当前位置:文档之家› 反硝化除磷系统稳定运行性能研究

反硝化除磷系统稳定运行性能研究

反硝化除磷系统稳定运行性能研究
反硝化除磷系统稳定运行性能研究

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺 1 引言 氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害。然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污(废)水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物 降解,大部分的可溶性含碳有机物被去除。同时产生N NH -3、N NO --3和- 34PO 和-24 SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准。因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要。 2 生物脱氮除磷机理 2.1 生物脱氮机理 污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝 态氮,即,将3NH 转化为N NO --2和N NO --3。在缺氧条件下通过反硝化作用将硝氮转 化为氮气,即,将N NO -- 2(经反亚硝化)和N NO --3(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的[1]。 ○ 1硝化——短程硝化:O H HNO O NH 22235.1+→+ 硝化——全程硝化(亚硝化+硝化):O H HNO O NH 22235.1+???→?+亚硝酸菌 3225.0HNO HNO O ??→?+硝酸菌 ○ 2反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+ 反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+ ][35.122233H O H N HNO NH ++→+

电厂热控自动化系统运行的稳定性研究

电厂热控自动化系统运行的稳定性研究 发表时间:2018-05-31T09:51:11.717Z 来源:《基层建设》2018年第9期作者:王伟1 李永超2 [导读] 摘要:在电厂热控自动化系统运行的过程中,最重要的就是提高系统的稳定性和安全性。 1东北电力设计院有限公司长春 130021;2北京ABB贝利工程有限公司北京 10010 摘要:在电厂热控自动化系统运行的过程中,最重要的就是提高系统的稳定性和安全性。企业可以通过先进技术的应用,提高系统的性能。企业制定完善的管理制度,加强对系统的管理工作,促进工作更加高效进行,满足社会生产的需要。 关键词:电厂热控自动化系统;运行;稳定性 引言 热控自动化系统的重要性随着国家对电力需求的增加逐渐表现出来,因此我们必须将热控自动化系统的稳定性研究提到重要的高度上来,这就需要我们在对电厂热控自动化系统进行分析时,从起自身特点出发,理性地对待存在的问题。虽然目前电厂热控自动化系统应用技术在我国基本得到完善,但仍旧需要厂家从实际生产状况出发,对出现的问题进行解决,以期达到电厂生稳定生产的目的。 1热控自动化技术 为了适应社会发展的需要,电力企业逐渐将更多的机械系统组合在一起运行,并且机组的容量也有了很大的扩增,对于热控自动化系统的要求也越来越高。目前,电力企业需要做的就是提高热控自动化技术,并且对于热控自动化系统的工作要有严格的要求,提高热控自动化系统的稳定性,保证工作的高效进行。在提高热控自动化系统的性能的同时,也要注意降低系统工作所带来的环境问题,降低系统工作的耗能,实现环境与生产的同步发展。在技术发展的同时,可以利用语言技术来控制系统,从而提高电厂的工作效率和自动化水平。系统工作的稳定性与温度是有关系的,可以通过对温度变化的有效研究,确保热控自动化系统的稳定性。 2电厂热控自动化系统的构成 2.1分散控制系统 分散控制系统通过控制接口、网间通信接口、运行操作接口、开发维护接口来实现系统的分散控制和集中操作,然后分散控制系统再和通信网络相结合,就构成了过程控制系统。模块是过程控制系统中的重要组成部分,可以灵活、合理地对系统进行控制,从而提高系统的工作效率。 2.2辅助控制系统 辅助控制系统是可以在无人控制的模式下进行操作的,对于电厂热控自动化系统的工作发挥着很大的作用。辅助控制系统在工作过程中,可以利用编程控制器设置自动控制指令,系统就可以在数据接口和交换机的作用下稳定运行,从而达到对生产效率的提高。对于传输中的综合数据,在辅助控制系统的集中控制和中央控制室技术的应用下,可以让自动化系统在无人控制的情况下,也达到很好的效果。 2.3实时监控系统 实时监控系统主要是对系统工作过程中工作情况的监控,当系统出现问题时,实时监控系统就可以及时发现问题,可以使问题及时得到解决,减少工作过程中的损失。实时监控系统,对工作过程的监督是动态监督,监控系统一旦发现问题,就会通过厂级实时监控系统和信息管理系统发出警报,以便问题得到有效解决。而且这个系统,还可以实现共享数据资源和互通数据。 2.4视频网络监控系统 视频网络监控系统是电厂热控自动化系统工作的关键,可以帮助实现更好的监控。通过对通信接口和辅助系统的有机结合,可以达到对电厂运行情况进行实时监控的目的,而且也可以对系统的工作程序进行有效监控。在系统工作无人值班的情况下,视频网络监控系统就发挥了极大的作用和更加高效的监控,为系统的稳定工作提供了保障。视频网络监控系统还可以帮助检查系统操作工作的进行,减少工作过程中的失误。 3电厂热控自动化系统运行的问题 3.1热控元件故障 其实我们可以把热控元件故障看做元件信号失真。我们可以设想一下,假如出现问题的元件是FSSS或是ETS,那么就会产生生产系统直接跳闸的现象,如果更严重的话设备可能直接报废,这样就会给电厂造成无法估计的损失。笔者在进行大量的数据分析后得出导致热控元件出现故障的原因不止一个,电厂生产环境的特殊是其中最为主要的因素,热控元件在管理不及时的情况下会受到设备服务时间因素、环境因素、元件安装等因素影响,这时就会出现运行故障。所以要想防止热控元件故障的发生,就要重视相关的影响因素并在此基础上进行分析探讨,找到相应的解决办法。 3.2系统逻辑故障 新投入设备一般会产生系统逻辑故障的问题,其根本原因应是新投入的设备运行时间比较短,容易因为尚不健全的逻辑设计而导致整个系统发生故障,发生的故障主要表现为设备会出现判断失误、信号错误和出现错误动作等。所以人们通常会对新投入工作的机组进行多次的运行操作,在操作过程中一旦出现关于系统逻辑缺陷的问题,工作人员就可以在设备投入正常的使用之前进行解决。因此,新投入的设备在试运行阶段时,工作人员需要对其进行细致的分析,总结设备出现的问题类型,并依据试运行出现的问题确定相关的解决方案,将设备存在的不足之处逐渐进行完善。 4优化电厂热控自动化系统稳定性的措施 4.1优化系统控制单元设计 想要从根本上提高DCS系统运行的智能化和灵敏性,达到完善系统监控能力的目的就必须优化设计热控系统控制单元DCS系统,使单元控制朝着稳定性和智能性方向发展。也就需要电厂员工广泛应用各类新型技术,规划好与电子科技和计算机之间的复杂关系,改进落后的技术体系,进而实现高水平、现代化分散控制系统的目标。与此同时,还要优化处理自动控制过程,以达到增强整个系统抗干扰能力的目的。 4.2完善自动控制过程控制软件的相关功能 在进行设计自动化控制程序模块时,把控制指标以及控制范围进行完善,就能够提高系统的抗干扰性,除此以外也要注重优化自动控制工程软件,这样就利于实现系统运行的全程监控。重视系统监控作用的发挥,将监控软件落实于每一个过程,增强对系统运行监控的关

