcliff,1972),which is similar in form and compu-tational cost to the expectation-maximization (EM)algo-rithm (Dempster,Laird,&Rubin,1977).The “three classic problems”(Rabiner,1989)of HMMs can all be straightfor-wardly solved in this new model with new variants of the forward-backward,Viterbi and Baum-Welch algorithms.The remainder of the paper describes our alternative model in detail,explains how to fit the parameters using GIS,(for both known and unknown state sequences),and presents the variant of the forward-backward procedure,out of which solutions to the “classic problems”follow naturally.We also give experimental results for the problem of ex-tracting the question-answer pairs in lists of frequently asked questions (FAQs),showing that our model increases both precision and recall,the former by a factor of two.2.Maximum-Entropy Markov ModelsA hidden Markov model (HMM)is a finite state automaton with stochastic state transitions and observations (Rabiner,1989).The automaton models a probabilistic generative process whereby a sequence of observations is produced by starting in some state,emitting an observation selected by that state,transitioning to a new state,emitting another observation—and so on until a designated final state is reached.More formally,the HMM is given by a finite set ofstates ,a set of possibleobservations ,two conditional probability distributions:a state transition probabilityfromto,for and an observation probabilityStates as well as observations could be represented by fea-tures,but we will defer the discussion of that re finement tolater.(a)(b).Figure 1.(a)The dependency graph for a traditional HMM;(b)for our conditional maximum entropy Markov model.distribution,for ,and an initial statedistribution.A run of the HMM pairs an observationsequence with a statesequence .In text-based tasks,the set of possible observations is typically a finite character set or vocabulary.In a supervised task,such as information extraction,there isa sequence oflabels attached to each training ob-servationsequence .Given a novel observation,the objective is to recover the most likely label sequence.Typically,this is done with models that associate one or more states with each possible label.If there is a one-to-one mapping between labels and states,the sequence of states is known for any training instance;otherwise,the state se-quence must be estimated.To label an unlabeled observa-tion sequence,the Viterbi path is calculated,and the labels associated with that path are returned.2.1The New ModelAs an alternative to HMMs,we propose maximum entropy Markov models (MEMMs),in which the HMM transition and observation functions are replaced by a singlefunctionthat provides the probability of the currentstategiven the previousstate and the currentobservation .In this model,as in most applications of HMMs,the ob-servations are given —re flecting the fact that we don’t actu-ally care about their probability,only the probability of the state sequence (and hence label sequence)they induce.In contrast to HMMs,in which the current observation only depends on the current state,the current observation in an MEMM may also depend on the previous state.It can then be helpful to think of the observations as being associated with state transitions rather than with states.That is,the model is in the form of probabilistic finite-state acceptor(Paz,1971),inwhichis the probability of the transition fromstate tostate oninput .In what follows,we willsplitinto separately trained transitionfunctions .Each of these functions is given by an exponential model,as de-scribed later in Section 2.3.Next we discuss how to solve the state estimation problem in the new framework.2.2State Estimation from ObservationsDespite the differences between the new model and HMMs,there is still an ef ficient dynamic programming so-lution the classic problem of identifying the most likely state sequence given an observation sequence.The Viterbi algorithm for HMMs fills in a dynamic programming ta-ble with forwardprobabilities,de fined as the prob-ability of producing the observation sequence up to time and being instate at time .The recursive Viterbi stepis.In the new model,we rede fine to be the probability of being instate at time given the observation sequence up to time .The recursive Viterbi step isthen(1)The corresponding backwardprobability (used for Baum-Welch,which is discussed later)is the probabil-ity of starting fromstate at time given the observa-tion sequence after time .Its recursive step issimply.Space limitations pre-vent a full description here of Viterbi and Baum-Welch;see Rabiner (1989)for an excellent tutorial.2.3An Exponential Model for TransitionsThe use of state-observation transition functions rather than the separate transition and observation functions in HMMs allows us to model transitions in terms of multiple,non-independent features of observations,which we believe to be the most valuable contribution of the present work.To do this,we turn to exponential models fit by maximum en-tropy.Maximum entropy is a framework for estimating probabil-ity distributions from data.It is based on the principle that the best model for the data is the one that is consistent with certain constraints derived from the training data,but other-wise makes the fewest possible assumptions.In our prob-abilistic framework,the distribution with the “fewest pos-sible assumptions”is that which is closest to the uniform