反硝化小结

A2N反硝化除磷: A2N(Anaerobic /Anoxic /Nitrification) 连续流反硝化除磷脱氮工艺是基于特殊的反硝化聚磷菌(Denitrifying Phosphate Removal Bacteria, 简称DPB) 缺氧吸磷的理论而开发的新工艺, 是采用生物膜法和活性污泥法相结合的双污泥系统。与传统的生物除磷脱氮工艺相比较, A2N 工艺具有“一碳两用”、节省曝气和回流所耗费的能源、污泥产量低以及各种不同菌群各自分开培养的优点 1.基本原理: 厌氧区:DPB吸收VFA转化为PHA(PHB PHV影响)作为缺氧段反硝化吸磷的电子供体, 并将体内聚磷酸分解为磷酸盐。 挥发酸是通过主动运输进入细胞,且糖原经过ED?EMP途径提 供还原力,多聚磷酸盐水解提供ATP和释放磷酸盐于体外,最终产生PHA。

主要影响因素:硝酸盐影响?(硝酸盐存在,会使普通反硝化细菌优先使用COD作电子供体进行反硝化,影响DPB合成PHA)HRT长:充分吸收COD合成PHA,为缺氧段反硝化除磷提供电子供体;HRT 过长造成无效释磷(无有机物吸附也无PHA合成),造成总的吸磷效率下降。大部分COD进入硝化段被微生物好氧降解, 硝化段由于好氧异养菌的过量繁殖, 影响了硝化效果。硝化段去除的大量COD既不利于系统的脱氮, 也不利于除磷。尽量缩短HRT,提高处理效率。 丙酸为碳源时,PAO将吸收丙酸转化为聚3 - 羟基戊酸盐( PHV)和聚3 - 羟基- 2 - 甲基戊酸盐( PH2MV)。乙酸为碳源时,PAO 将吸收乙酸转化为PHB.(影响)

生物膜硝化段:(自养硝化细菌:厌氧段COD/N比不宜过高)氨氮的氧化,为缺氧吸磷提供电子受体。 主要影响因素:生物膜段存在微缺氧环境(DO:4 mg/L过高影响反硝化,脱氮效果降低;过低影响硝化,出水氨氮增加,甚至影响反硝化除磷),形成同步硝化反硝化,有利于脱氮,保持较长HRT,脱氮效率提高?(缺氧段反硝化除磷需要硝酸盐氮作电子受体) 缺氧区:厌氧合成的PHA 被降解并合成糖原,同时过量摄取污水中的磷合成聚磷酸盐。PHA作为电子供体,NO3-作为电子受体,过量吸磷。主要影响因素:电子供体(厌氧段吸收PHA),电子受体(硝酸盐氮与亚硝酸盐氮作为电子受体?反硝化速率与硝酸盐氮的浓度无关),随HRT的延长而降低? 后曝气:DPB 污泥不经好氧段直接回流到厌氧段后污泥解体(DO:1.5 ~2.0 mg/L过高:污泥解体)对反硝化气体的吹脱,有益于污泥浓缩;对剩余P的好氧吸收。 缺点:多设了二沉池;中间沉淀池流量分配比较大时系统脱氮效果

聚磷菌的培养(借鉴材料)

聚磷菌的培养 背景:污水中的磷和氮含量过高是造成水体富营养化的主要因素。而其中的磷不像氮那样可以结合氧转化为气体,含磷的气态物质(PH3)又不易转化,所以污水除磷一直都用生物除磷法。即用细菌等微生物来摄取水中的磷,达到除磷的效果。而为了提高微生物除磷的效率、便于和其他材料协同使用,筛选、培养除磷细菌也是必不可少的工作。 培养菌种\菌落:聚磷菌(PAOs) 菌落来源:废水除磷工艺中的活性污泥 菌落组成:主要由β—2亚群紫色细菌、不动杆菌、红环菌属和绿单胞菌属组成;其中不动杆菌为主导细菌,除磷作用突出 聚磷菌除磷机理: ①好氧条件下,聚磷菌不断摄取并氧化分解有机物,产生的能量一部分用 于磷的吸收和聚磷的合成,一部分则使ADP与H3PO4结合,转化为ATP 而储存起来。细菌以聚磷的形式在细胞中储存磷,其量可以超过生长所 需,这一过程称为聚磷菌磷的摄取。处理过程中,通过从系统中排除高 磷污泥以达到除磷的目的。 ②在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量,形成 ADP。这一过程称为聚磷菌磷的释放。 聚磷菌除磷则就是通过以上两种过程完成的。 培养过程: 1、材料准备 1.1取样: 从实验室运行稳定的厌氧\缺氧SBR反应器中,取富含反硝化聚磷菌的 活性污泥做为实验样品。 1.2培养基配方: ( 1 ) 牛肉膏蛋白胨培养基(L1-):蛋白胨10 g;牛肉膏3 g;NaCl 5 g;琼 脂20 g ;p H 7.2 ,用于反硝化聚磷菌的分离、纯化 ( 2) 缺磷培养基(L1-):CH3COONa 2g ;Na2HPO4·2H2O 23 mg; CaCL2·2H2O 11 mg;NH4C1 152.8mg;MgSO4·7H2O 81.12 mg; K2SO4 17.83 mg;HEPES缓冲液7 g;微量元素)1( 2 mL;p H 7.2

反硝化聚磷菌同步解决脱氮除磷两大问题

反硝化聚磷菌同步解决脱氮除磷两大问题 01 反硝化除磷机理 反硝化除磷就是在厌氧 /缺氧环境交替运行的条件下,易富集一类兼有反硝化作用和除磷作用的兼性厌氧微生物,该聚磷菌能利用 NO3-作为电子受体,通过它们的代谢作用同时完成过量吸磷和反硝化过程。最大限度地减少碳源需求量,实现了能源和资源的双重节约。反硝化除磷能节省 COD 约 50%,节省氧约 30%,剩余污泥量减少 50%左右。 大量实验室和生产性规模的生物除磷脱氮研究也表明,当微生物依次经过厌氧、缺氧和好氧 3个阶段后,约占 50%的聚磷菌既能利用氧气又能利用NO3-作为电子受体来聚磷,即反硝化聚磷菌(DPB的除磷效果相当于总聚磷菌的 50%左右)。这些发现一方面说明了硝酸盐亦可作为某些微生物氧化PHB 的电子受体,另一方面也证实了在污水的生物除磷系统中的确存在着 DPB 属微生物,而且通过驯化可得到富集 DPB 的活性污泥。 02 反硝化除磷工艺 该技术对城市污水特别是 C/N 比较低的污水有很好的处理效果。目前满足 DPB 所需环境和基质的工艺有单双两级。在单级工艺中,DPB 细菌、硝化细菌及非聚磷异养菌同时存在于悬浮增长的混合液中,顺序经历厌氧/缺氧/好氧 3种环境,最具代表性的是 BCFS 工艺。在双级工艺中,硝化细菌独立于DPB 而单独存在于某一反应器中,Dephanox 工艺和A2N 工艺是最具代表性的双级工艺。

1、BCFS 工艺 BCFS 工艺是在 UCT 工艺及原理的基础上开发的。 其工艺流程如图 1。改进在于增加了 2个反应池,接触池与混合池;增加了 2个混合液循环 Q1和Q3 。 接触池的功能为:回流污泥和来自厌氧池的混合液在池中充分混合,吸附剩余 COD;有效防止污泥膨胀。 混和池的功能为:最大程度地保证污泥再生而不影响反硝化或除磷;容易控制 SVI;最大程度地利用 DPB 以获得最少的污泥产量。 混合液循环Q1 的功能是为了增加硝化或同时反硝化的机会,从而获得良好的出水氮浓度。Q3则是起辅助回流污泥向缺氧池补充硝酸盐氮的作用。 BCFS 将生物、化学除磷工艺合并,是在线磷分离与离线磷沉淀的生物与化学除磷结合方式,充分利用反硝化聚磷菌的反硝化除磷和脱氮双重作用,来实现磷的完全去除和氮的最佳去除过程。由于充分利用BCFS 工艺中的污泥龄易满足硝化细菌增长所需的生长条件,污泥产

实验一--控制系统的稳定性分析

实验一--控制系统的稳定性分析

实验一控制系统的稳定性分 班级:光伏2班 姓名:王永强 学号:1200309067

实验一控制系统的稳定性分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响;

3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递 函数为 0.2( 2.5) () (0.5)(0.7)(3) s G s s s s s + = +++,用MATLAB编写 程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB命令窗口写入程序代码如下:z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k)

Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=ploy2str(dc{1},'s') 运行结果如下: Gctf = s + 2.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 2.05 s + 2.5 Continuous-time transfer function. dens是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den)