distribution,that is,the one with the highest entropy.Each constraint expresses some characteristic of the train-ing data that should also be present in the learned distribu-tion.Our constraints will be basedon binary features.Examples of such features might be “the observation is the word apple ”or “the observation is a capitalized word”or,if the observations are whole lines of text at time,“the ob-servation is a line of text that has two noun phrases.”As in other conditional maximum entropy models,features doWe use binary features in this paper,but the maximum en-tropy framework can in general handle real-valued features.not depend only on the observation but also on the outcome predicted by the function being modeled.Here,that func-tion isthe -spec fic transitionfunction,and the outcome is the new currentstate .Thus,eachfeature gives afunction of two arguments,a current obser-vation and a possible new currentstate .In this paper,eachsuch is apair,where is a binary feature of the observation aloneand is a destina-tionstate:if is trueand otherwise(2)The algorithm description that follows can be expressed in terms of the genericfeature without reference to this par-ticular feature decomposition.Furthermore,we will sug-gest later that more general features may be useful.The constraints we apply are that the expected value of each feature in the learned distribution be the same as its averageon the training observationsequence (with corre-sponding statesequence ).Formally,for each pre-viousstate andfeature ,the transitionfunction must have the propertythat(3)whereare the time stepswith ,i.e.,the time steps that involve the transitionfunction.The maximum entropy distribution that satis fies those con-straints (Della Pietra,Della Pietra,&Lafferty,1997)is unique,agrees with the maximum-likelihood distribution and has the exponentialform:(4)wherethe are parameters to be learnedand is the normalizing factor that makes the distribution sum to one across all nextstates .2.4Parameter Estimation by Generalized IterativeScaling GIS (Darroch &Ratcliff,1972)finds iterativelythe val-ues that form the maximum entropy solution for each tran-sition function (Eq.4).It requires that the values of thefeatures sum to the same (arbitrary)constantfor eachcontext .If this is not already true,we make it true by adding a new ordinal-valued “correction”feature ,where,suchthatandis chosen to be large enoughthat foralland .Inputs:An observationsequence,a correspond-ing sequence oflabels,a certain number of states,each with a label,and potentially having a restricted transi-tion structure.Also,a set of observation-statefeatures.Determine the state sequence associated withthe observation-label sequence.(When this is ambiguous,it can be determined probabilistically by iterating the nexttwo steps withEM).Deposit state-observationpairs into their correspond-ing previous states as training data for each state’s transi-tionfunction.Find the maximium entropy solution for each state’s dis-criminative function by runningGIS.Output:A maximum-entropy-based Markov model thattakes an unlabeled sequence of observations and predictstheir corresponding labels.Table1.An outline of the algorithm for estimating the parametersof a Maximum-Entropy Markov model.The application of GIS to learning the transitionfunctionforstate consists of the following steps:1.Calculate the training data average of eachfeature.2.Start iteration0of GIS with some arbitrary parametervalues,say.3.Atiteration,use thecurrent valuesin(Eq.4)to calculate the expected value of eachfeature:.4.Make a step towards satisfying the constraints bychangingeach to bring the expected value of eachfeature closer to corresponding training dataaverage:5.Until convergence is reached,return to step3.To summarize the overall MEMM training procedure,wefirst split the training data into the events—observation-destination state pairs—relevant to the transitions fromeachstate.(Let us assume for the moment that,giventhe labels in the training sequence,the state sequence isunambiguously known.)We then apply GIS using the fea-ture statistics for the events assigned toeach in order toinduce the transitionfunctionfor.The set of thesefunctions defines the desired maximum-entropy Markovmodel.Table2.4contains an overview of the maximumentropy Markov model training algorithm.2.5Parameter Estimation with Unknown StateThe procedure described above assumes that the state se-quence of the training observation sequence is known;thatis,the states have to be predicted at test time but not train-ing time.Often,it is useful to be able to train when thestate sequence is not known.For example,there may bemore than one state with the same label,and for a givenlabel sequence it may be ambiguous which state producedwhich label instance.We can use a variant of the Baum-Welch algorithm for this.The E-step calculates state occupancies using the forward-backward algorithm with the current transition functions.The M-step uses the GIS procedure with feature frequen-cies based on the E-step state occupancies to compute newtransition functions.This will maximize the likelihood ofthe label sequence given the observations.Note that GISdoes not have to be run to convergence in each M-step;not doing so would make this an example of GeneralizedExpectation-Maximization(GEM),which is also guaran-teed to converge to a local maximum.Notice also that the same Baum-Welch variant can beused with unlabeled or partially labeled