稳定性分析答案

稳定性分析 2009-10-14 14:18 1功角的具体含义。 电源电势的相角差,发电机q轴电势与无穷大系统电源电势之间的相角差。 电磁功率的大小与δ密切相关,故称δ为“功角”或“功率角”。电磁功率与功角的关系式被称为“功角特性”或“功率特性”。 功角δ除了表征系统的电磁关系之外,还表明了各发电机转子之间的相对空间位置。 2功角稳定及其分类。 电力系统稳态运行时,系统中所有同步发电机均同步运行,即功角δ 是稳定值。系统在受到干扰后,如果发电机转子经过一段时间的运动变化后仍能恢复同步运行,即功角δ 能达到一个稳定值,则系统就是功角稳定的,否则就是功角不稳定。 根据功角失稳的原因和发展过程,功角稳定可分为如下三类: 静态稳定(小干扰) 暂态稳定(大干扰) 动态稳定(长过程) 3电力系统静态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到小干扰后,不发生自发振荡或非周期性失步,自动恢复到原始运行状态的能力。如果能,则认为系统在该正常运行状态下是静态稳定的。不能,则系统是静态失稳的。 特点:静态稳定研究的是电力系统在某一运行状态下受到微小干扰时的稳定性问题。系统是否能够维持静态稳定主要与系统在扰动发生前的原始运行状态有关,而与小干扰的大小、类型和地点无关。 4电力系统暂态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到大干扰后,各同步发电机保持同步运行并过渡到新的或恢复到原来的稳态运行状态的能力。通常指第一或第二振荡周期不失步。如果能,则认为系统在该正常运行状态下该扰动下是暂态稳定的。不能,则系统是暂态失稳的。 特点:研究的是电力系统在某一运行状态下受到较大干扰时的稳定性问题。系统的暂态稳定性不仅与系统在扰动前的运行状态有关,而且与扰动的类型、地点及持续时间均有关。 作业2 5发电机组惯性时间常数的物理意义及其与系统惯性时间常数的关系。 表示在发电机组转子上加额定转矩后,转子从停顿状态转到额定转速时所经过的时间。TJ=TJG*SGN/SB 6例题6-1 (P152) (补充知识:当发电机出口断路器断开后,转子做匀加速旋转。汽轮发电机极对数p=1。额定频率为50Hz。要求列写每个公式的来源和意义。)题目:已知一汽轮发电机的惯性时间常数Tj=10S,若运行在输出额定功率状态,在t=0时其出口处突然断开。试计算(不计调速器作用) (1)经过多少时间其相对电角度(功角)δ=δ0+PAI.(δ0为断开钱的值)(2)在该时刻转子的转速。 解:(1)Tj=10S,三角M*=1,角加速度d2δ/dt2=三角M*W0/Tj=W0/10=S2 δ=δ0+δ/dt2 所以PI=*2PI*f/10t方 t=更号10/50=

硝酸盐浓度及投加方式对反硝化除磷的影响

第一作者:李勇智,男,1971年出生,博士研究生,主要研究方向为环境生物技术和水污染控制工程。*国家自然科学基金重点资助项目(50138010) 硝酸盐浓度及投加方式对反硝化除磷的影响* 李勇智1  彭永臻1,2  张艳萍2  游伟民 2 (1.哈尔滨工业大学市政环境工程学院, 哈尔滨150001;2.北京工业大学环境与能源工程学院, 北京100022)摘要 采用SBR 反应器,详细研究了硝酸盐浓度及其投加方式对反硝化除磷过程的影响。结果表明,缺氧环境下的反硝化吸 磷速率与作为电子受体的硝酸盐浓度有很大的关系,硝酸盐浓度越高,吸磷速率越快。当硝酸盐浓度较低,不足以氧化反硝化聚磷菌细胞内的PHB 从而导致体系反硝化除磷效率的下降。相同浓度的硝酸盐,采用流加的方式可以获得比一次性投加更高的反硝化吸磷速率。缺氧环境下,反硝化脱氮量与磷的吸收量成良好的线性关系,借助于反硝化聚磷菌,反硝化脱氮与除磷可在一种环境中完成,有效解决了废水中C OD 不足的问题,同时达到了节省能源和降低污泥产量的目的。 关键词 反硝化除磷 缺氧吸磷 生物除磷 反硝化聚磷菌 硝酸盐 Eff ect of nitrate on denitrif ying dephosphatation L i Y ongz hi ,et al .College of M unicip al and E nv ir onmental Engi -neer ing ,H arbin I nstitute of T echnology ,H arbin 150001 Abstract :T he effect of nit rate o n denitr ify ing depho sphatat ion w as investig ated by using a la bo rat or y -scale Se-quencing Batch Reactor (SBR).T he results show ed t hat t he r ate of taking up phosphate in ano x ic co ndit ion wa s r e-lat ed to t he concentrat ion of nitr ate.T he hig her concentr ation of nitra te w as,the higher r ate of taking up phosphate w as obtained.W hen the co ncentr atio n o f nitr ate w as lim it facto r in r eact or ,the PHB st or ed in the cell of denitr ify -ing pho spho rus r emov al bacteria co uld not be o xidized fully ,which led t he decr ease o f efficiency of pho sphate r e-mov al.T he co nt inuo us and steady a ddition o f nit rate could obtain the hig her r ate o f t aking up pho sphate than the ni-tr ate w as added o nce.T her e w as a linea r r elatio nship betw een the nitr og en remo val and pho sphate taken up under anox ic co ndit ion .Based o n the activ ity o f denitrifying phospho rus r emo val bacteria ,the anox ic pho sphate remo val occurs simulta neo usly w ith denitr ifica tio n under same co nditio n so that the o rg anic subst rat e and ener gy co uld be saved and the aim of r educing sludg e pr o ductio n co uld be o btained . Keywords :D enitrifying depho sphatat ion A nox ic pho sphor us upt ake Bio lo gical pho sphor us r emov al D eni-tr ifying phosphat e remo val bact eria Nitr ate 废水中的磷和氮可以通过微生物的方法而被去除。然而,传统理论认为缺氧区对废水的强化生物除磷没有任何贡献,磷浓度在缺氧区基本稳定,同时硝酸盐被认为是对生物除磷过程带来不利影响的物质[1]。最近的研究表明,至少存在一部分聚磷菌可以在缺氧条件下利用硝酸盐作为电子受体进行吸磷,这一类微生物称为反硝化聚磷菌。反硝化聚磷菌被证实具有和好氧聚磷菌极为相似的代谢特征[2~6]。Kuba 等[5,6]从动力学性质上对这两类聚磷菌进行了比较,认为以硝酸盐作为电子受体的反硝化聚磷菌有着和好氧聚磷菌同样高的强化生物除磷性能。因为反硝化聚磷菌可以在缺氧环境摄磷,这就使得摄磷和反硝化脱氮这两个生物过程借助同一类微生物在同一种环境下一并完成。摄磷和脱氮过程的结合不仅节省了脱氮对碳源的需要,而且摄磷在缺氧内完成可节省曝气所需要的能源。由此带来的另外一个好处就是,产生的剩余污泥量大为降低[7]。 在传统好氧生物除磷过程中,聚磷菌以氧为电子受体,氧是以曝气的方式连续地加入到反应体系当中。在缺氧条件下,反硝化聚磷菌以硝酸盐作为电子受体,硝酸盐浓度及其投加方式对反硝化除磷和脱氮过程构成的影响必然与好氧 条件下不同,国内外的研究中对这种影响并没有详细的报道。本文正是针对这一问题做了细致的研究。 1 实验材料与方法1.1 试验设备与试验用水 试验采用SBR 反应器,高70cm ,直径20cm ,用有机玻璃制成,底部泥斗为圆台形,总有效容积为15L 。在反应器壁的垂直方向每隔10cm 设置一个取样口(兼有排水作用),反应器底部设有排泥放空管,以粘砂块作为微孔曝气头,采用鼓风曝气方式。反应器设有搅拌器,作用是在厌氧和缺氧阶段通过搅拌使活性污泥处于悬浮状态。试验采用人工合成模拟废水(见表1),进水COD 和磷浓度通过不同的乙酸钠和K 2HP O 4的投加量进行控制。缺氧段根据需要加入不同浓度的硝酸钾溶液作为反应所需的电子受体。 1.2 污泥的培养与驯化 试验所用污泥取自采用传统活性污泥法污水处理厂的曝气池。根据聚磷菌可以分为两类的理论,以硝酸盐作为电子受体的反硝化聚磷菌是聚磷菌中的一部分,所以对反硝化聚磷 ? 323?李勇智等 硝酸盐浓度及投加方式对反硝化除磷的影响

反硝化除磷技术概述

反硝化除磷技术概述 土建学院 季斌 摘 要:反硝化除磷技术是废水生物除磷的一个新方式,能够解决废水处理工艺运行中碳源不足、污泥产量大和好氧阶段曝气能耗大等问题,因而受到环境保护领域的关注。文章对反硝化除磷的机理、影响因素、现有工艺及研究现状做出综述。 关键词:废水处理;反硝化除磷;DPBs ;缺氧吸磷 Abstract :As a new way to achieve waste water biological phosphorus removal, denitrifying phosphorus removal technology can resolve problems such as organic deficiency, large production of sludge and big energy consumption. It gets much attention from environmental protection domain. The mechanisms, effect factors, processes and research status of denitrifying phosphorus removal were reviewed and discussed in the paper. Key words :wastewater treatment ;denitrifying dephosphatation ;DPBs ;anoxic phosphorus uptake 污水脱氮除磷技术因能有效控制水体富营养化,因而是现阶段污水生物处理技术研究的热点问题。传统的生物脱氮除磷是利用硝化菌和反硝化菌脱氮、聚磷菌PAOs(Phosphorus accumulating organism)除磷达到去除目的。由于释磷和反硝化菌反硝化都需要碳源,两种菌争夺进水中的碳源,当可用碳源量不足时,磷的去除效率将受到影响。1993年荷兰Delft 大学Kuba 等发现集反硝化与除磷于一身的一类兼性厌氧微生物——反硝化聚磷菌DPBs(Denitrifying phosphorus removal bacteria), 它能利用2O 或X - NO 作为电子受体在缺氧 环境下达到去除磷的作用。反硝化除磷有着广泛的应用前景,文章接着介绍了反硝化除磷的影响因素和相关常见的工艺。 1. 反硝化除磷的机理 如下图,厌氧条件下,乙酸分子扩散进入DPBs 的细胞后,与ATP 水解反应耦合,活化成CH 3CH 2~C O A ,其中所需能量由多聚磷酸盐(Poly-P n )的水解提供;部分乙酰辅酶A 经TCA 循环代谢提供合成PHB(聚β-羟基丁酸盐,一种常见细菌内含物)所需的还原力,其余的乙酰辅酶A(约90%)被转化为PHB, 作为储备的营养物质。 缺氧条件下,DPBs 为了生长,利用储存的PHB 作为碳源和能源,通过氧化磷酸化产生ATP , X -NO 作为电子受体被还原成2N ;由于A TP/ADP 增大,而外界污水中磷酸盐丰富, 多聚磷酸盐的合成受到促进,因而能够“过量吸磷”,在细胞内重新储存多聚磷酸盐。后经过剩余污泥的排放而达到最终的除磷的目的,当然剩余污泥需进一步的处理。 图1 反硝化除磷机理示意图