training sequenceswhere,not only is the state unknown,but the label itselfis missing.These models could be trained with a combina-tion of labeled and unlabeled data,which is often extremelyhelpful when labeled data is sparse.2.6VariationsWe have thus far described one particular method for max-imum entropy Markov models,but there are several otherpossibilities.Factored state representation.One difficulty that MEMMs share with HMMs is that thereare transition parameters,making data sparsenessa serious problem as the number of states increases.Recallthat in our model observations are associated with transi-tions instead of states.This has advantages for expressivepower,but comes at the cost of having many more param-eters.For HMMs and related graphical models,tied pa-rameters and factored state representations(Ghahramani&Jordan,1996;Kanazawa,Koller,&Russell,1995)havebeen used to alleviate this difficulty.We can achieve a similar effect in MEMMs by not split-tinginto differentfunctions.Insteadwe would use a distributed representation for the previousstate as a collection of features with weights set by max-imum entropy,just as we have done for the observations.For example,state features might include“we have alreadyconsumed the start-time extractionfield,”“we haven’t yetexited the preamble of the document,”“the subject of theprevious sentence is female”or “the last paragraph was an answer.”One could also have second-order features link-ing observation and state features.With such a representa-tion,information would be shared among different source states,reducing the number of parameters and thus improv-ing generalization.Furthermore,this proposal does not re-quire the dif ficult step of hand-crafting a parameter-tying scheme or graphical model for the state transition function as is required in HMMs and other graphical models.Observations in states instead of transitions.Rather than combining the transition and emission param-eters in a single function,the transition probabilities couldbe represented as a traditionalmultinomial,,and the in fluence of theobservations could be repre-sented by a maximum-entropyexponential:(5)This method of “correcting”a simple multinomial or prior by adding extra features with maximum entropy has been used previously in various statistical language modeling problems.These include the combination of traditional tri-grams with “trigger word”features (Rosenfeld,1994)and the combination of arbitrary features of sentences with tri-gram models (Chen &Rosenfeld,1999).Note here that the observation and the previous state are treated as independent evidence for the current state.This approach would put the observations back in the states in-stead of the transitions.It would reduce the number of pa-rameters,and thus might be useful when training data is especially sparse.An Environmental Model for Reinforcement Learning.The transition function can also include anaction,,re-sultingin—a model suitable for representing the envinronment of a reinforcement agent.The depen-dency on the action could be modeled either with separate functions for each action,or with a factored represention of actions in terms of arbitrary overlapping features,such as “steer left,”“beep,”and “raise arm.”Certain particular ac-tions,states and observations with strong interactions can be modeled as features that represent their conjunction.3.Experimental ResultsWe tested our method on a collection of 38files belonging to 7Usenet multi-part FAQs downloaded from the Internet.All documents in this data set are organized according to the same basic structure:each contains a header,whichSee/mccallum/faqdata.Table 2.Excerpt from a labeled FAQ.Lines have been truncatedfor reasons of space.The tags at the beginnings of lines were inserted manually.<head>X-NNTP-Poster:NewsHound v1.33<head><head>Archive-name:acorn/faq/part2<head>Frequency:monthly <head><question>2.6)What configuration of serial cable should I use <answer><answer>Here follows a diagram of the necessary connections <answer>programs to work properly.They are as far as I know t <answer>agreed upon by commercial comms software developers fo <answer><answer>Pins 1,4,and 8must be connected together inside <answer>is to avoid the well known serial port chip bugs.TheTable 3.Line-based features used in these experiments.begins-with-number contains-question-mark begins-with-ordinalcontains-question-word begins-with-punctuation ends-with-question-mark begins-with-question-word first-alpha-is-capitalized begins-with-subject indentedblankindented-1-to-4contains-alphanumindented-5-to-10contains-bracketed-number more-than-one-third-space contains-httponly-punctuation contains-non-space prev-is-blankcontains-number prev-begins-with-ordinal contains-pipeshorter-than-30includes text in Usenet header format and occasionally a preamble or table of contents;a series of one or more ques-tion/answer pairs;and a tail,which typically includes items such as copyright notices and acknowledgments,and var-ious artifacts re flecting the origin of the document.There are also some formatting regularities,such as indentation,numbered questions and styles of paragraph breaks.The multiple documents belonging to a single FAQ are format-ted in a consistent manner,but there is considerable varia-tion between different FAQs.We labeled each line in this document collection into one of four categories,according to its role in the document:head ,question ,answer ,tail ,corresponding