聚磷菌

生物强化除磷中的聚磷菌利用比较普遍,目前也是生物除磷的主要研究方向,本文详细介绍聚磷菌的除磷原理及影响因素! 一、除磷原理 聚磷菌也叫做摄磷菌、除磷菌,是传统活性污泥工艺中一类特殊的细菌,在好氧状态下能超量地将污水中的磷吸入体内,使体内的含磷量超过一般细菌体内的含磷量的数倍,这类细菌被广泛地用于生物除磷。 在厌氧条件下,除磷菌能分解体内的聚磷酸盐而产生ATP,并利用ATP将废水中的有机物摄入细胞内,以聚b-羟基丁酸等有机颗粒的形式贮存于细胞内,同时还将分解聚磷酸盐所产生的磷酸排出体外。而好氧条件下,除磷菌利用废水中的BOD5或体内贮存的聚b-羟基丁酸的氧化分解所释放的能量来摄取废水中的磷,一部分磷被用来合成ATP,另外绝大部分的磷则被合成为聚磷酸盐而贮存在细胞体内。 二、影响因素 生物除磷的影响因素包括:温度、pH值、厌氧池DO、厌氧池硝态氮、泥龄、RBCOD含量、糖原。 (1)温度 温度对除磷效果的影响不如对生物脱氮过程的影响那么明显,在一定温度范围内,温度变化不是十分大时,生物除磷都能成功运行。试验表明,生物除磷的温度宜大于10℃,因为聚磷菌在低温时生长速度会减慢。 (2)PH值 在pH在6.5一8.0时,聚磷微生物的含磷量和吸磷率保持稳定,当pH值低于6.5时,吸磷率急剧下降。当pH值突然降低,无论在好氧区还是厌氧区磷的浓度都急剧上升,pH降低的幅度越大释放量越大,这说明pH降低引起的磷释放不是聚磷菌本身对pH变化的生理生化反应,而是一种纯化学的“酸溶”效应,而且pH下降引起的厌氧释放量越大,则好氧吸磷能力越低,这说明pH下降引起的释放是破坏性的,无效的。pH升高时则出现磷的轻微吸收。

环境微生物作业,硝化,反硝化细菌

反硝化细菌和反硝化聚磷菌在污水处理中的运用 摘要:微生物法在污水处理过程中起到十分重要的作用。其中反硝化细菌与反硝化聚磷菌在污水处理中运用更为广泛,本文就对这两种细菌的研究情况作一些简单概述。 关键词:反硝化细菌;反硝化聚磷菌;自养反硝化;好氧反硝化 随着人类生活水平的不断提高和工业生产的快速发展,带来越来越严重的水质污染问题。寻求新的高效污水处理办法也是现在的一大研究方向,微生物处理法在污水处理中有着广泛的运用。本文着重介绍两种细菌:反硝化细菌和反硝化聚磷菌在污水处理中的一些运用。 一.反硝化细菌 反硝化细菌(Denitrifying bacteria) 是一类兼性厌氧微生物,当处于缺氧环境时,反硝化细菌可用硝酸盐、氮化物等作为末端电子受体。有些反硝化细菌能还原硝酸盐和亚硝酸盐,有些反硝化细菌只能将硝酸盐还原为亚硝酸盐。 反硝化细菌与污水除氮原理:污水中的含氮有机物经过异养菌的氨化作用转变为氨氮,再经过硝化细菌的硝化作用将氨氮转变为亚硝酸盐和硝酸盐态氮,最后经过反硝化细菌的反硝化作用将亚硝酸盐和硝酸盐还原为NO、N 2 O ,并最终变 为N 2 ,从而将含氮物质从污水处理系统中排出。当环境中有分子态氧存在时,反硝化细菌氧化分解有机物,利用分子态氧作为最终电子受体。在无分子态氧存在下,反硝化细菌利用硝酸盐和亚硝酸盐作为电子受体,有机物则作为碳源及电子供体提供能量。在污水处理中,当溶解氧(DO) 小于或等于0.15mgPL 情况下,反硝化细菌利用污水中的有机碳源(污水中的BOD) 作为氢供体,以硝酸态盐作为电子 受体,将硝酸盐还原为NO、N 2O 或N 2 ,这既可消除污水中的氮,又可恢复环境的pH 稳定性,对污水处理系统的正常运行起重要作用。在污水处理中反硝化细菌种类很多。 影响污水脱氮过程中反硝化反应的因素: 1.有机碳源:一般认为,当污水中的BOD 5 PT2N 值> 3~5 时,即可认为碳源是充足的,此时不需要补充外加碳源。甲醇作为碳源时反硝化速率高,被分解后的产物为 CO 2和 H 2 O ,但处理费用较高。污水处理系统中碳源的种类不同可导致反硝化细 菌的类群及反硝化活性不同。

污泥反硝化除磷能力

污泥反硝化除磷能力 1 引言 在传统生物脱氮除磷工艺中,氮的去除主要是通过好氧硝化和缺氧反硝化两个独立的过程来 实现,磷则是通过厌氧释磷和好氧吸磷两步完成.因此,同步脱氮除磷需要硝化菌、反硝化菌和 聚磷菌(PAOs)同时参与.由于反硝化过程和释磷过程都需要有机物提供碳源,反硝化细菌和PAOs 之间存在竞争,所以当污水中碳源不足时,系统对氮、磷的去除效果将受到影响. 反硝化除磷菌(DNPAOs)可以利用同一碳源处理硝酸盐/亚硝酸盐和磷,从而避免了对有机碳 源的竞争.DNPAOs能在厌氧条件下将有机物转化为PHA存储在细胞内,而且能利用硝酸盐或亚硝 酸盐作为电子受体进行好氧吸磷.DNPAOs产能效率较低,污泥产量可以降低20%~30%.因此,DNPAOs在同步生物脱氮除磷中具有较大优势.颗粒污泥具有结构致密、沉降性能好、生物密度大、微生物种类多、污泥活性高、抗冲击能力强等优点.研究表明,颗粒污泥内部由于氧气渗透深度 有限可以同时存在好氧/缺氧/厌氧环境,有利于同步脱氮除磷.在SBR反应器中,通过搅拌、曝 气等选择压能够得到反硝化除磷颗粒污泥,这种颗粒污泥兼具反硝化除磷技术和颗粒污泥的优势. 反硝化除磷颗粒污泥技术作为一种新型的污水处理技术,目前尚处于实验室小试阶段,尚未 得到广泛应用,关于颗粒化过程的报道及颗粒污泥特性等的文章也不多见.为此我们进行本试验 的探究,拟为反硝化除磷颗粒污泥的颗粒化过程及其特性提供一定的实践参考和理论依据.试验 采用三套完全相同的SBR反应器R1、R2和R3,以A/O/A运行模式,接种普通絮状污泥,分别以 普通人工配水、加Ca2+人工配水和实际生活污水为进水水源,进行反硝化除磷颗粒污泥的培养,并研究反硝化除磷颗粒污泥的相关特性及其除污性能. 2 材料与方法 2.1 试验装置 本试验采用的3套SBR反应器R1、R2、R3形态结构完全相同,试验装置如图 1所示.反应器由有机玻璃加工制成,内径120 mm,外径220 mm,高800 mm,高径比H/D为6.7,有效容积7 L.SBR反应器的运行采用时间程序控制器进行自动控制,反应器全程不控温,均在室温(23~28 ℃)条件下运行.人工配水和实际生活污水由计量泵从反应器上部引入,厌氧和缺氧过程由搅拌仪实现,转速为300 r · min-1,好氧过程利用气泵从底部曝气实现.试验所用污泥取自武汉市沙湖 污水处理厂二沉池,经初步处理后投加到反应器中,初始污泥浓度约为5000 mg · L-1.

反硝化聚磷菌机制总结

反硝化聚磷菌机制总结 本次文献总结主要来源:A2 /O工艺缺氧池中反硝化聚磷菌的比例、特性研究及菌株鉴定;Interaction of denitrification and P removal in anoxic P removal systems;反硝化聚磷菌的SBR 反应器中微生物种群与浓度变化;EBPR系统中聚磷菌与聚糖菌的竞争和调控的基础研究;反硝化聚磷菌特性与反硝化除磷工艺研究。 本次文献总结主要总结了硝化反硝化聚磷的机制,及聚磷菌释磷和聚磷速率的一种算法,简单介绍了聚磷微生物的研究。重点介绍了在SBR反应器中一种更为详细的较好的培养富集反硝化聚磷菌的方法及其中微生物种群及其浓度的变化。 有一类聚磷菌能够利用硝酸盐作为电子载体,同时进行反硝化脱氮和聚磷,称为反硝化聚磷菌。反硝化聚磷菌既可以利用硝酸盐作为电子受体,也可以利用氧气作为电子受体。1、硝化反硝化作用和聚磷作用 污水中的氮一般以有机氮、氨氮、亚硝酸盐氮、硝酸盐氮形式存在。废水脱氮的基本原理则是利用硝化和反硝化过程,其过程如下: 对于污水中磷的去除则采用聚磷菌聚磷的机制,在乙酸盐作为碳源的条件下,其过程如下: 而丹麦技术大学的Henze等研究者提出了在厌氧和好氧的条件下,聚磷菌体内磷的释放(r PR)和摄取(r PU)的速率可分别用如下Monod方程表示:

其中各字母代表意义如下: 代表乙酸盐与磷酸盐的化学计量系数(HAC/P),为2mol/mol ;K HAC代表乙酸利用速率常数,(HAC/PAO),kg/(kg.d);S HAC代表乙酸质量浓度,mg/L ;K S’HAC代表乙 酸去除的饱和常数,mg/L;X PAO代表聚磷菌PAO浓度,mg/L ;代表PO43-的最大比降解速率(PO43-/PAO),kg/(kg.d);代表PAO的最大产率系数(PAO/ PO43-),kg/kg;代表磷酸盐中磷的质量浓度,mg/L;代表磷酸盐中磷的饱和常数,mg/L。 2、反硝化聚磷微生物的研究 生物除磷系统中的微生物种群受环境因素如基质、电子受体和碳磷比等影响,主要分为PAOs和非PAOs两大类,它们之间竞争碳源。PAOs多为球杆状,非PAOs称为聚糖菌(GAOs),多呈四分染色体球状。 随着荧光原位杂交(FISH),变性梯度凝胶电泳(DGGE),16SrRNA靶向寡核苷酸探针等方法在生物除磷系统微生物学研究方面的应用,发现生物除磷系统微生物群落与非除磷系统的微生物群落一样具有很高的多样性。 关于反硝化聚磷菌的研究起步较晚,研究者们发现在生物除磷系统中至少存在两种PAOs,一类可以氧气和硝酸盐作为电子受体的DPAOs,一类只以氧气为电子受体的 non-DPAOs。罗宁等对A2N-SBR反硝化除磷脱氮工艺中的活性污泥进行了分离鉴定,发现假单胞菌属、莫拉氏菌属、肠杆菌科和气单胞菌属占到细菌总数的67%,并具有反硝化聚磷脱氮作用;不动杆菌占28%,没有反硝化聚磷作用,但能在好氧条件下吸磷。 3、聚磷菌与聚糖菌的竞争 Fukase第一次报道了在EBPR系统内有另一类微生物和聚磷菌竞争,可以在厌氧条件下吸收VFA但是不聚磷。Cech和Hartman发现在以葡萄糖或者乙酸为基质的系统中有大量的四联体的球菌,这种系统在厌氧条件下碳被吸收而磷不被去除。最后Mino把它们称为GAO,定义:好氧储存糖原厌氧消耗糖原,以糖原为主要能量来源吸收碳源并且储存为PHA的一类微

反硝化聚磷菌初步简要总结

反硝化聚磷菌总结 主要文献来源:反硝化聚磷一体化设备中的聚磷菌;SBBR 系统反硝化聚磷菌的分离及其鉴定;Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process; 反硝化聚磷菌: 其除磷原理与聚磷菌相类似,聚磷菌是在好氧的条件下氧化聚-β-羟基丁酸盐(PHB)产生能量来吸收水体中的磷酸盐,而反硝化聚磷菌不仅仅可以利用氧气作为电子受体,还能够在缺氧的条件下以硝酸盐(N0X-)作为电子受体来氧化聚-β-羟基丁酸盐(PHB),不仅可以使硝态氮转化为氮气溢出体外,同时过量地摄取污水中的磷酸盐,从而达到除磷和反硝化(脱氮)在同一时期同一环境下进行的目的,同步去除污水的氮与磷。 COD对其影响 在一些通用的生物去除污水中污染物的工艺中,COD通常是作为磷释放和反硝化作用的一个重要限制因素,特别是对比例较低的COD:N的污水。在好养除磷的系统中,聚磷菌需要利用挥发性短链脂肪酸(SCVFAS)除磷,经过实验发现乙酸盐作为其中的碳源时除磷效果最好,当污水中的SCVFAS不足时,需要进行补充,这就增大了污水处理的成本。 而COD对反硝化聚磷菌的影响较低,能够在缺乏碳源的环境中同时去除氮和磷元素。在厌氧/缺氧交替运行的反应器(A2N-SBR)中,反硝化聚磷菌较活跃,与聚磷菌有较相似的代谢作用,同等去除率下,在生物除氮反应器中反硝化聚磷菌的应用使COD得以存留(50%)和省却曝气量(30%),并产生较少的污泥(50%)。 库巴等人在实验室的研究表明厌氧—缺氧/硝化序批式反应器(A2N-SBR)显示稳定的磷和氮去除率,其只在COD-乙酸盐400mg /L能够有效去除15mg/L磷和105mg/L氮, 即最佳流入的COD/N之比为3.4:1 。 在Yayi Wang、Yongzhen Peng等人的文献《Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process》中,研究发现在不同的COD/P的进水中,不管COD进水的变化,进水磷的浓度越高,由于聚磷菌/反硝化聚磷菌可利用的磷增多在菌体内形成聚磷酸盐,所以释放的磷也相应增多。在他人的试验中也发现了同样的现象,在含有较高的磷的强化生物除磷系统中能够聚集较多的聚磷菌并保持较高活性。在Yayi Wang、Yongzhen Peng等人的研究中发现进水的COD/P比例升高,在厌氧--缺氧/硝化作用的SBR反应器(A2N-SBR)中P的去除率随着增加,最终达到约20时,磷的去除率稳定在96%左右。COD/TN的比例对最终磷

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺 摘 要:阐述了生物除磷和反硝化脱氮的机理,针对常规生物脱氮除磷技术和工艺中存在的问题,研究开发出从不同类型污水中去除氮和磷的SBR 工艺、CAST 工艺、MSBR 工艺、O A /2 工艺和立体循环一体化氧化沟等。这些技术和工艺发挥了不同微生物菌群的优势,使其分别处于各自最佳状态,可提高处理效率、简化操作、降低处理费用。 关键词: 脱氮除磷;SBR 工艺;CAST 工艺;MSBR 工艺;O A /2;立体循环一体化氧化沟 1 引言 氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害。然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污(废)水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物 降解,大部分的可溶性含碳有机物被去除。同时产生N NH -3、N NO --3和-34PO 和- 24SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准。因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要。 2 生物脱氮除磷机理 2.1 生物脱氮机理 污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝 态氮,即,将3NH 转化为N NO --2和N NO --3。在缺氧条件下通过反硝化作用将硝氮转 化为氮气,即,将N NO -- 2(经反亚硝化)和N NO --3(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的[1]。 ○ 1硝化——短程硝化:O H HNO O NH 22235.1+→+

相关主题
文本预览
相关文档 最新文档