to the parts of docu-ments described in the previous paragraph.Table 2shows an excerpt from a labeled FAQ.The object of the task is to recover these labels.This excerpt demonstrates the dif-ficulty of recovering line classi fications by only looking at the tokens that occur in the line.In particular,the numerals in the answer might easily confuse a token-based classi fier.We de fined 24Boolean features of lines,shown in Table 3,which we believed would be useful in determining the class of a line.No effort was made to control statistical depen-dence between pairs of features.Although the set contains a few feature pairs which are mutually disjoint,the features represent partitions of the data that overlap to varying de-grees.Note also that the usefulness of a particular feature,such as indented ,depends on the formatting conventions of a particular FAQ.The results presented in this section are meant to answer the question of how well can a MEMM trained on a single manually labeled document label novel documents format-ted according to the same conventions.Our experiments treat each group of documents belonging to the same FAQ as a separate dataset.We train a model on a single doc-ument in such a group and test it on the remaining docu-ments in the group.In other words,we perform“leave--minus--out”evaluation.Each groupof documentsyields results.Scores are the average performance across all FAQs in the collection.Given a sequence of lines (a test document)and a MEMM we use the Viterbi algorithm to compute the most likely state sequence.We consider three metrics in evaluating the predicted sequences.The first is the co-occurrence agree-ment probability (COAP),proposed by Beeferman,Berger,and Lafferty(1999):actpredactpredwhere is a probability distribution over the set of distances betweenlines;act is 1if linesand are in the same actual segment,and 0otherwise;pred is a similar indicator function for the predicted segmenta-tion;and is the XNOR function.This metric gives the empirical probability that the actual and predicted segmen-tations agree on the placement of two lines drawn accord-ingto.In computing the COAP we de fine a segment to be any unbroken sequence of lines with the same label.In Beeferman et al.(1999),is an exponential distribution dependingon ,a parameter calculated on features of the dataset,such as average document length.For simplicity,weset to a uniform distribution of width 10.In other words,our COAP measures the probability that any two lines within 10lines of each other are placed correctly by the predicted segmentation.In constrast with the COAP,(which re flects the probabil-ity that segment boundaries are properly identi fied by the learner,but ignores the labels assigned to the segments themselves),the other two metrics only count as correct those predicted segments that have the right labels.A seg-ment is counted as correct if it has the same boundaries and label (e.g.,question )as an actual segment.The segmen-tation precision (SP)is the number of correctly identi fied segments divided by the number of segments predicted.The segmentation recall (SR)is the number of correctly identi fied segments divided by the number of actual seg-ments.We tested four different models on this dataset:Table 4.Co-occurrence agreement probability (COAP),segmen-tation precision (SegPrec)and segmentation recall (SegRecall)of four learners on the FAQ dataset.All these averages have 95%con fidence intervals of 0.01or less.LearnerCOAP SegPrec SegRecall ME-Stateless 0.5200.0380.362TokenHMM 0.8650.2760.140FeatureHMM 0.9410.4130.529MEMM 0.9650.8670.681ME-Stateless:A single maximum entropy classi fier trained on and applied to each line independently,us-ing the 24features shown in Table 3.ME-Stateless can be considered typical of any approach that treats lines in isolation from theircontext.TokenHMM:A traditional,fully connected HMM with four states,one for each of the line categories.The states in the HMM emit individual tokens (groups of alphanumeric characters and individual punctuation characters).The observation distribution at a given state is a smoothed multinomial over possible tokens.The label assigned to a line is that assigned to the state responsible for emitting the tokens in the line.In computing a state sequence for a document,the model is allowed to switch states only at line bound-aries,thereby ensuring that all tokens in a line share the same label.This model was used in previous work on information extraction with HMMs (e.g.Freitag &McCallum,1999).FeatureHMM:Identical to TokenHMM ,only the lines in a document are first converted to sequences of features from Table 3.For every feature that tests true for a line,a unique symbol is inserted into the corre-sponding line in the converted document.The HMM is trained to emit these symbols.Notice that the emis-sion model for each state is in this case a na¨ıve Bayesmodel.MEMM:The maximum entropy Markov model de-scribed in this paper.As in the other HMMs,the model contains four labeled states and is fully con-nected.Note that because training is fully supervised,the sequence of states a training document passes through is unambigu-ous.Consequently,training does not involve Baum-Welch reestimation.Table 4shows the performance of the four models on FAQ data.It is clear from the table that MEMM is the best of the methods tested.What is more,the results support two claims that underpin our research into this problem.First,。